1
|
Tian X, Zhan L, Long X, Lin J, Zhang Y, Luan J, Peng X, Zhao G. Multifunctional natamycin modified chondroitin sulfate eye drops with anti-inflammatory, antifungal and tissue repair functions possess therapeutic effects on fungal keratitis in mice. Int J Biol Macromol 2024; 279:135290. [PMID: 39233178 DOI: 10.1016/j.ijbiomac.2024.135290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Fungal keratitis (FK) is recognized as a stubborn ocular condition, caused by intense fungal invasiveness and heightened immune reaction. The glycosaminoglycan chondroitin sulfate exhibits properties of immunomodulation and tissue regeneration. In prior investigations, oxidized chondroitin sulfate (OCS) ameliorated the prognosis of FK in murine models. To further improve the curative efficacy, we used the antifungal drug natamycin to functionalize OCS and prepared oxidized chondroitin sulfate-natamycin (ON) eye drops. The structure of ON was characterized by FTIR, UV-vis, and XPS, revealing that the amino group of natamycin combined with the aldehyde group in OCS through Schiff base reaction. Antifungal experiments revealed that ON inhibited fungal growth and disrupted the mycelium structure. ON exhibited exceptional biocompatibility and promoted the proliferation of corneal epithelial cells. Pharmacokinetic analysis indicated that ON enhanced drug utilization by extending the mean residence time in tears. In murine FK, ON treatment reduced the clinical score and corneal fungal load, restored corneal stroma conformation, and facilitated epithelial repair. ON effectively inhibited neutrophil infiltration and decreased the expression of TLR-4, LOX-1, IL-1β, and TNF-α. Our research demonstrated that ON eye drops achieved multifunctional treatment for FK, including inhibiting fungal growth, promoting corneal repair, enhancing drug bioavailability, and controlling inflammatory reactions.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of materials Science and Engineering, Qingdao University, Qingdao, Shandong Province 266071, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
2
|
Fu C, Wang X, Zhou W, Gao Q, Luo J, Li Y. Exploring the mechanism of chondroitin sulfate-selenium nanoparticles in improving Alzheimer's disease: Insights from intestinal flora evaluation. Heliyon 2024; 10:e38635. [PMID: 39421360 PMCID: PMC11483475 DOI: 10.1016/j.heliyon.2024.e38635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In this study we have investigated the effect of chondroitin sulfate-selenium nanoparticles (CS@Se) on Alzheimer's disease (AD) mice using 16S rDNA technique. We randomly divided 30 SPF grade male C57BL/6 J mice into 6 groups according to random number table method. The AD mouse model was established by subcutaneous injection of D-galactose (D-gal) combined with gavage of AlCl3 for 30 consecutive days, and then drug intervention was performed in the administration group for 40 consecutive days. The findings demonstrated several positive effects of CS@Se on AD mice. Firstly, CS@Se improved spatial learning and memory problems and reduces anxiety in AD mice. It also significantly reduced pyramidal cell arrangement disorder and rupture, leading to an improvement in synaptic structure damage between hippocampal neurons. Furthermore, CS@Se reduced mitochondrial swelling and vacuolation while increasing neuron survival in AD mice. Moreover, CS@Se significantly impacted the diversity and richness of intestinal flora in AD mice. It increased the relative abundance of Firmicutes and Actinobacteria while reducing the relative abundance of Bacteroidetes and Proteobacteria. In conclusion, CS@Se effectively reduced the breakdown of hippocampal pyramidal cells, improved the superfiber structure of hippocampal neurons, and restored intestinal flora balance, ultimately contributing to improving learning and memory abilities and alleviating anxiety in AD mice.
Collapse
Affiliation(s)
- Changfang Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Taishan vocational college of nursing, Taian 271000, China
| | - Xinyue Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Zhou
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Heze Health School in Shandong Province, Heze 274000, China
| | - Qi Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Key Laboratory of Clinical Pharmacology, Liao cheng People's Hospital, Liaocheng 252000, China
| | - Junjun Luo
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuqin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
3
|
Pang HL, Zhang LT, Zhang YT, Ren Q. Separation and purification of bovine nasal cartilage-derived chondroitin sulfate and evaluation of its binding to bovine serum albumin. Int J Biol Macromol 2024; 277:134501. [PMID: 39111483 DOI: 10.1016/j.ijbiomac.2024.134501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
This study employs an optimized and environmentally friendly method to extract and purify chondroitin sulfate (CS) from bovine nasal cartilage using enzymatic hydrolysis, ethanol precipitation, and DEAE Sepharose Fast Flow column chromatography. The extracted CS, representing 44.67 % ± 0.0016 of the cartilage, has a molecular weight of 7.62 kDa. Characterization through UV, FT-IR, NMR spectroscopy, and 2-aminoacridone derivatization HPLC revealed a high content of sulfated disaccharides, particularly ΔDi4S (73.59 %) and ΔDi6S (20.61 %). Interaction studies with bovine serum albumin (BSA) using fluorescence spectroscopy and molecular docking confirmed a high-affinity, static quenching interaction with a single binding site, primarily mediated by van der Waals forces and hydrogen bonding. The interaction did not significantly alter the polarity or hydrophobicity of BSA aromatic amino acids. These findings provide a strong foundation for exploring the application of CS in tissue engineering and drug delivery systems, leveraging its unique interaction with BSA for targeted delivery and enhanced efficacy.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Li-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
4
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
5
|
Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res 2024; 134:931-949. [PMID: 38547250 DOI: 10.1161/circresaha.123.324055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics (Y.Z.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
6
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
7
|
Mneimneh AT, Mehanna MM. Chondroitin Sulphate: An emerging therapeutic multidimensional proteoglycan in colon cancer. Int J Biol Macromol 2024; 254:127672. [PMID: 38287564 DOI: 10.1016/j.ijbiomac.2023.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) that has captured massive attention in the field of drug delivery. As the colon is considered the preferred site for local and systemic delivery of bioactive agents for the treatment of various diseases, colon-targeted drug delivery rose to the surface of research. Amid several tactics to attain colon-targeted drug release, the exploitation of polymers degraded by colonic bacteria holds great promise. Chondroitin sulfate as a biodegradable, biocompatible mucopolysaccharide is known for its anti-inflammatory, anti-osteoarthritis, anti-atherosclerotic, anti-oxidant, and anti-coagulant effects. Besides these therapeutic functions, CS thrived to play a major role in nanocarriers as a matrix material, coat, and targeting ligand. This review focuses on the role of CS in nanocarriers as a matrix material or as a targeting moiety for colon cancer therapy, relating the present applications to future perspectives.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
8
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Mazurov VI, Lila AM, Alekseeva LI, Baymukhamedov CT, Isaeva BG, Iskra DA, Karimov MY, Mirakhmedova HT, Mkrtumyan AM, Nabieva DA, Naumov AV, Tkacheva ON, Trofimov EA, Khokhlova MN. Multimorbidity in osteoarthritis and pleiotropic effects of slow-acting symptomatic drugs. Resolution of the multidisciplinary International Expert Council. MODERN RHEUMATOLOGY JOURNAL 2023; 17:123-131. [DOI: 10.14412/1996-7012-2023-5-123-131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In recent decades, the prevalence of osteoarthritis (OA), one of the most disabling diseases, has increased worldwide, which imposes a significant burden on society. At the international multidisciplinary meeting, experts of various specialties (rheumatology, neurology, endocrinology, geriatrics, rehabilitation, traumatology and orthopedics) from Russia, Uzbekistan, and Kazakhstan discussed the importance of an individualized approach to the treatment of patients with OA, taking into account comorbidities, identified the most important and common clinical phenotypes of the disease, discussed known symptom- and structure-modifying effects of a combination of glucosamine and chondroitin sulfate, and new data on additional (pleiotropic) effects of these drugs that may have a positive impact on the course of comorbid diseases and conditions. The resolution of the Expert Council summarizes the results of the discussion and focuses on issues that are important for the further development of therapeutic approaches and recommendations for the management of such patients.
Collapse
Affiliation(s)
- V. I. Mazurov
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - L. I. Alekseeva
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | | | | | - D. A. Iskra
- Military Medical Academy named after S.M. Kirov, Ministry of Defense of Russia
| | | | | | | | | | - A. V. Naumov
- Russian Gerontological Research Clinical Center, Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. N. Tkacheva
- Russian Gerontological Research Clinical Center, Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - E. A. Trofimov
- North-Western State Medical University named after I.I. Mechnikov, Ministry of Health of Russia
| | - M. N. Khokhlova
- Moscow Centre foe Research and Practice in
Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department
| |
Collapse
|
10
|
Inokuma K, Sasaki D, Kurata K, Ichikawa M, Otsuka Y, Kondo A. Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system. Sci Rep 2023; 13:12313. [PMID: 37516730 PMCID: PMC10387111 DOI: 10.1038/s41598-023-38849-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kaoru Kurata
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Megumi Ichikawa
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Yuya Otsuka
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
12
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
13
|
Suzuki K, Kaseyama-Takemoto H. Simultaneous production of N-acetylheparosan and recombinant chondroitin using gene-engineered Escherichia coli K5. Heliyon 2023; 9:e14815. [PMID: 37095938 PMCID: PMC10121815 DOI: 10.1016/j.heliyon.2023.e14815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
N-Acetylheparosan and chondroitin are increasingly needed as alternative sources of animal-derived sulfated glycosaminoglycans (GAGs) and as inert substances in medical devices and pharmaceuticals. The N-acetylheparosan productivity of E. coli K5 has achieved levels of industrial applications, whereas E.coli K4 produces a relatively lower amount of fructosylated chondroitin. In this study, the K5 strain was gene-engineered to co-express K4-derived, chondroitin-synthetic genes, namely kfoA and kfoC. The productivities of total GAG and chondroitin in batch culture were 1.2 g/L and 1.0 g/L respectively, which were comparable to the productivity of N-acetylheparosan in the wild K5 strain (0.6-1.2 g/L). The total GAG of the recombinant K5 was partially purified by DEAE-cellulose chromatography and was subjected to degradation tests with specific GAG-degrading enzymes combined with HPLC and 1H NMR analyses. The results indicated that the recombinant K5 simultaneously produced both 100-kDa chondroitin and 45-kDa N-acetylheparosan at a weight ratio of approximately 4:1. The content of chondroitin in total GAG partially purified was 73.2%. The molecular weight of recombinant chondroitin (100 kDa) was 5-10 times higher than that of commercially available chondroitin sulfate. These results indicated that the recombinant K5 strain acquired the chondroitin-producing ability without altering the total GAG productivity of the host.
Collapse
|
14
|
Sarvilina IV, Danilov AB, Tkacheva ON, Gromova OA, Solovieva EY, Dudinskaya EN, Rozanov AV, Kartashova EA. [Influence of chronic pain in osteoarthritis on the risk of cardiovascular diseases and modern methods of drug prevention]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:20-30. [PMID: 37315238 DOI: 10.17116/jnevro202312305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The purpose of the review of scientific medical literature was to evaluate the data of the epidemiology of osteoarthritis (OA) and cardiovascular diseases (CVD) with the analysis of risk factors, pathophysiological and pathobiochemical mechanisms of the relationship between OA and the risk of developing CVD in the presence of chronic pain, modern strategies for screening and management of this cohort of patients, the mechanism of action and pharmacological effects of chondroitin sulfate (CS). Conclusions were drawn about the need for additional clinical and observational studies of the efficacy and safety of the parenteral form of CS (Chondroguard) in patients with chronic pain in OA and CVD, improvement of clinical recommendations for the treatment of chronic pain in patients with OA and cardiovascular risk, with special attention to interventions that eliminate mobility restrictions in patients and the inclusion of basic and adjuvant therapy with DMOADs to achieve the goals of multipurpose monotherapy in patients with contraindications to standard therapy drugs.
Collapse
Affiliation(s)
- I V Sarvilina
- Medical Center «Novomedicina» LLC, Rostov-on-Don, Russia
| | - Al B Danilov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - O N Tkacheva
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Gromova
- Federal Research Center «Computer Science and Control», Moscow, Russia
| | - E Yu Solovieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E N Dudinskaya
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Rozanov
- Russian Clinical and Research Center of Gerontology - Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
15
|
Tian X, Peng X, Long X, Lin J, Zhang Y, Zhan L, Zhao G. Oxidized chondroitin sulfate eye drops ameliorate the prognosis of fungal keratitis with anti-inflammatory and antifungal effects. J Mater Chem B 2022; 10:7847-7861. [PMID: 36070420 DOI: 10.1039/d2tb00114d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungal keratitis (FK) is a refractory ophthalmic disease that can result in vision impairment and even blindness due to the severe fungal invasiveness and excessive inflammatory response. Therefore, antifungal treatment combined with local immunosuppressive therapy is regarded as the most effective strategy to improve the clinical outcome of FK. Oxidized polysaccharides with aldehyde groups possess obvious inhibitory activity towards microorganisms. Herein, we use chondroitin sulfate (CS), a recognized anti-inflammatory biopolysaccharide, to prepare oxidized chondroitin sulfate (OCS) via sodium periodate (NaIO4) oxidation for the treatment of FK. The chemical structure of OCS was characterized by FTIR, 1H NMR, and XPS, revealing that the O-dihydroxy in the D-glucuronic acid unit of CS was selectively broken by NaIO4, forming active aldehyde groups. The introduction of aldehydes not only retains the anti-inflammatory activity but also confers OCS with antifungal property. In vitro antifungal experiments showed that OCS inhibits the growth, represses the biofilm formation and alters the membrane integrity of A. fumigatus. The toxicity of OCS was evaluated by cytotoxicity tests (CCK-8) and the Draize eye test in vitro and in vivo. qRT-PCR confirmed that OCS had similar anti-inflammatory activity as CS. In mice with A. fumigatus keratitis, OCS versus CS or PBS showed an excellent therapeutic effect, characterized by a lower corneal inflammation score, less fungal load, reduced neutrophil recruitment, and the downregulated expression of pro-inflammatory factors. Our findings demonstrate that OCS improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of fungi, reducing the recruitment of neutrophils and inhibiting the inflammatory response. It provides innovative ideas for the development and application of OCS in medicine and biomaterials fields.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China. .,Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 40201, USA
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
16
|
Luan J, Peng X, Lin J, Zhang Y, Tian X, Zhan L, Zhao G. The therapeutic potential of chondroitin sulfate in Aspergillus fumigatus keratitis. Mol Immunol 2022; 147:50-61. [DOI: 10.1016/j.molimm.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
|
17
|
Haryono A, Ikeda K, Nugroho DB, Ogata T, Tsuji Y, Matoba S, Moriwaki K, Kitagawa H, Igarashi M, Hirata KI, Emoto N. ChGn-2 Plays a Cardioprotective Role in Heart Failure Caused by Acute Pressure Overload. J Am Heart Assoc 2022; 11:e023401. [PMID: 35322673 PMCID: PMC9075488 DOI: 10.1161/jaha.121.023401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Cardiac extracellular matrix is critically involved in cardiac homeostasis, and accumulation of chondroitin sulfate glycosaminoglycans (CS-GAGs) was previously shown to exacerbate heart failure by augmenting inflammation and fibrosis at the chronic phase. However, the mechanism by which CS-GAGs affect cardiac functions remains unclear, especially at the acute phase. Methods and Results We explored a role of CS-GAG in heart failure using mice with target deletion of ChGn-2 (chondroitin sulfate N-acetylgalactosaminyltransferase-2) that elongates CS chains of glycosaminoglycans. Heart failure was induced by transverse aortic constriction in mice. The role of CS-GAG derived from cardiac fibroblasts in cardiomyocyte death was analyzed. Cardiac fibroblasts were subjected to cyclic mechanical stretch that mimics increased workload in the heart. Significant CS-GAGs accumulation was detected in the heart of wild-type mice after transverse aortic constriction, which was substantially reduced in ChGn-2-/- mice. Loss of ChGn-2 deteriorated the cardiac dysfunction caused by pressure overload, accompanied by augmented cardiac hypertrophy and increased cardiomyocyte apoptosis. Cyclic mechanical stretch increased ChGn-2 expression and enhanced glycosaminoglycan production in cardiac fibroblasts. Conditioned medium derived from the stretched cardiac fibroblasts showed cardioprotective effects, which was abolished by CS-GAGs degradation. We found that CS-GAGs elicits cardioprotective effects via dual pathway; direct pathway through interaction with CD44, and indirect pathway through binding to and activating insulin-like growth factor-1. Conclusions Our data revealed the cardioprotective effects of CS-GAGs; therefore, CS-GAGs may play biphasic role in the development of heart failure; cardioprotective role at acute phase despite its possible unfavorable role in the advanced phase.
Collapse
Affiliation(s)
- Andreas Haryono
- Division of Cardiovascular Medicine Department of Internal Medicine Kobe University Graduate School of Medicine Kobe Japan.,Laboratory of Clinical Pharmaceutical Science Kobe Pharmaceutical University Kobe Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science Kobe Pharmaceutical University Kobe Japan.,Department of Epidemiology for Longevity and Regional Health Kyoto Prefectural University of Medicine Kyoto Japan.,Department of Cardiology Kyoto Prefectural University of Medicine Kyoto Japan
| | - Dhite Bayu Nugroho
- Department of Internal Medicine Faculty of Medicine, Public Health, and Nursing Gadjah Mada University Indonesia
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yumika Tsuji
- Department of Cardiology Kyoto Prefectural University of Medicine Kyoto Japan
| | - Satoaki Matoba
- Department of Cardiology Kyoto Prefectural University of Medicine Kyoto Japan
| | - Kensuke Moriwaki
- Comprehensive Unit for Health Economic Evidence Review and Decision Support (CHEERS) Research Organization of Science and TechnologyRitsumeikan University Kyoto Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry Kobe Pharmaceutical University Kobe Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology Graduate School of Medical and Dental Sciences and Trans-disciplinary Program Niigata University Niigata Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine Department of Internal Medicine Kobe University Graduate School of Medicine Kobe Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine Department of Internal Medicine Kobe University Graduate School of Medicine Kobe Japan.,Laboratory of Clinical Pharmaceutical Science Kobe Pharmaceutical University Kobe Japan
| |
Collapse
|
18
|
Kayashima Y, Clanton CA, Lewis AM, Sun X, Hiller S, Huynh P, Wilder J, Hagaman J, Li F, Maeda-Smithies N, Harris EN. Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Front Cardiovasc Med 2022; 9:818662. [PMID: 35360009 PMCID: PMC8963368 DOI: 10.3389/fcvm.2022.818662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe−/− mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe−/− mice carrying Aath5 covering the Stab2DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2−/−Apoe−/− mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2−/−Apoe−/− males developed approximately 30% smaller plaques than Stab2+/+Apoe−/− mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2−/−Apoe−/− males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yukako Kayashima
| | - Connor A. Clanton
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Amanda M. Lewis
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Sylvia Hiller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Huynh
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Wilder
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
19
|
Xu L, He D, Zhang C, Bai Y, Zhang C. The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Mazzucchelli R, Rodríguez-Martín S, Crespí-Villarías N, García-Vadillo A, Gil M, Izquierdo-Esteban L, Rodríguez-Miguel A, Barreira-Hernández D, Fernández-Antón E, García-Lledó A, Pascual A, Vitaloni M, Vergés J, de Abajo FJ. Risk of ischaemic stroke among new users of glucosamine and chondroitin sulphate: a nested case–control study. Ther Adv Musculoskelet Dis 2022; 14:1759720X221113937. [PMID: 35923649 PMCID: PMC9340380 DOI: 10.1177/1759720x221113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Several studies have reported that the use of chondroitin sulphate (CS) and
glucosamine may reduce the risk of acute myocardial infarction. Although it
is thought that this potential benefit could be extended to ischaemic stroke
(IS), the evidence is scarce. Objective: To test the hypothesis that the use of prescription glucosamine or CS reduces
the risk of IS. Design: Case–control study nested in an open cohort. Methods: Patients aged 40–99 years registered in a Spanish primary healthcare database
(BIFAP) during the 2002–2015 study period. From this cohort, we identified
incident cases of IS, applying a case-finding algorithm and specific
validation procedures, and randomly sampled five controls per case,
individually matched with cases by exact age, gender and index date.
Adjusted odds ratios (AORs) and 95% confidence interval (CI) were computed
through a conditional logistic regression. Only new users of glucosamine or
CS were considered. Results: A total of 13,952 incident cases of IS and 69,199 controls were included. Of
them, 106 cases (0.76%) and 803 controls (1.16%) were current users of
glucosamine or CS at index date, yielding an AOR of 0.66 (95% CI: 0.54–0.82)
(for glucosamine, AOR: 0.55; 95% CI: 0.39–0.77; and for CS, AOR: 0.77; 95%
CI: 0.60–0.99). The reduced risk among current users was observed in both
sexes (men, AOR: 0.69; 95% CI: 0.49–0.98; women, AOR: 0.65; 95% CI:
0.50–0.85), in individuals above and below 70 years of age (AOR: 0.69; 95%
CI: 0.53–0.89 and AOR: 0.59; 95% CI: 0.41–0.85, respectively), in
individuals with vascular risk factors (AOR: 0.53; 95% CI: 0.39–0.74) and
among current/recent users of nonsteroidal anti-inflammatory drugs (NSAIDs)
(AOR: 0.71; 95% CI: 0.55–0.92). Regarding duration, the reduced risk was
observed in short-term users (<365 days, AOR: 0.61; 95% CI: 0.48–0.78)
while faded and became nonsignificant in long-term users (>364 days AOR:
0.86; 95% CI: 0.57–1.31). Conclusions: Our results support a protective effect of prescription CS and glucosamine in
IS, which was observed even in patients at vascular risk. Mini abstract Our aim was to analyse whether the use of glucosamine or chondroitin sulphate
(CS) reduces the risk of ischaemic stroke (IS). We detected a significant
decrease.
Collapse
Affiliation(s)
- Ramón Mazzucchelli
- Rheumatology Unit, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Sara Rodríguez-Martín
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Spain
| | | | | | - Miguel Gil
- Division of Pharmacoepidemiology and Pharmacovigilance, Spanish Agency of Medicines and Medical Devices (AEMPS), Madrid, Spain
| | - Laura Izquierdo-Esteban
- Stroke Unit, Department of Neurology, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Antonio Rodríguez-Miguel
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Spain
| | - Diana Barreira-Hernández
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Spain
| | - Encarnación Fernández-Antón
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Spain
| | - Alberto García-Lledó
- Department of Cardiology, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Medicine, University of Alcalá, Alcalá de Henares, Spain
| | - Aina Pascual
- OAFI (OsteoArthritis Foundation International), Barcelona, Spain
| | | | - Josep Vergés
- OAFI (OsteoArthritis Foundation International), Barcelona, Spain
| | - Francisco J. de Abajo
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Ctra. Madrid-Barcelona, km 33,5, Alcalá de Henares 28805, Madrid, Spain
| |
Collapse
|
21
|
Han Y, Wu J, Gong Z, Zhou Y, Li H, Wang B, Qian Q. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis. J Transl Med 2021; 19:522. [PMID: 34949204 PMCID: PMC8705150 DOI: 10.1186/s12967-021-03183-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/05/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteoarthritis (OA), which is due to the progressive loss and degeneration of articular cartilage, is the leading cause of disability worldwide. Therefore, it is of great significance to explore OA biomarkers for the prevention, diagnosis, and treatment of OA. Methods and materials The GSE129147, GSE57218, GSE51588, GSE117999, and GSE98918 datasets with normal and OA samples were downloaded from the Gene Expression Omnibus (GEO) database. The GSE117999 and GSE98918 datasets were integrated, and immune infiltration was evaluated. The differentially expressed genes (DEGs) were analyzed using the limma package in R, and weighted gene co-expression network analysis (WGCNA) was used to explore the co-expression genes and co-expression modules. The co-expression module genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and hub genes were identified by the degree, MNC, closeness, and MCC algorithms. The hub genes were used to construct a diagnostic model based on support vector machines. Results The Immune Score in the OA samples was significantly higher than in the normal samples, and a total of 2313 DEGs were identified. Through WGCNA, we found that the yellow module was significantly positively correlated with the OA samples and Immune Score and negatively correlated with the normal samples. The 142 DEGs of the yellow module were related to biological processes such as regulation of inflammatory response, positive regulation of inflammatory response, blood vessel morphogenesis, endothelial cell migration, and humoral immune response. The intersections of the genes obtained by the 4 algorithms resulted in 5 final hub genes, and the diagnostic model constructed with these 5 genes showed good performance in the training and validation cohorts. Conclusions The 5-gene diagnostic model can be used to diagnose OA and guide clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03183-9.
Collapse
Affiliation(s)
- YaGuang Han
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jun Wu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.,Department of Orthopaedic Surgery, Nantong Sixth People's Hospital, Nantong Hospital Affiliated To Shanghai University, Nantong, Jiangsu, China
| | - ZhenYu Gong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - YiQin Zhou
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - HaoBo Li
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Bo Wang
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - QiRong Qian
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Second Military Medical University, 415#, Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
22
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Mazzucchelli R, Rodríguez-Martín S, García-Vadillo A, Gil M, Rodríguez-Miguel A, Barreira-Hernández D, García-Lledó A, de Abajo FJ. Risk of acute myocardial infarction among new users of chondroitin sulfate: A nested case-control study. PLoS One 2021; 16:e0253932. [PMID: 34252115 PMCID: PMC8274913 DOI: 10.1371/journal.pone.0253932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Objective To test the hypothesis that the use of chondroitin sulfate (CS) or glucosamine reduces the risk of acute myocardial infarction (AMI). Design Case-control study nested in a primary cohort of patients aged 40 to 99 years, using the database BIFAP during the 2002–2015 study period. From this cohort, we identified incident cases of AMI and randomly selected five controls per case, matched by exact age, gender, and index date. Adjusted odds ratios (AOR) and 95% confidence interval (CI) were computed through a conditional logistic regression. Only new users of CS or glucosamine were considered. Results A total of 23,585 incident cases of AMI and 117,405 controls were included. Of them, 89 cases (0.38%) and 757 controls (0.64%) were current users of CS at index date, yielding an AOR of 0.57 (95%CI: 0.46–0.72). The reduced risk among current users was observed in both short-term (<365 days, AOR = 0.58; 95%CI: 0.45–0.75) and long-term users (>364 days AOR = 0.56; 95%CI:0.36–0.87), in both sexes (men, AOR = 0.52; 95%CI:0.38–0.70; women, AOR = 0.65; 95%CI:0.46–0.91), in individuals over or under 70 years of age (AOR = 0.54; 95%CI:0.38–0.77, and AOR = 0.61; 95%CI:0.45–0.82, respectively) and in individuals at intermediate (AOR = 0.65; 95%CI:0.48–0.91) and high cardiovascular risk (AOR = 0.48; 95%CI:0.27–0.83), but not in those at low risk (AOR = 1.11; 95%CI:0.48–2.56). In contrast, the current use of glucosamine was not associated with either increased or decreased risk of AMI (AOR = 0.86; 95%CI:0.66–1.08). Conclusions Our results support a cardioprotective effect of CS, while glucosamine seems to be neutral. The protection was remarkable among subgroups at high cardiovascular risk.
Collapse
Affiliation(s)
- Ramón Mazzucchelli
- Rheumatology Unit, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Sara Rodríguez-Martín
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | | | - Miguel Gil
- Division of Pharmacoepidemiology and Pharmacovigilance, Spanish Agency of Medicines and Medical Devices (AEMPS), Madrid, Spain
| | - Antonio Rodríguez-Miguel
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Diana Barreira-Hernández
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Alberto García-Lledó
- Department of Cardiology, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Department of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Francisco J. de Abajo
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Department of Biomedical Sciences (Pharmacology), School of Medicine and Health Sciences, University of Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Abstract
Cardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.
Collapse
|
25
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
26
|
Pathak A, Singh SK, Thewke DP, Agrawal A. Conformationally Altered C-Reactive Protein Capable of Binding to Atherogenic Lipoproteins Reduces Atherosclerosis. Front Immunol 2020; 11:1780. [PMID: 32849641 PMCID: PMC7431523 DOI: 10.3389/fimmu.2020.01780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to test the hypothesis that C-reactive protein (CRP) protects against the development of atherosclerosis and that a conformational alteration of wild-type CRP is necessary for CRP to do so. Atherosclerosis is an inflammatory cardiovascular disease and CRP is a plasma protein produced by the liver in inflammatory states. The co-localization of CRP and low-density lipoproteins (LDL) at atherosclerotic lesions suggests a possible role of CRP in atherosclerosis. CRP binds to phosphocholine-containing molecules but does not interact with LDL unless the phosphocholine groups in LDL are exposed. However, CRP can bind to LDL, without the exposure of phosphocholine groups, if the native conformation of CRP is altered. Previously, we reported a CRP mutant, F66A/T76Y/E81A, generated by site-directed mutagenesis, that did not bind to phosphocholine. Unexpectedly, this mutant CRP, without any more conformational alteration, was found to bind to atherogenic LDL. We hypothesized that this CRP mutant, unlike wild-type CRP, could be anti-atherosclerotic and, accordingly, the effects of mutant CRP on atherosclerosis in atherosclerosis-prone LDL receptor-deficient mice were evaluated. Administration of mutant CRP into mice every other day for a few weeks slowed the progression of atherosclerosis. The size of atherosclerotic lesions in the aorta of mice treated with mutant CRP for 9 weeks was ~40% smaller than the lesions in the aorta of untreated mice. Thus, mutant CRP conferred protection against atherosclerosis, providing a proof of concept that a local inflammation-induced structural change in wild-type CRP is a prerequisite for CRP to control the development of atherosclerosis.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
27
|
Naumov AV, Khovasova NO, Moroz VI, Tkacheva ON. [The place of chondroitin sulfate and glucosamine sulfate in osteoarthritis pain therapy: a practical view from evidence-based medicine]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:112-117. [PMID: 31626227 DOI: 10.17116/jnevro2019119091112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is one of the leading causes of a chronic pain in elderly people. Old and very old age in itself is a risk factor of a comorbidity, which often limits the therapy specified in clinical recommendations. First of all, it concerns NSAID. In such situations, priority is given to chondroitin sulfate (CS) and glucosamine sulfate (GS) having the anti-inflammatory properties comparable with effects of NSAID. CS and GS also promote the delay in progression of degenerative processes and restoration of the structure of cartilaginous tissue. The drugs of CS and GS groups are Chondroguard and Sustaguard Artro having the considerable evidence-based efficacy and safety and also a polymodality of effects in patients with a combination of osteoarthritis and socially important diseases (atherosclerosis, diabetes mellitus type 2, oncological diseases) and also geriatric syndromes (sarcopenia) and aging in general.
Collapse
Affiliation(s)
- A V Naumov
- Pirogov Russian National Research Medical University, Moscow, Russia; Russian Clinical and Research Center of Gerontology Pirogov Russian National Research Medical University), Moscow, Russia ,Abstract
| | - N O Khovasova
- Pirogov Russian National Research Medical University, Moscow, Russia; Russian Clinical and Research Center of Gerontology Pirogov Russian National Research Medical University), Moscow, Russia ,Abstract
| | - V I Moroz
- Russian Clinical and Research Center of Gerontology Pirogov Russian National Research Medical University), Moscow, Russia ,Abstract
| | - O N Tkacheva
- Pirogov Russian National Research Medical University, Moscow, Russia; Russian Clinical and Research Center of Gerontology Pirogov Russian National Research Medical University), Moscow, Russia ,Abstract
| |
Collapse
|
28
|
Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE−/− mice. Food Funct 2019; 10:4001-4009. [DOI: 10.1039/c9fo00396g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenbing Zhi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
- Shaanxi Academy of Traditional Chinese Medicine
| | - Jinmeng Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenqi Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Lulu Zang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Fang Liu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Xiaofeng Niu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| |
Collapse
|