1
|
Becker AE, Dixon KL, Kirschen MP, Conlon TW, Glau CL. Advances in Point-of-Care Ultrasound in Pediatric Acute Care Medicine. Indian J Pediatr 2025; 92:170-177. [PMID: 38842749 DOI: 10.1007/s12098-024-05180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Pediatric point-of-care ultrasonography (POCUS) has grown in utilization and is now an integral part of pediatric acute care. Applications within the pediatric critical care, neonatology and pediatric emergency were once limited to evaluation of undifferentiated shock states, abdominal free fluid assessments in trauma resuscitation and procedural guidance. The body of pediatric POCUS literature is ever expanding and recently published international consensus guidelines are available to guide implementation into clinical practice. The authors present a review of emerging applications and controversies within thoracic, hemodynamic, neurologic, and ocular POCUS in pediatric acute care medicine.
Collapse
Affiliation(s)
| | | | - Matthew P Kirschen
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas W Conlon
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christie L Glau
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Agarwal N, Benedetti GM. Neuromonitoring in the ICU: noninvasive and invasive modalities for critically ill children and neonates. Curr Opin Pediatr 2024; 36:630-643. [PMID: 39297699 DOI: 10.1097/mop.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Critically ill children are at risk of neurologic dysfunction and acquiring primary and secondary brain injury. Close monitoring of cerebral function is crucial to prevent, detect, and treat these complications. RECENT FINDINGS A variety of neuromonitoring modalities are currently used in pediatric and neonatal ICUs. These include noninvasive modalities, such as electroencephalography, transcranial Doppler, and near-infrared spectroscopy, as well as invasive methods including intracranial pressure monitoring, brain tissue oxygen measurement, and cerebral microdialysis. Each modality offers unique insights into neurologic function, cerebral circulation, or metabolism to support individualized neurologic care based on a patient's own physiology. Utilization of these modalities in ICUs results in reduced neurologic injury and mortality and improved neurodevelopmental outcomes. SUMMARY Monitoring of neurologic function can significantly improve care of critically ill children. Additional research is needed to establish normative values in pediatric patients and to standardize the use of these modalities.
Collapse
Affiliation(s)
- Neha Agarwal
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, Michigan, USA
| | | |
Collapse
|
3
|
Demartini Z, Requejo F, Beraldo RF, Maeda AK, Savoldi AM, Cardoso-Demartini A. Balloon angioplasty for cerebral vasospasm in preschool children. Interv Neuroradiol 2024:15910199241293173. [PMID: 39544084 PMCID: PMC11565503 DOI: 10.1177/15910199241293173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage evolving with cerebral vasospasm and delayed cerebral ischemia may increase morbidity and mortality. Treating vasospasm with balloon percutaneous angioplasty (PTA) in adults is well known, but data in preschool children are scarce. In addition, the smaller diameters and fragility of the vessels in childhood might lead to serious complications. This study presents two cases of cerebral vasospasm in preschool children treated with balloon PTA. Therefore, it may contribute to a better understanding of the role of that technique as an effective treatment modality in this population. METHODS Balloon PTA was performed in two children (3 and 4 year-old) with aneurysmal subarachnoid hemorrhage and delayed cerebral ischemia. RESULTS The procedures were uneventful, and both patients survived without complications or new infarction. CONCLUSIONS Balloon PTA for proximal vasospasm may improve clinical outcomes in selected pediatric patients. Further studies are needed to clarify the best candidates, materials, and techniques.
Collapse
Affiliation(s)
- Zeferino Demartini
- Complexo Hospital de Clinicas – UFPR – Department of Neurosurgery, Curitiba – PR, Brazil
- Hospital Pequeno Principe – Department of Neurosurgery, Curitiba – PR, Brazil
| | - Flavio Requejo
- Hospital Nacional de Pediatria JP Garrahan – Department of Neurosurgery, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
O'Brien NF, Tshimanga T. Revising the Interpretation of Transcranial Doppler Ultrasound Examinations in Pediatric Cerebral Malaria. Am J Trop Med Hyg 2024; 111:780-784. [PMID: 39137754 PMCID: PMC11448540 DOI: 10.4269/ajtmh.24-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Cerebral malaria (CM) is a devastating disease globally. Transcranial Doppler ultrasound (TCD) has identified five different phenotypes of deranged cerebrovascular hemodynamics in children with CM, each associated with different outcomes. For TCD to be used as a point of care neurodiagnostic and neuromonitoring tool in CM patients, proper interpretation of examinations is paramount. Comparison of measured cerebral blood flow velocities (CBFVs) to age-matched normative values is needed to interpret any pediatric TCD study. Until recently, normative values in African children did not exist, so previous work reported the frequency of CM phenotypes by classifying studies compared with normative values of European children. Now that normative TCD values in healthy African children have been established, we performed this retrospective analysis of prospectively collected data to determine phenotype frequency and associated outcomes in children with CM by comparing CBFV values to these contemporary controls.
Collapse
Affiliation(s)
- Nicole F O'Brien
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Taty Tshimanga
- Hopital Pediatrique de Kalembe Lembe, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
5
|
Kim EH, Park JB, Kim JT. Intraoperative transfontanelle ultrasonography for pediatric patients. Anesth Pain Med (Seoul) 2024; 19:S25-S35. [PMID: 39511995 PMCID: PMC11566556 DOI: 10.17085/apm.24106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024] Open
Abstract
Cerebral blood flow (CBF) plays a vital role in delivering cerebral oxygen, and the accurate assessment of CBF is crucial for the intraoperative management of critically ill infants. Although the direct measurement of CBF is challenging, CBF velocity (CBFV) can be assessed using transcranial Doppler. Recent advances in point-of-care ultrasound have introduced brain ultrasound as a feasible intraoperative option, in which transfontanelle ultrasonography (TFU) has been applied to measure the CBFV through the anterior fontanelle. However, the intraoperative application of TFU in pediatric patients remains limited. The present review highlights the procedural aspects and clinical applications of TFU for anesthetic and intensive care management in pediatric patients. TFU facilitates the visualization of cerebral vessels and allows a noninvasive assessment of cerebral hemodynamics. The clinical significance of TFU involves its usefulness in various clinical scenarios, including monitoring CBF during cardiac surgery, assessing fluid responsiveness, and estimating intracranial pressure. TFU also enables the detection of cerebral emboli and the evaluation of anatomical abnormalities such as hydrocephalus or intracranial hemorrhage. TFU has demonstrated potential as an invaluable tool in pediatric care, despite limited familiarity among anesthesiologists. Additional research is needed to explore the associations between CBF and clinical outcomes, focusing on autoregulation, the impact of physiological changes, the associations of TFU findings with other brain monitoring tools such as electroencephalography, cerebral oximetry, and the implications of microemboli. TFU is a significant advancement and valuable tool for noninvasively assessing cerebral hemodynamics and CBF in pediatric patients with open fontanelles.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Bin Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Plante V, Basu M, Gettings JV, Luchette M, LaRovere KL. Update in Pediatric Neurocritical Care: What a Neurologist Caring for Critically Ill Children Needs to Know. Semin Neurol 2024; 44:362-388. [PMID: 38788765 DOI: 10.1055/s-0044-1787047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Currently nearly one-quarter of admissions to pediatric intensive care units (PICUs) worldwide are for neurocritical care diagnoses that are associated with significant morbidity and mortality. Pediatric neurocritical care is a rapidly evolving field with unique challenges due to not only age-related responses to primary neurologic insults and their treatments but also the rarity of pediatric neurocritical care conditions at any given institution. The structure of pediatric neurocritical care services therefore is most commonly a collaborative model where critical care medicine physicians coordinate care and are supported by a multidisciplinary team of pediatric subspecialists, including neurologists. While pediatric neurocritical care lies at the intersection between critical care and the neurosciences, this narrative review focuses on the most common clinical scenarios encountered by pediatric neurologists as consultants in the PICU and synthesizes the recent evidence, best practices, and ongoing research in these cases. We provide an in-depth review of (1) the evaluation and management of abnormal movements (seizures/status epilepticus and status dystonicus); (2) acute weakness and paralysis (focusing on pediatric stroke and select pediatric neuroimmune conditions); (3) neuromonitoring modalities using a pathophysiology-driven approach; (4) neuroprotective strategies for which there is evidence (e.g., pediatric severe traumatic brain injury, post-cardiac arrest care, and ischemic stroke and hemorrhagic stroke); and (5) best practices for neuroprognostication in pediatric traumatic brain injury, cardiac arrest, and disorders of consciousness, with highlights of the 2023 updates on Brain Death/Death by Neurological Criteria. Our review of the current state of pediatric neurocritical care from the viewpoint of what a pediatric neurologist in the PICU needs to know is intended to improve knowledge for providers at the bedside with the goal of better patient care and outcomes.
Collapse
Affiliation(s)
- Virginie Plante
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Meera Basu
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Matthew Luchette
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Appavu B, Riviello JJ. Multimodal neuromonitoring in the pediatric intensive care unit. Semin Pediatr Neurol 2024; 49:101117. [PMID: 38677796 DOI: 10.1016/j.spen.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 04/29/2024]
Abstract
Neuromonitoring is used to assess the central nervous system in the intensive care unit. The purpose of neuromonitoring is to detect neurologic deterioration and intervene to prevent irreversible nervous system dysfunction. Neuromonitoring starts with the standard neurologic examination, which may lag behind the pathophysiologic changes. Additional modalities including continuous electroencephalography (CEEG), multiple physiologic parameters, and structural neuroimaging may detect changes earlier. Multimodal neuromonitoring now refers to an integrated combination and display of non-invasive and invasive modalities, permitting tailored treatment for the individual patient. This chapter reviews the non-invasive and invasive modalities used in pediatric neurocritical care.
Collapse
Affiliation(s)
- Brian Appavu
- Clinical Assistant Professor of Child Health and Neurology, University of Arizona School of Medicine-Phoenix, Barrow Neurological Institute at Phoenix Children's, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ 85016, United States.
| | - James J Riviello
- Associate Division Chief for Epilepsy, Neurophysiology, and Neurocritical Care, Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Professor of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, United States
| |
Collapse
|
8
|
Bianzina S, Singh Y, Iacobelli R, Amodeo A, Guner Y, Di Nardo M. Use of point-of-care ultrasound (POCUS) to monitor neonatal and pediatric extracorporeal life support. Eur J Pediatr 2024; 183:1509-1524. [PMID: 38236403 DOI: 10.1007/s00431-023-05386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an invasive life support technique that requires a blood pump, an artificial membrane lung, and vascular cannulae to drain de-oxygenated blood, remove carbon dioxide, oxygenate, and return it to the patient. ECMO is generally used to provide advanced and prolonged cardiopulmonary support in patients with refractory acute cardiac and/or respiratory failure. After its first use in 1975 to manage a severe form of meconium aspiration syndrome with resultant pulmonary hypertension, the following years were dominated by the use of ECMO to manage neonatal respiratory failure and limited to a few centers across the world. In the 1990s, evidence for neonatal respiratory ECMO support increased; however, the number of cases began to decline with the use of newer pharmacologic therapies (e.g., inhaled nitric oxide, exogenous surfactant, and high-frequency oscillatory ventilation). On the contrary, pediatric ECMO sustained steady growth. Combined advances in ECMO technology and bedside medical management have improved general outcomes, although ECMO-related complications remain challenging. Point-of-care ultrasound (POCUS) is an essential tool to monitor all phases of neonatal and pediatric ECMO: evaluation of ECMO candidacy, ultrasound-guided ECMO cannulation, daily evaluation of heart and lung function and brain perfusion, detection and management of major complications, and weaning from ECMO support. Conclusion: Based on these considerations and on the lack of specific guidelines for the use of POCUS in the neonatal and pediatric ECMO setting, the aim of this paper is to provide a systematic overview for the application of POCUS during ECMO support in these populations. What is Known: • Extracorporeal membrane oxygenation (ECMO) provides advanced cardiopulmonary support for patients with refractory acute cardiac and/or respiratory failure and requires appropriate monitoring. • Point-of-care ultrasound (POCUS) is an accessible and adaptable tool to assess neonatal and pediatric cardiac and/or respiratory failure at bedside. What is New: • In this review, we discussed the use of POCUS to monitor and manage at bedside neonatal and pediatric patients supported with ECMO. • We explored the potential use of POCUS during all phases of ECMO support: pre-ECMO assessment, ECMO candidacy evaluation, daily evaluation of heart, lung and brain function, detection and troubleshooting of major complications, and weaning from ECMO support.
Collapse
Affiliation(s)
- Stefania Bianzina
- Pediatric Anaesthesia and Intensive Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Yogen Singh
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Roberta Iacobelli
- Area of Cardiac Surgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplantation and Cardio-Respiratory Mechanical Assistance Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Yigit Guner
- Pediatric Surgery, Children's Hospital of Orange County and University of California Irvine, Orange, CA, USA
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Poletto E, Kanthimathinathan HK, Gyorgyi Z. How to perform and interpret a middle cerebral artery transcranial Doppler examination in children at risk of brain injury. Arch Dis Child Educ Pract Ed 2024; 109:98-104. [PMID: 37532292 DOI: 10.1136/archdischild-2023-325747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 08/04/2023]
Abstract
Transcranial Doppler (TCD) ultrasound is a non-invasive neuromonitoring technique that falls under the umbrella of point-of-care ultrasound. In this article, we provide a primer to encourage clinicians to perform TCD examinations and to aid them with accurately interpreting the scans. We focus on the middle cerebral artery waveforms and use traumatic brain injury as a model for brain insult.
Collapse
Affiliation(s)
- Elisa Poletto
- Division of Pediatric Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | | | - Zoltan Gyorgyi
- Paediatric Critical Care Unit, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
10
|
Vinci F, Tiseo M, Colosimo D, Calandrino A, Ramenghi LA, Biasucci DG. Point-of-care brain ultrasound and transcranial doppler or color-coded doppler in critically ill neonates and children. Eur J Pediatr 2024; 183:1059-1072. [PMID: 38112802 DOI: 10.1007/s00431-023-05388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Point-of-care brain ultrasound and transcranial doppler or color-coded doppler is being increasingly used as an essential diagnostic and monitoring tool at the bedside of critically ill neonates and children. Brain ultrasound has already established as a cornerstone of daily practice in the management of the critically ill newborn for diagnosis and follow-up of the most common brain diseases, considering the easiness to insonate the brain through transfontanellar window. In critically ill children, doppler based techniques are used to assess cerebral hemodynamics in acute brain injury and recommended for screening patients suffering from sickle cell disease at risk for stroke. However, more evidence is needed regarding the accuracy of doppler based techniques for non-invasive estimation of cerebral perfusion pressure and intracranial pressure, as well as regarding the accuracy of brain ultrasound for diagnosis and monitoring of acute brain parenchyma alterations in children. This review is aimed at providing a comprehensive overview for clinicians of the technical, anatomical, and physiological basics for brain ultrasonography and transcranial doppler or color-coded doppler, and of the current status and future perspectives of their clinical applications in critically ill neonates and children. CONCLUSION In critically ill neonates, brain ultrasound for diagnosis and follow-up of the most common cerebral pathologies of the neonatal period may be considered the standard of care. Data are needed about the possible role of doppler techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles. In pediatric critical care, doppler based techniques should be routinely adopted to assess and monitor cerebral hemodynamics. New technologies and more evidence are needed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles. WHAT IS KNOWN • In critically ill neonates, brain ultrasound for early diagnosis and follow-up of the most common cerebral and neurovascular pathologies of the neonatal period is a cornerstone of daily practice. In critically ill children, doppler-based techniques are more routinely used to assess cerebral hemodynamics and autoregulation after acute brain injury and to screen patients at risk for vasospasm or stroke (e.g., sickle cell diseases, right-to-left shunts). WHAT IS NEW • In critically ill neonates, research is currently focusing on the use of novel high frequency probes, even higher than 10 MHz, especially for extremely preterm babies. Furthermore, data are needed about the role of doppler based techniques for the assessment of cerebral perfusion and vasoreactivity of the critically ill neonate with open fontanelles, also integrated with a non-invasive assessment of brain oxygenation. In pediatric critical care, new technologies should be developed to improve the accuracy of brain ultrasound for the assessment of brain parenchyma of critically ill children with fibrous fontanelles. Furthermore, large multicenter studies are needed to clarify role and accuracy of doppler-based techniques to assess cerebral perfusion pressure and its changes after treatment interventions.
Collapse
Affiliation(s)
- Francesco Vinci
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Marco Tiseo
- Intensive Care Unit, 'Tor Vergata' University Hospital, Rome, Italy
| | - Denise Colosimo
- Pediatric Intensive Care Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Andrea Calandrino
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Luca Antonio Ramenghi
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Neonatal Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Guerino Biasucci
- Department of Clinical Science and Translational Medicine, 'Tor Vergata' University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Lovett ME, MacDonald JM, Mir M, Ghosh S, O'Brien NF, LaRovere KL. Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care 2024; 40:130-146. [PMID: 37160846 DOI: 10.1007/s12028-023-01730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to improve our understanding of acute and ongoing brain injury. METHODS In this article, we review basic methods and devices, applications in clinical care and research, and explore potential future directions for three noninvasive neuromonitoring modalities in the pediatric intensive care unit: automated pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography. RESULTS All three technologies are noninvasive, portable, and easily repeatable to allow for serial measurements and trending of data over time. However, a paucity of high-quality data supporting the clinical utility of any of these technologies in critically ill children is currently a major limitation to their widespread application in the pediatric intensive care unit. CONCLUSIONS Future prospective multicenter work addressing major knowledge gaps is necessary to advance the field of pediatric noninvasive neuromonitoring.
Collapse
Affiliation(s)
- Marlina E Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jennifer M MacDonald
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Marina Mir
- Division of Pediatric Critical Care, Montreal Children's Hospital and McGill University, Montreal, Canada
| | - Suman Ghosh
- Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Nicole F O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Foreman B, Kapinos G, Wainwright MS, Ngwenya LB, O'Phelan KH, LaRovere KL, Kirschen MP, Appavu B, Lazaridis C, Alkhachroum A, Maciel CB, Amorim E, Chang JJ, Gilmore EJ, Rosenthal ES, Park S. Practice Standards for the Use of Multimodality Neuromonitoring: A Delphi Consensus Process. Crit Care Med 2023; 51:1740-1753. [PMID: 37607072 PMCID: PMC11036878 DOI: 10.1097/ccm.0000000000006016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To address areas in which there is no consensus for the technologies, effort, and training necessary to integrate and interpret information from multimodality neuromonitoring (MNM). DESIGN A three-round Delphi consensus process. SETTING Electronic surveys and virtual meeting. SUBJECTS Participants with broad MNM expertise from adult and pediatric intensive care backgrounds. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Two rounds of surveys were completed followed by a virtual meeting to resolve areas without consensus and a final survey to conclude the Delphi process. With 35 participants consensus was achieved on 49% statements concerning MNM. Neurologic impairment and the potential for MNM to guide management were important clinical considerations. Experts reached consensus for the use of MNM-both invasive and noninvasive-for patients in coma with traumatic brain injury, aneurysmal subarachnoid hemorrhage, and intracranial hemorrhage. There was consensus that effort to integrate and interpret MNM requires time independent of daily clinical duties, along with specific skills and expertise. Consensus was reached that training and educational platforms are necessary to develop this expertise and to provide clinical correlation. CONCLUSIONS We provide expert consensus in the clinical considerations, minimum necessary technologies, implementation, and training/education to provide practice standards for the use of MNM to individualize clinical care.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | - Gregory Kapinos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark S Wainwright
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Laura B Ngwenya
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | | | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Matthew P Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian Appavu
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Christos Lazaridis
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
| | | | - Carolina B Maciel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
- Department of Neurology, University of Miami, Miami, FL
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
- Departments of Neurology and Neurosurgery, University of Florida, Tampa, FL
- Department of Neurology, University of Utah, Salt Lake City, UT
- Department of Neurology, Yale University, New Haven, CT
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| | - Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Jason J Chang
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
| | | | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| |
Collapse
|
13
|
Pandiyan P, Cvetkovic M, Antonini MV, Shappley RKH, Karmakar SA, Raman L. Clinical Guidelines for Routine Neuromonitoring in Neonatal and Pediatric Patients Supported on Extracorporeal Membrane Oxygenation. ASAIO J 2023; 69:895-900. [PMID: 37603797 DOI: 10.1097/mat.0000000000001896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
DISCLAIMER These guidelines for routine neuromonitoring in neonatal and pediatric patients supported on extracorporeal membrane oxygenation (ECMO) are intended for educational use to build the knowledge of physicians and other health professionals in assessing the conditions and managing the treatment of patients undergoing extracorporeal life support (ECLS)/ECMO and describe what are believed to be useful and safe practice for ECLS and ECMO but these are not necessarily consensus recommendations. The aim of clinical guidelines was to help clinicians to make informed decisions about their patients. However, adherence to a guideline does not guarantee a successful outcome. Healthcare professionals must make their own treatment decisions about care on a case-by-case basis, after consultation with their patients, using their clinical judgment, knowledge, and expertise. These guidelines do not take the place of physicians' and other health professionals' judgment in diagnosing and treatment of patients. These guidelines are not intended to and should not be interpreted as setting a standard of care or being deemed inclusive of all proper methods of care nor exclusive of other methods of care directed at obtaining the same results. The ultimate judgment must be made by the physician and other health professionals and the patient considering all the circumstances presented by the individual patient, and the known variability and biologic behavior of the clinical condition. These guidelines reflect the data at the time the guidelines were prepared; the results of subsequent studies or other information may cause revisions to the recommendations in these guidelines to be prudent to reflect new data, but ELSO is under no obligation to provide updates. In no event will ELSO be liable for any decision made or action taken in reliance upon the information provided through these guidelines.
Collapse
Affiliation(s)
- Poornima Pandiyan
- From the Department of Pediatrics, Division of Medical Critical Care, Boston Children's Hospital, Tufts University School of Medicine, Boston, Massachusetts
| | - Mirjana Cvetkovic
- Cardiac Critical Care Division, Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Velia Antonini
- Anesthesia and Intensive Care Unit, Bufalini Hospital - AUSL della Romagna, Cesena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Rebekah K H Shappley
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Swati A Karmakar
- Department of Pediatrics, Baylor College of Medicine, Neurology and Developmental Neuroscience Section, Texas Children's Hospital, Houston, Texas
| | - Lakshmi Raman
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Zhang H, Miao H, Yue D, Xia J. Clinical Significance of Action Research-Based Seamless Care to Improve Imaging Efficiency and Patients' Cognition, and Alleviate Patient Anxiety. Int J Gen Med 2023; 16:3427-3433. [PMID: 37593673 PMCID: PMC10427471 DOI: 10.2147/ijgm.s423957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Objective The present study was undertaken to assess the clinical significance of action research-based seamless care to improve imaging efficiency and alleviate patient anxiety. Methods A total of eighty patients who underwent imaging examinations in our hospital between May 2019 and November 2020 were recruited for this study. The patients were randomly assigned to two groups: the control group receiving routine care and the observation group receiving seamless care based on action research. The random assignment was conducted using a simple random sampling technique, ensuring an equal allocation of participants to each group at a 1:1 ratio, resulting in 40 cases in each group. Outcome measures included imaging examination duration, mean nursing duration, examination cognition, and negative emotion scores. Results Seamless care provided shorter imaging examination duration and nursing duration, and better ensured uneventful examinations than routine care (P<0.05). Patients given seamless care exhibited higher examination cognition versus those receiving routine care (P<0.05). Seamless care offered more mitigation of negative emotions for patients than routine care (P<0.05). Conclusion Action research-based seamless care effectively improves imaging efficiency and patients' awareness of imaging examinations and contributes to alleviating patients' adverse events.
Collapse
Affiliation(s)
- Haiqin Zhang
- Medical Imaging Department, Hai’an People’s Hospital, Jiangsu, 226600, People’s Republic of China
| | - Hui Miao
- Medical Imaging Department, Hai’an People’s Hospital, Jiangsu, 226600, People’s Republic of China
| | - Donglan Yue
- Medical Imaging Department, Hai’an People’s Hospital, Jiangsu, 226600, People’s Republic of China
| | - Jue Xia
- Department of Radiology, Nanjing Medical University Affiliated Wuxi People’s Hospital, Jiangsu, 2l4023, People’s Republic of China
| |
Collapse
|
15
|
O'Brien NF, Johnson HC, Musungufu DA, Ekandji RT, Mbaka JP, Babatila LK, Mayindombe L, Giresse B, Mwanza S, Lupumpaula C, Chilima JS, Nanyangwe A, Kabemba P, Kafula LN, Chunda-Liyoka CM, Phiri T, June S, Gushu MB, Chagaluka G, Moons P, Tshimanga T. Transcranial doppler velocities in a large healthy population of African children. Heliyon 2023; 9:e15419. [PMID: 37128324 PMCID: PMC10147980 DOI: 10.1016/j.heliyon.2023.e15419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Background and purpose Transcranial doppler ultrasound (TCD) is a tool that diagnoses and monitors pathophysiological changes to the cerebrovasculature. As cerebral blood flow velocities (CBFVs) increase throughout childhood, interpretation of TCD examinations in pediatrics requires comparison to age matched normative data. Large cohorts of healthy children have not been examined to develop these reference values in any population. There is a complete absence of normative values in African children where, due to lack of alternate neuroimaging techniques, utilization of TCD is rapidly emerging. Materials and methods A prospective study of 710 healthy African children 3 months-15 years was performed. Demographics, vital signs, and hemoglobin values were recorded. Participants underwent a complete, non-imaging TCD examination. Systolic (Vs), diastolic (Vd), and mean (Vm) flow velocities and pulsatility index (PI) were calculated by the instrument for each measurement. Results Vs, Vd, and Vm increased through early childhood in all vessels, with the highest CBFVs identified in children 5-5.9 years. There were few significant gender differences in CBFVs in any vessels in any age group. No correlations between blood pressure or hemoglobin and CBFVs were identified. Children in the youngest age groups had CBFVs similar to those previously published, whereas nearly every vessel in children ≥3 years had significantly lower Vs, Vd, and Vm. Conclusions For the first time, reference TCD values for African children are established. Utilization of these CBFVs in the interpretation of TCD examinations in this population will improve the overall accuracy of TCD as a clinical tool on the continent.
Collapse
Affiliation(s)
- Nicole F. O'Brien
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH 43502, USA
| | - Hunter C. Johnson
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH 43502, USA
| | | | - Robert Tandjeka Ekandji
- Universite des Sciences et des Technologie de Lodja (USTL), L'Hopital General de Reference de Lodja, Sankuru District, Lodja, People’s Republic of Congo
| | - Jean Pongo Mbaka
- Universite des Sciences et des Technologie de Lodja (USTL), L'Hopital General de Reference de Lodja, Sankuru District, Lodja, People’s Republic of Congo
| | - Lydia Kuseyila Babatila
- Departement de Pediatrie, Cliniques Universitaires de Kinshasa, Hopital Pediatrique de Kalembe Lembe, Universite De Kinshasa, Kimwenza, Lembe, People’s Republic of Congo
| | - Ludovic Mayindombe
- Departement de Pediatrie, Cliniques Universitaires de Kinshasa, Hopital Pediatrique de Kalembe Lembe, Universite De Kinshasa, Kimwenza, Lembe, People’s Republic of Congo
| | - Buba Giresse
- Departement de Pediatrie, Cliniques Universitaires de Kinshasa, Hopital Pediatrique de Kalembe Lembe, Universite De Kinshasa, Kimwenza, Lembe, People’s Republic of Congo
| | - Suzanna Mwanza
- Department of Paediatrics, Chipata Central Hospital, 687 and 588 Hospital Road, Chipata, Zambia
| | - Clement Lupumpaula
- Consultant Radiographer, Chipata Central Hospital, 687 and 588 Hospital Road, Chipata, Zambia
| | - Janet Simanguwa Chilima
- Consultant Radiographer, Chipata Central Hospital, 687 and 588 Hospital Road, Chipata, Zambia
| | - Alice Nanyangwe
- Registered Nurse, University Teaching Hospitals- Children's Hospital P/BAG RW1X, Nationalist Road, Lusaka, Zambia
| | - Peter Kabemba
- Registered Nurse, University Teaching Hospitals- Children's Hospital P/BAG RW1X, Nationalist Road, Lusaka, Zambia
| | - Lisa Nkole Kafula
- Consultant Paediatric Neurologist, University Teaching Hospitals-Children's Hospital, P/BAG RW1X, Nationalist Road, Lusaka, Zambia
| | - Catherine M. Chunda-Liyoka
- Consultant Paediatric Haemotologist, University Teaching Hospitals-Children's Hospital, P/BAG RW1X, Nationalist Road, Lusaka, Zambia
| | - Tusekile Phiri
- TCD Technician, Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Sylvester June
- TCD Technician, Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Montfort Bernard Gushu
- TCD Technician, Queen Elizabeth Central Hospital, The Blantyre Malaria Project, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - George Chagaluka
- Consultant Paediatrician, Department of Pediatrics and Child Health, Kamuzu University of Health Sciences, Private Bag 360, Chichiri Blantyre 3, Malawi
| | - Peter Moons
- Consultant Paediatrician, Department of Pediatrics and Child Health, Kamuzu University of Health Sciences, Private Bag 360, Chichiri Blantyre 3, Malawi
| | - Taty Tshimanga
- Departement de Pediatrie, Cliniques Universitaires de Kinshasa, Hopital Pediatrique de Kalembe Lembe, Universite De Kinshasa, Kimwenza, Lembe, People’s Republic of Congo
| |
Collapse
|
16
|
Weber MD, Lim JKB, Ginsburg S, Conlon T, Nishisaki A. Translating Guidelines into Practical Practice: Point-of-Care Ultrasound for Pediatric Critical Care Clinicians. Crit Care Clin 2023; 39:385-406. [PMID: 36898781 DOI: 10.1016/j.ccc.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Point-of-care ultrasound (POCUS) is now transitioning from an emerging technology to a standard of care for critically ill children. POCUS can provide immediate answers to clinical questions impacting management and outcomes within this fragile population. Recently published international guidelines specific to POCUS use in neonatal and pediatric critical care populations now complement previous Society of Critical Care Medicine guidelines. The authors review consensus statements within guidelines, identify important limitations to statements, and provide considerations for the successful implementation of POCUS in the pediatric critical care setting.
Collapse
Affiliation(s)
- Mark D Weber
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joel K B Lim
- Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Sarah Ginsburg
- Division of Critical Care Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Conlon
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Nishisaki
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
R M, Bansal A. Multimodal Neuromonitoring in Pediatric Neurocritical Care: Current Perspectives. Indian J Pediatr 2023; 90:261-271. [PMID: 36607512 DOI: 10.1007/s12098-022-04415-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
Children with neurological illness in the critical care unit are always at higher risk of developing secondary brain injury (SBI). Brain insult can lead to changes in cerebral autoregulation, intracranial pressure (ICP), cerebral oxygenation, and metabolism. This can cause a raised ICP, cerebral ischemia, hypoxia, excitotoxicity, cellular energy failure, and nonconvulsive status epilepticus. Simultaneous and continuous assessment of these parameters will help to improve patient care and neurological outcomes. Even though clinical examination and neuroimaging can help in the initial diagnosis of the neurological illness, they may not be helpful in continuous monitoring of cerebral pathophysiological changes. The ideal single neuromonitoring device to detect these real-time changes is currently unavailable. However, a range of invasive and noninvasive monitors are available to monitor these cerebral functional parameters. Invasive monitoring techniques include invasive ICP monitoring, cerebral autoregulation monitoring, brain tissue partial oxygen pressure, and cerebral microdialysis. Noninvasive-monitoring techniques include pupillometry, brain and ocular ultrasonography, near-infrared spectroscopy, and electrophysiological monitoring. Multimodal (MM) neuromonitoring involves incorporating these techniques and tools for the early identification and treatment of primary and secondary brain insults. The utility and feasibility of most of these techniques are well described in adult neurocritical care. Even though the evidence on their usage in children is primarily available in pediatric traumatic brain injury, the emerging data help to further expand their utility in pediatric nontraumatic coma. MM neuromonitoring aims to provide clinical and pathophysiological information to the intensivists to improve their understanding of the child's neurological status and to formulate patient-specific treatment approaches.
Collapse
Affiliation(s)
- Muthuvel R
- Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arun Bansal
- Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
18
|
Jordan J, Ladores S, Kong M, Smith T, Li P, Reuter-Rice K. Association between Day-to-Day Pulsatility Index Change and Neurocognitive Outcomes in Pediatric Traumatic Brain Injury. Neurotrauma Rep 2022; 3:369-376. [PMID: 36204387 PMCID: PMC9531876 DOI: 10.1089/neur.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) remains a significant cause of morbidity and mortality in children despite advances in prevention and mitigation strategies. Transcranial Doppler (TCD) ultrasound measures cerebral arterial circulation and allows for the calculation of pulsatility indices (PIs), which provides an assessment of cerebral blood flow changes. Yet, the use of PIs in children with TBI is not well understood. In this study, we defined the day-to-day (DTD) PI change of the anterior cerebral circulation and describe its relationship with injury characteristics and neurocognitive outcomes in children with TBI. A prospective observational parent study of 42 children, 2 months to 15 years of age, with mild or moderate-severe TBI who had serial TCDs provided data for this analysis. Both the mean and variation of DTD PI change were evaluated in the context of injury severity, injury sidedness, and neurocognitive outcome. In those with a unilateral injury, a larger mean DTD PI change in both the injured and uninjured side was found in those with a worse Glasgow Outcome Scale-Extended Pediatrics score at discharge. A larger variation in PI was associated with a worse neurocognitive outcome, irrespective of injury severity. Therefore, the mean and variation of DTD PI change may serve as a potential cerebral vascular biomarker of ongoing secondary injury. The use of PI measurements in the monitoring of children with TBI may provide clinicians with new diagnostic and prognostic insights to inform therapeutic interventions and recovery strategies. However, a larger prospective study is needed to confirm these findings and elucidate potential mechanistic links between DTD PI and clinical outcome measures. To our knowledge, this study is the first of its kind to evaluate the use of PI changes in cerebral vasculature in pediatric TBI patients admitted to the hospital.
Collapse
Affiliation(s)
- Jeremy Jordan
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pediatric Critical Care Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | - Sigrid Ladores
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michele Kong
- Pediatric Critical Care Medicine, Children's of Alabama, Birmingham, Alabama, USA
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tedra Smith
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peng Li
- School of Nursing, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
19
|
Transcranial Doppler Ultrasound, a Review for the Pediatric Intensivist. CHILDREN 2022; 9:children9050727. [PMID: 35626904 PMCID: PMC9171581 DOI: 10.3390/children9050727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
The use of transcranial Doppler ultrasound (TCD) is increasing in frequency in the pediatric intensive care unit. This review highlights some of the pertinent TCD applications for the pediatric intensivist, including evaluation of cerebral hemodynamics, autoregulation, non-invasive cerebral perfusion pressure/intracranial pressure estimation, vasospasm screening, and cerebral emboli detection.
Collapse
|
20
|
Cicogna A, Minca G, Posocco F, Corno F, Basile C, Da Dalt L, Bressan S. Non-ionizing Imaging for the Emergency Department Assessment of Pediatric Minor Head Trauma. Front Pediatr 2022; 10:881461. [PMID: 35633980 PMCID: PMC9132372 DOI: 10.3389/fped.2022.881461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Minor blunt head trauma (MHT) represents a common reason for presentation to the pediatric emergency department (ED). Despite the low incidence of clinically important traumatic brain injuries (ciTBIs) following MHT, many children undergo computed tomography (CT), exposing them to the risk associated with ionizing radiation. The clinical predictions rules developed by the Pediatric Emergency Care Applied Research Network (PECARN) for MHT are validated accurate tools to support decision-making about neuroimaging for these children to safely reduce CT scans. However, a few non-ionizing imaging modalities have the potential to contribute to further decrease CT use. This narrative review provides an overview of the evidence on the available non-ionizing imaging modalities that could be used in the management of children with MHT, including point of care ultrasound (POCUS) of the skull, near-infrared spectroscopy (NIRS) technology and rapid magnetic resonance imaging (MRI). Skull ultrasound has proven an accurate bedside tool to identify the presence and characteristics of skull fractures. Portable handheld NIRS devices seem to be accurate screening tools to identify intracranial hematomas also in pediatric MHT, in selected scenarios. Both imaging modalities may have a role as adjuncts to the PECARN rule to help refine clinicians' decision making for children at high or intermediate PECARN risk of ciTBI. Lastly, rapid MRI is emerging as a feasible and accurate alternative to CT scan both in the ED setting and when repeat imaging is needed. Advantages and downsides of each modality are discussed in detail in the review.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Silvia Bressan
- Division of Pediatric Emergency Medicine, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| |
Collapse
|
21
|
Brown KL, Agrawal S, Kirschen MP, Traube C, Topjian A, Pressler R, Hahn CD, Scholefield BR, Kanthimathinathan HK, Hoskote A, D'Arco F, Bembea M, Manning JC, Hunfeld M, Buysse C, Tasker RC. The brain in pediatric critical care: unique aspects of assessment, monitoring, investigations, and follow-up. Intensive Care Med 2022; 48:535-547. [PMID: 35445823 PMCID: PMC10082392 DOI: 10.1007/s00134-022-06683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
As survival after pediatric intensive care unit (PICU) admission has improved over recent years, a key focus now is the reduction of morbidities and optimization of quality of life for survivors. Neurologic disorders and direct brain injuries are the reason for 11-16% of admissions to PICU. In addition, many critically ill children are at heightened risk of brain injury and neurodevelopmental difficulties affecting later life, e.g., complex heart disease and premature birth. Hence, assessment, monitoring and protection of the brain, using fundamental principles of neurocritical care, are crucial to the practice of pediatric intensive care medicine. The assessment of brain function, necessary to direct appropriate care, is uniquely challenging amongst children admitted to the PICU. Challenges in assessment arise in children who are unstable, or pharmacologically sedated and muscle relaxed, or who have premorbid abnormality in development. Moreover, the heterogeneity of diseases and ages in PICU patients, means that high caliber evidence is harder to accrue than in adult practice, nonetheless, great progress has been made over recent years. In this 'state of the art' paper about critically ill children, we discuss (1) patient types at risk of brain injury, (2) new standardized clinical assessment tools for age-appropriate, clinical evaluation of brain function, (3) latest evidence related to cranial imaging, non-invasive and invasive monitoring of the brain, (4) the concept of childhood 'post intensive are syndrome' and approaches for neurodevelopmental follow-up. Better understanding of these concepts is vital for taking PICU survivorship to the next level.
Collapse
Affiliation(s)
- Kate L Brown
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK. .,Institute of Cardiovascular, Science University College London, London, UK.
| | - Shruti Agrawal
- Paediatric Intensive Care Unit Addenbrookes Hospital, Cambridge, UK
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Chani Traube
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Weill Cornell Medical College, New York, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ronit Pressler
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.,University College London Institute of Child Health, London, UK
| | - Cecil D Hahn
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Barnaby R Scholefield
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Hari Krishnan Kanthimathinathan
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Aparna Hoskote
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Institute of Cardiovascular, Science University College London, London, UK
| | - Felice D'Arco
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,University College London Institute of Child Health, London, UK
| | - Melania Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Manning
- Nottingham Children's Hospital and Neonatology, Nottingham University Hospitals NHS Trust, Nottingham, UK.,Centre for Children and Young People Health Research, School of Health Sciences, University of Nottingham, Nottingham, UK
| | - Maayke Hunfeld
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robert C Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Selwyn College, Cambridge University, Cambridge, UK
| |
Collapse
|
22
|
Burton L, Bhargava V, Kong M. Point-of-Care Ultrasound in the Pediatric Intensive Care Unit. Front Pediatr 2022; 9:830160. [PMID: 35178366 PMCID: PMC8845897 DOI: 10.3389/fped.2021.830160] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Ultrasonography has been widely used in medicine for decades but often by specific users such as cardiologists, obstetricians, and radiologists. In the last several years, the use of this imaging modality has moved to the bedside, with clinicians performing and interpreting focused point of care ultrasonography to aid in immediate assessment and management of their patients. The growth of point of care ultrasonography has been facilitated by advancement in ultrasound-related technology and emerging studies and protocols demonstrating its utility in clinical practice. However, considerable challenges remain before this modality can be adopted across the spectrum of disciplines, primarily as it relates to training, competency, and standardization of usage. This review outlines the history, current state, challenges and the future direction of point of care ultrasonography specifically in the field of pediatric critical care medicine.
Collapse
|
23
|
Kirschen MP, LaRovere K, Balakrishnan B, Erklauer J, Francoeur C, Ganesan SL, Jayakar A, Lovett M, Luchette M, Press CA, Wolf M, Ferrazzano P, Wainwright MS, Appavu B. A Survey of Neuromonitoring Practices in North American Pediatric Intensive Care Units. Pediatr Neurol 2022; 126:125-130. [PMID: 34864306 PMCID: PMC9135309 DOI: 10.1016/j.pediatrneurol.2021.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuromonitoring is the use of continuous measures of brain physiology to detect clinically important events in real-time. Neuromonitoring devices can be invasive or non-invasive and are typically used on patients with acute brain injury or at high risk for brain injury. The goal of this study was to characterize neuromonitoring infrastructure and practices in North American pediatric intensive care units (PICUs). METHODS An electronic, web-based survey was distributed to 70 North American institutions participating in the Pediatric Neurocritical Care Research Group. Questions related to the clinical use of neuromonitoring devices, integrative multimodality neuromonitoring capabilities, and neuromonitoring infrastructure were included. Survey results were presented using descriptive statistics. RESULTS The survey was completed by faculty at 74% (52 of 70) of institutions. All 52 institutions measure intracranial pressure and have electroencephalography capability, whereas 87% (45 of 52) use near-infrared spectroscopy and 40% (21/52) use transcranial Doppler. Individual patient monitoring decisions were driven by institutional protocols and collaboration between critical care, neurology, and neurosurgery attendings. Reported device utilization varied by brain injury etiology. Only 15% (eight of 52) of institutions utilized a multimodality neuromonitoring platform to integrate and synchronize data from multiple devices. A database of neuromonitoring patients was maintained at 35% (18 of 52) of institutions. Funding for neuromonitoring programs was variable with contributions from hospitals (19%, 10 of 52), private donations (12%, six of 52), and research funds (12%, six of 52), although 73% (40 of 52) have no dedicated funds. CONCLUSIONS Neuromonitoring indications, devices, and infrastructure vary by institution in North American pediatric critical care units. Noninvasive modalities were utilized more liberally, although not uniformly, than invasive monitoring. Further studies are needed to standardize the acquisition, interpretation, and reporting of clinical neuromonitoring data, and to determine whether neuromonitoring systems impact neurological outcomes.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Kerri LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer Erklauer
- Departments of Critical Care Medicine and Neurology, Texas Children's Hospital, Houston, Texas
| | - Conall Francoeur
- Department of Pediatrics, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | - Saptharishi Lalgudi Ganesan
- Department of Paediatrics, Children's Hospital of Western Ontario, Schulich School of Medicine & Dentistry at the Western University, London, Ontario, Canada
| | - Anuj Jayakar
- Department of Neurology, Nicklaus Children's Hospital, Miami, Florida
| | - Marlina Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew Luchette
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig A Press
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Wolf
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Peter Ferrazzano
- Division of Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mark S Wainwright
- Division of Pediatric Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Brian Appavu
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine - Phoenix, Phoenix, UK
| |
Collapse
|
24
|
Isola C, Evain JN, Francony G, Baud C, Millet A, Desrumaux A, Wroblewski I, Payen JF, Mortamet G. Cerebral vasospasm in children with subarachnoid hemorrhage: frequency, diagnosis, and therapeutic management. Neurocrit Care 2021; 36:868-875. [PMID: 34791595 DOI: 10.1007/s12028-021-01388-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The present study explores the frequency, diagnostic approach, and therapeutic management of cerebral vasospasm in a cohort of children with moderate-to-severe traumatic and nontraumatic subarachnoid hemorrhage (SAH). METHODS This was a single-center retrospective study performed over a 10-year period, from January 2010 to December 2019. Children aged from one month to 18 years who were admitted to the pediatric or adult intensive care unit with a diagnosis of SAH were eligible. Cerebral vasospasm could be suspected by clinical signs or transcranial Doppler (TCD) criteria (mean blood flow velocity > 120 cm/s or an increase in mean blood flow velocity by > 50 cm/s within 24 h) and then confirmed on cerebral imaging (with a reduction to less than 50% of the caliber of the cerebral artery). RESULTS Eighty patients aged 8.6 years (3.3-14.8 years, 25-75th centiles) were admitted with an initial Glasgow Coma Scale score of 8 (4-12). SAH was nontraumatic in 21 (26%) patients. A total of 14/80 patients (18%) developed cerebral vasospasm on brain imaging on day 6 (5-10) after admission, with a predominance of nontraumatic SAH (12/14). The diagnosis of cerebral vasospasm was suspected on clinical signs and/or significant temporal changes in TCD monitoring (7 patients) and then confirmed on cerebral imaging. Thirteen of 14 patients with vasospasm were successfully treated using a continuous intravenous infusion of milrinone. The Pediatric Cerebral Performance Category score at discharge from the intensive care unit was comparable between children with vasospasm (score of 2 [1-4]) vs. children without vasospasm (score of 4 [2-4]) (p = 0.09). CONCLUSIONS These findings indicate that cerebral vasospasm exists in pediatrics, particularly after nontraumatic SAH. The use of TCD and milrinone may help in the diagnostic and therapeutic management of cerebral vasospasm.
Collapse
Affiliation(s)
- Clément Isola
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France
| | - Jean-Noel Evain
- Department of Anesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Alpes University, Grenoble, 3800, France
| | - Gilles Francony
- Department of Anesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Alpes University, Grenoble, 3800, France
| | - Caroline Baud
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France
| | - Anne Millet
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France
| | - Amélie Desrumaux
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France
| | - Isabelle Wroblewski
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France
| | - Jean-Francois Payen
- Department of Anesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Alpes University, Grenoble, 3800, France.,Grenoble Institute Neurosciences, Grenoble Alpes University, Grenoble, 3800, France
| | - Guillaume Mortamet
- Pediatric Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble Alpes University, Grenoble, 3800, France. .,INSERM U1042, Grenoble-Alpes University,, Grenoble, 3800, France.
| |
Collapse
|