1
|
Perveen S, Rahman T, Ali T, Wang L, Zhang J, Khan A. Molybdenum-Catalyzed Asymmetric Amination of α-Hydroxy Esters: Synthesis of α-Amino Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403437. [PMID: 40063505 PMCID: PMC12079543 DOI: 10.1002/advs.202403437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Indexed: 05/16/2025]
Abstract
Unnatural α-amino acids are found in a wide variety of bioactive compounds ranging from proteins to pharmaceutical agents to materials science. As a result, the investigation of efficient and simple methods for their synthesis is a major purpose in reaction development. In this study, it is found that a catalyst based on molybdenum, an earth-abundant transition metal, can facilitate the amination of readily accessible α-hydroxy esters to afford N-protected unnatural α-amino acid esters in high yield. This simple process also enables enantioselective amination, which proceeds through cooperative catalysis of chiral molybdenum complex with chiral phosphoric acid (CPA), and complements earlier procedures to the catalytic synthesis of this important class of compounds. The obtained protected α-amino acid ester products are directly useful or further utilized for the synthesis of commercially available drugs and analogs.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tahir Rahman
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tariq Ali
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Lingyun Wang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Junjie Zhang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Ajmal Khan
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| |
Collapse
|
2
|
Gorai M, Franzen JH, Rotering P, Rüffer T, Dielmann F, Teichert JF. Broadly Applicable Copper(I)-Catalyzed Alkyne Semihydrogenation and Hydrogenation of α,β-Unsaturated Amides Enabled by Bifunctional Iminopyridine Ligands. J Am Chem Soc 2025; 147:14481-14490. [PMID: 40239054 PMCID: PMC12046561 DOI: 10.1021/jacs.5c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
A highly active bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene complex and a basic 2-iminopyridine subunit allows for copper hydride chemistry under low H2 pressure, achieving efficient catalysis reaching 1 bar (balloon pressure). The bifunctional catalyst tolerates a remarkable variety of functional groups in catalytic alkyne semihydrogenations. Furthermore, this catalyst design gives rise to a high reactivity that allows for the catalytic hydrogenation of α,β-unsaturated amides (a substrate class hitherto unreactive in copper hydride catalysis) at a low H2 pressure for the first time. In this manner, late-stage modification and isotope labeling of α,β-unsaturated amides, common subunits in biologically active compounds, can be realized through catalytic hydrogenation using a first-row transition metal catalyst based on abundant copper. Preliminary mechanistic experiments indicate that the bifunctional catalyst operates via an iminopyridine-mediated proximity effect. We hypothesize that the coordination of an alcohol as a proton source on the copper(I) complex facilitates the overall reactions through a rapid proto-decupration step.
Collapse
Affiliation(s)
- Mahadeb Gorai
- Institut
für Chemie, Technische Universität
Chemnitz, Straße
der Nationen 62, 09111 Chemnitz, Germany
| | - Jonas H. Franzen
- Department
of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Philipp Rotering
- Department
of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Tobias Rüffer
- Institut
für Chemie, Technische Universität
Chemnitz, Straße
der Nationen 62, 09111 Chemnitz, Germany
| | - Fabian Dielmann
- Department
of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes F. Teichert
- Institut
für Chemie, Technische Universität
Chemnitz, Straße
der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
3
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Li Z, Wang B, Fan S, Zhang C, Sun J. Catalytic Enantioselective Nucleophilic Amination of α-Halo Carbonyl Compounds with Free Amines. J Am Chem Soc 2025; 147:576-584. [PMID: 39725608 DOI: 10.1021/jacs.4c12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Catalytic enantioselective substitution of the readily available racemic α-halo carbonyl compounds by nitrogen nucleophiles represents one of the most convenient and direct approaches to access enantioenriched α-amino carbonyl compounds. Distinct from the two available strategies involving radicals and enolate ions, herein we have developed a new protocol featuring an electronically opposite way to weaken/cleave the carbon-halogen bond. A suitable chiral anion-based catalyst enables effective asymmetric control over the key positively charged intermediates. This protocol not only allows free amines to serve as nucleophiles but also permits different types of carbonyl compounds (ketones, esters, and amides) to participate in the enantioselective C-N bond formation, thereby providing a valuable complement to the known strategies that are limited to certain carbonyl substrates and/or nitrogen nucleophiles. Preliminary studies indicated that an SN2 pathway is operational and kinetic resolution is involved.
Collapse
Affiliation(s)
- Zhiyang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Baocheng Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shuaixin Fan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Zhang C, Wu X, Qu J, Chen Y. A General Enantioselective α-Alkyl Amino Acid Derivatives Synthesis Enabled by Cobalt-Catalyzed Reductive Addition. J Am Chem Soc 2024; 146:25918-25926. [PMID: 39264330 DOI: 10.1021/jacs.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Enantioenriched unnatural amino acids represent a prevalent motif in organic chemistry, with profound applications in biochemistry, medicinal chemistry, and materials science. Herein, we report a cobalt-catalyzed aza-Barbier reaction of dehydroglycines with unactivated alkyl halides to afford unnatural α-amino esters with high enantioselectivity. This catalytic reductive alkylative addition protocol circumvents the use of moisture-, air-sensitive organometallic reagents, and stoichiometric chiral auxiliaries, enabling the conversion of a variety of primary, secondary, and even tertiary unactivated alkyl halides to α-alkyl-amino esters under mild conditions, thus leading to broad functional group tolerance. The expedient access to biologically active motifs demonstrates the practicality of this protocol by reducing the number of synthetic steps and enhancing the reaction efficiency.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
7
|
Nagy S, Richter D, Dargó G, Orbán B, Gémes G, Höltzl T, Garádi Z, Fehér Z, Kupai J. Cinchona-Based Hydrogen-Bond Donor Organocatalyst Metal Complexes: Asymmetric Catalysis and Structure Determination. ChemistryOpen 2024; 13:e202300180. [PMID: 38189585 PMCID: PMC11004460 DOI: 10.1002/open.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, we describe the synthesis of cinchona (thio)squaramide and a novel cinchona thiourea organocatalyst. These catalysts were employed in pharmaceutically relevant catalytic asymmetric reactions, such as Michael, Friedel-Crafts, and A3 coupling reactions, in combination with Ag(I), Cu(II), and Ni(II) salts. We identified several organocatalyst-metal salt combinations that led to a significant increase in both yield and enantioselectivity. To gain insight into the active catalyst species, we prepared organocatalyst-metal complexes and characterized them using HRMS, NMR spectroscopy, and quantum chemical calculations (B3LYP-D4/def2-TZVP), which allowed us to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Euroapi Hungary Kft.Tó utca 1–51045BudapestHungary
| | - Dóra Richter
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Gyula Dargó
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Balázs Orbán
- ELKH-BME Computation Driven Chemistry Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Furukawa Electric Institute of TechnologyKésmárk utca 28/A1157BudapestHungary
| | - Gergő Gémes
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Tibor Höltzl
- ELKH-BME Computation Driven Chemistry Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Furukawa Electric Institute of TechnologyKésmárk utca 28/A1157BudapestHungary
| | - Zsófia Garádi
- Department of PharmacognosySemmelweis UniversityÜllői út. 261085BudapesHungary
| | - Zsuzsanna Fehér
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - József Kupai
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| |
Collapse
|
8
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
9
|
Wu H, Chen K, Liu Y, Wan JP. Unlock the C-N Bond Amidation of Enaminones: Metal-Free Synthesis of Enamides by Water-Assisted Transamidation. J Org Chem 2024; 89:216-223. [PMID: 38109677 DOI: 10.1021/acs.joc.3c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The C-N bond transamidation of primary amides with N,N-dimethyl enaminones has been efficiently realized by heating in the presence of trifluoromethanesulfonic acid (TfOH). The method enables the practical synthesis of valuable enamides without the use of any metal reagent. In addition, this transamidation protocol can also be expanded to the reactions of sulfonamides, and the late-stage functionalization on sulfonamide drugs such as Celecoxib and Valdecoxib has been verified. Moreover, the participation of water in assisting the transamidation process has been identified by the isotope labeling experiments using D2O, disclosing a new possibility in designing catalytic tactic to other transamidation reactions.
Collapse
Affiliation(s)
- Haozhi Wu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kang Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Ma YR, Lv XJ, Dong Q, Ming YC, Liu YK. Brønsted-Acid-Catalyzed In Situ Formation of Acyclic Tertiary Enamides and Its Application to the Preparation of Diverse Nitrogen-Containing Heterocyclic Compounds. Org Lett 2023; 25:5929-5934. [PMID: 37560944 DOI: 10.1021/acs.orglett.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A Brønsted acid-catalyzed cascade process, involving in situ formation of acyclic tertiary enamides and intramolecular Michael reaction, is developed for the synthesis of functionalized cyclic tertiary enamides. Based on the dual reactivities of the enamide moiety, several reaction sequences were realized by using rationally designed substrates, leading to biologically relevant nitrogen-containing heterocyclic compounds with diverse structural skeletons in a concise and diastereocontrolled manner.
Collapse
Affiliation(s)
- Yuan-Ren Ma
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qing Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
11
|
Zhao W, Li BJ. Directing Group Repositioning Strategy Enabled Site- and Enantioselective Addition of Heteroaromatic C-H Bonds to Acyclic Internal Alkenes. J Am Chem Soc 2023; 145:6861-6870. [PMID: 36917558 DOI: 10.1021/jacs.3c00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Despite the notable advances achieved in the Murai-type hydroarylations, highly enantioselective catalytic addition of native (hetero)arenes to internal alkenes remains a prominent challenge. Herein, we report a directing group repositioning strategy, which enables the iridium-catalyzed enantioselective addition of heteroarenes including furan, benzofuran, and thiophene to internal enamides. The C-H bond at the C2 position of the heteroarene is site-selectively cleaved and added regioselectively to the β-position of an enamide, affording a valuable β-heteroaryl amide with high enantioselectivity. Mechanistic studies indicate that the rate and the enantioselectivity are determined by separate elementary steps.
Collapse
Affiliation(s)
- Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Zhao W, Lu HX, Zhang WW, Li BJ. Coordination Assistance: A Powerful Strategy for Metal-Catalyzed Regio- and Enantioselective Hydroalkynylation of Internal Alkenes. Acc Chem Res 2023; 56:308-321. [PMID: 36628651 DOI: 10.1021/acs.accounts.2c00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ConspectusAlkenes are versatile compounds that are readily available on a large scale from industry or through organic synthesis. The widespread occurrence of alkenes provides the continuous impetus for the development of catalytic asymmetric alkene hydrofunctionalizations, which enables expeditious construction of complex chiral molecules from readily available starting materials. Catalytic asymmetric hydrofunctionalization of internal alkenes presents a notable challenge, due to their low reactivity, many potential side reactions, and the simultaneous control of the regio-, diastereo-, and enantioselectivities.Dehydroamino acids and enamides are among the first substrates that provide notable enantioselectivities in catalytic asymmetric hydrogenation. The crucial importance of an amide coordinating group is established by a series of classical mechanistic studies. This initial success greatly stimulated further development for catalytic hydrogenation and hydrofunctionalization. Building on these pioneering works in asymmetric hydrogenation as well as related hydrofunctionalizations, we have adopted coordination assistance as a powerful tool to address the challenges associated with the asymmetric hydrofunctionalization of internal alkenes. Using a functional group on the alkene substrate as a native coordinating group, a two-point binding mode of the substrate to the metal center effectively enhances the reactivity and facilitates the control of regio-, diastereo- and enantioselectivities. Through this strategy, we have developed a number of alkene hydrofunctionalization methods with excellent regio-, diastereo-, and enantiocontrols.In this Account, we summarize the recent advance in our lab using coordination assistance as a key element to achieve regio- and enantioselective hydroalkynylation of internal alkenes. First, we describe our early work aimed at controlling the regio- and enantioselectivity of hydroalkynylation using disubstituted enamide as the substrate. Both α- and β-alkynylation were achieved by channeling the reaction pathway into a Chalk-Harrod or modified Chalk-Harrod mechanism. Next, we discuss the further development of catalysts to achieve regiodivergent and enantioselective hydroalkynylation of trisubstituted enamide to access vicinal stereocenters and quaternary carbon stereocenters. We also discuss the hydroalkynylation of α,β-unsaturated amides to achieve unconventional site-selectivity through a combination of alkene isomerization and regioselective hydroalkynylation. This provides the basis for the construction of a remote quaternary carbon stereocenter through catalytic hydroalkynylation of trisubstituted β,γ-unsaturated amides. We further show that this controlling principle is applicable to terminal alkene with a coordinating group as well. A ligand-controlled mechanism shift is discussed for the enantioselective alkynylation at the terminal and internal position of 1,1,-disubstituted alkenes. Finally, we briefly mention the application of coordination assistance to other hydrofunctionalizations such as hydroboration and hydrosilylation, where previously inaccessible reactivity and selectivity were achieved. Collectively, these catalytic methods demonstrate the power of coordination assistance for enantioselective hydrofunctionalizations. We anticipate that this strategy will create a platform to enable diverse enantioselective alkene transformations.
Collapse
Affiliation(s)
- Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| |
Collapse
|
13
|
Retini M, Bartolucci S, Bartoccini F, Piersanti G. Asymmetric Alkylation of Cyclic Ketones with Dehydroalanine via H-Bond-Directing Enamine Catalysis: Straightforward Access to Enantiopure Unnatural α-Amino Acids. Chemistry 2022; 28:e202201994. [PMID: 35916657 PMCID: PMC9805190 DOI: 10.1002/chem.202201994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/09/2023]
Abstract
The growing importance of structurally diverse and functionalized enantiomerically pure unnatural amino acids in the design of drugs, including peptides, has stimulated the development of new synthetic methods. This study reports the challenging direct asymmetric alkylation of cyclic ketones with dehydroalanine derivatives via a conjugate addition reaction for the synthesis of enantiopure ketone-based α-unnatural amino acids. The key to success was the design of a bifunctional primary amine-thiourea catalyst that combines H-bond-directing activation and enamine catalysis. The simultaneous dual activation of the two relatively unreactive partners, confirmed by mass spectrometry studies, results in high reactivity while securing high levels of stereocontrol. A broad substrate scope is accompanied by versatile downstream chemical modifications. The mild reaction conditions and consistently excellent enantioselectivities (>95 % ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical enantiopure α-amino-acid building blocks.
Collapse
Affiliation(s)
- Michele Retini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Silvia Bartolucci
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Francesca Bartoccini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| | - Giovanni Piersanti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoPiazza Rinascimento 661029UrbinoPUItaly
| |
Collapse
|
14
|
Hu L, Wang Y, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202202552. [DOI: 10.1002/anie.202202552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuan‐Zheng Wang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lei Xu
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
15
|
Hu L, Wang YZ, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le’an Hu
- Southern University of Science and Technology Chemistry CHINA
| | - Yuan-Zheng Wang
- Southern University of Science and Technology Chemistry CHINA
| | - Lei Xu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Qin Yin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
16
|
Pinheiro DLJ, Nielsen M. Chemoselective Transfer Hydrogenation of Enamides Using Ru Pincer Complexes for the Synthesis of α-Amino Acids. J Org Chem 2022; 87:5419-5423. [PMID: 35213167 DOI: 10.1021/acs.joc.1c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chemoselective reduction of enamides to α-amino acids with iPrOH and EtOH as H-donors and solvents catalyzed by Ru pincer complexes is demonstrated. A range of α-amino acids is synthesized in good to excellent yields. Applications, large scale, and a one-pot experiment are also reported. Finally, deuterium-labeling experiments show high regioselectivity between the α- and β-positions of the alkene unit.
Collapse
Affiliation(s)
- Danielle L J Pinheiro
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Gruzdev DA, Vakarov SA, Korolyova MA, Bartashevich EV, Tumashov AA, Chulakov EN, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl ( R)-2-phenoxypropanoate. Org Biomol Chem 2022; 20:862-869. [PMID: 35006228 DOI: 10.1039/d1ob02099d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diastereoselective acylation of a number of racemic methyl-substituted cyclic alkylamines with active esters of 2-phenoxypropanoic acid was studied in detail. The ester of (R)-2-phenoxypropanoic acid and N-hydroxysuccinimide was found to be the most selective agent. The highest stereoselectivity was observed in the kinetic resolution of racemic 2-methylpiperidine in toluene at -40 °C (selectivity factor s = 73) with the predominant formation of (R,R)-amide (93.7% de). To explain the observed stereoselectivity, DFT modelling of the transition states in the reactions of the title acylating agent with 2-methylpiperidine and 2-methylpyrrolidine was performed. The calculated values were in good agreement with experimental data. It has been demonstrated that the acylation proceeds via a concerted mechanism, in which the addition of an amine occurs simultaneously with the elimination of the hydroxysuccinimide fragment. The high stereoselectivity of the (R,R)-amide formation is largely ensured by the lower steric hindrances in the transition states as compared to the formation of (R,S)-amide.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Sergey A Vakarov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Marina A Korolyova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Ekaterina V Bartashevich
- South Ural State University (National Research University), 76 Lenina Ave., Chelyabinsk 454080, Russia
| | - Andrey A Tumashov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Evgeny N Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| |
Collapse
|
18
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
19
|
Zeidan N, Bicic S, Mayer RJ, Lebœuf D, Moran J. Hydroarylation of Enamides Enabled by HFIP via a Hexafluoroisopropyl Ether as Iminium Reservoir. Chem Sci 2022; 13:8436-8443. [PMID: 35919727 PMCID: PMC9297520 DOI: 10.1039/d2sc02012b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Here we describe that HFIP greatly expands the scope with respect to both reaction partners of the Brønsted acid-catalyzed hydroarylation of enamides. The reaction is fast and practical and can...
Collapse
Affiliation(s)
- Nicolas Zeidan
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Sergiu Bicic
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Robert J Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
20
|
Yang J, Massaro L, Krajangsri S, Singh T, Su H, Silvi E, Ponra S, Eriksson L, Ahlquist MSG, Andersson PG. Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides. J Am Chem Soc 2021; 143:21594-21603. [PMID: 34905345 PMCID: PMC8719336 DOI: 10.1021/jacs.1c09573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a highly efficient convergent asymmetric hydrogenation of E/Z mixtures of enamides catalyzed by N,P-iridium complexes supported by mechanistic studies. It was found that reduction of the olefinic isomers (E and Z geometries) produces chiral amides with the same absolute configuration (enantioconvergent hydrogenation). This allowed the hydrogenation of a wide range of E/Z mixtures of trisubstituted enamides with excellent enantioselectivity (up to 99% ee). A detailed mechanistic study using deuterium labeling and kinetic experiments revealed two different pathways for the observed enantioconvergence. For α-aryl enamides, fast isomerization of the double bond takes place, and the overall process results in kinetic resolution of the two isomers. For α-alkyl enamides, no double bond isomerization is detected, and competition experiments suggested that substrate chelation is responsible for the enantioconvergent stereochemical outcome. DFT calculations were performed to predict the correct absolute configuration of the products and strengthen the proposed mechanism of the iridium-catalyzed isomerization pathway.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Hao Su
- School of Biotechnology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Emanuele Silvi
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
21
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
22
|
Zhong YL, Moore JC, Shevlin M, Shultz CS, Kosjek B, Chen Y, Janey JM, Tan L. Scalable Asymmetric Synthesis of MK-8998, a T-Type Calcium Channel Antagonist. J Org Chem 2021; 87:2120-2128. [PMID: 34582192 DOI: 10.1021/acs.joc.1c01795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two scalable and efficient synthetic routes for the synthesis of a T-type calcium channel antagonist MK-8998 were developed from a simple pyridine building block. The key step to set the stereochemistry relied on either chiral rhodium catalyst-mediated asymmetric hydrogenation of an enamide or transamination of an arylketone that provided the corresponding product in high enantioselectivity and high yield.
Collapse
Affiliation(s)
- Yong-Li Zhong
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Jeffrey C Moore
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - C Scott Shultz
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Birgit Kosjek
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Yonggang Chen
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Jacob M Janey
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research and Development, Merck & Company, Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
23
|
Burke AJ, Federsel HJ, Hermann GJ. Recent Advances in Asymmetric Hydrogenation Catalysis Utilizing Spiro and Other Rigid C-Stereogenic Phosphine Ligands. J Org Chem 2021; 87:1898-1924. [PMID: 34570501 DOI: 10.1021/acs.joc.1c01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal-catalyzed asymmetric reactions have been a powerful tool in organic synthesis for many years. The design of chiral ligands with the right configuration is fundamental to induce high regio- and stereoselectivity to catalytic reactions and to achieve high turnover numbers and high yields. A challenge is the control of prochiral centers with similar electronic properties in a similar steric environment within the same molecule. Over the last 10 years, a range of novel rigid C-stereogenic chiral phosphine ligands has been developed and successfully applied in various types of asymmetric transformations. Many of these ligands are of a di-, tri-, or multidentate nature. The purpose of this Perspective is to highlight recent synthetic achievements (since 2010) with spiro-phosphines and other rigid phosphines and discuss some mechanistic aspects of the catalytic reactions.
Collapse
Affiliation(s)
- Anthony J Burke
- Chemistry Department and LAQV-REQMITE, School of Science and Technology and the Institution for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Hans-Jürgen Federsel
- RISE Research Institutes of Sweden, Department Chemical Process and Pharmaceutical Development, 114 86 Stockholm, Sweden.,ChiraTecnics, University of Évora, P.O. Box 59, Rossio, 7000-802 Évora and Mitra Campus, 7006-554 Évora, Portugal
| | - Gesine J Hermann
- ChiraTecnics, University of Évora, P.O. Box 59, Rossio, 7000-802 Évora and Mitra Campus, 7006-554 Évora, Portugal
| |
Collapse
|
24
|
Zhu ZH, Ding YX, Wu B, Zhou YG. Biomimetic Asymmetric Reduction of Tetrasubstituted Olefin 2,3-Disubstituted Inden-1-ones with Chiral and Regenerable NAD(P)H Model CYNAM. Org Lett 2021; 23:7166-7170. [PMID: 34468153 DOI: 10.1021/acs.orglett.1c02568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Because of the formidable development of the asymmetric reduction of tetrasubstituted olefins, an effective method is in urgent demand. Herein, through the biomimetic protocol of the coenzyme NAD(P)H, the reduction of tetrasubstituted olefin 2,3-substituted 1H-inden-1-ones has been successfully realized with the catalytic chiral NAD(P)H model CYNAM, which is hard to bring about via the common rhodium or iridium-based catalytic system, producing the corresponding products in good yield (up to 98%) with good enantioselectivity (up to 99% ee). Furthermore, the chiral bioactive molecule can be concisely synthesized from the reduced product.
Collapse
Affiliation(s)
- Zhou-Hao Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Chen C, Peters JC, Fu GC. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 2021; 596:250-256. [PMID: 34182570 PMCID: PMC8363576 DOI: 10.1038/s41586-021-03730-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The substitution of an alkyl electrophile by a nucleophile is a foundational reaction in organic chemistry that enables the efficient and convergent synthesis of organic molecules. Although there has been substantial recent progress in exploiting transition-metal catalysis to expand the scope of nucleophilic substitution reactions to include carbon nucleophiles1-4, there has been limited progress in corresponding reactions with nitrogen nucleophiles5-8. For many substitution reactions, the bond construction itself is not the only challenge, as there is a need to control stereochemistry at the same time. Here we describe a method for the enantioconvergent substitution of unactivated racemic alkyl electrophiles by a ubiquitous nitrogen-containing functional group, an amide. Our method uses a photoinduced catalyst system based on copper, an Earth-abundant metal. This process for asymmetric N-alkylation relies on three distinct ligands-a bisphosphine, a phenoxide and a chiral diamine. The ligands assemble in situ to form two distinct catalysts that act cooperatively: a copper/bisphosphine/phenoxide complex that serves as a photocatalyst, and a chiral copper/diamine complex that catalyses enantioselective C-N bond formation. Our study thus expands enantioselective N-substitution by alkyl electrophiles beyond activated electrophiles (those bearing at least one sp- or sp2-hybridized substituent on the carbon undergoing substitution)8-13 to include unactivated electrophiles.
Collapse
Affiliation(s)
- Caiyou Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Yang ZP, Freas DJ, Fu GC. Asymmetric Synthesis of Protected Unnatural α-Amino Acids via Enantioconvergent Nickel-Catalyzed Cross-Coupling. J Am Chem Soc 2021; 143:8614-8618. [PMID: 34080836 DOI: 10.1021/jacs.1c03903] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in unnatural α-amino acids has increased rapidly in recent years in areas ranging from protein design to medicinal chemistry to materials science. Consequently, the development of efficient, versatile, and straightforward methods for their enantioselective synthesis is an important objective in reaction development. In this report, we establish that a chiral catalyst based on nickel, an earth-abundant metal, can achieve the enantioconvergent coupling of readily available racemic alkyl electrophiles with a wide variety of alkylzinc reagents (1:1.1 ratio) to afford protected unnatural α-amino acids in good yield and ee. This cross-coupling, which proceeds under mild conditions and is tolerant of air, moisture, and a broad array of functional groups, complements earlier approaches to the catalytic asymmetric synthesis of this valuable family of molecules. We have applied our new method to the generation of several enantioenriched unnatural α-amino acids that have previously been shown to serve as useful intermediates in the synthesis of bioactive compounds.
Collapse
Affiliation(s)
- Ze-Peng Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dylan J Freas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
27
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
28
|
Yang ZP, Freas DJ, Fu GC. The Asymmetric Synthesis of Amines via Nickel-Catalyzed Enantioconvergent Substitution Reactions. J Am Chem Soc 2021; 143:2930-2937. [PMID: 33567209 PMCID: PMC8336453 DOI: 10.1021/jacs.0c13034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chiral dialkyl carbinamines are important in fields such as organic chemistry, pharmaceutical chemistry, and biochemistry, serving for example as bioactive molecules, chiral ligands, and chiral catalysts. Unfortunately, most catalytic asymmetric methods for synthesizing dialkyl carbinamines do not provide general access to amines wherein the two alkyl groups are of similar size (e.g., CH2R versus CH2R1). Herein, we report two mild methods for the catalytic enantioconvergent synthesis of protected dialkyl carbinamines, both of which use a chiral nickel catalyst to couple an alkylzinc reagent (1.1-1.2 equiv) with a racemic partner, specifically, an α-phthalimido alkyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid. The methods are versatile, providing dialkyl carbinamine derivatives that bear an array of functional groups. For couplings of NHP esters, we further describe a one-pot variant wherein the NHP ester is generated in situ, allowing the generation of enantioenriched protected dialkyl carbinamines in one step from commercially available amino acid derivatives; we demonstrate the utility of this method by applying it to the efficient catalytic enantioselective synthesis of a range of interesting target molecules.
Collapse
Affiliation(s)
- Ze-Peng Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dylan J Freas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|