1
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Lu Q, Xie Y, Luo J, Gong Q, Li C. Natural flavones from edible and medicinal plants exhibit enormous potential to treat ulcerative colitis. Front Pharmacol 2023; 14:1168990. [PMID: 37324477 PMCID: PMC10268007 DOI: 10.3389/fphar.2023.1168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic aspecific gut inflammatory disorder that primarily involves the recta and colons. It mostly presents as a long course of repeated attacks. This disease, characterized by intermittent diarrhoea, fecal blood, stomachache, and tenesmus, severely decreases the living quality of sick persons. UC is difficult to heal, has a high recurrence rate, and is tightly related to the incidence of colon cancer. Although there are a number of drugs available for the suppression of colitis, the conventional therapy possesses certain limitations and severe adverse reactions. Thus, it is extremely required for safe and effective medicines for colitis, and naturally derived flavones exhibited huge prospects. This study focused on the advancement of naturally derived flavones from edible and pharmaceutical plants for treating colitis. The underlying mechanisms of natural-derived flavones in treating UC were closely linked to the regulation of enteric barrier function, immune-inflammatory responses, oxidative stress, gut microflora, and SCFAs production. The prominent effects and safety of natural-derived flavones make them promising candidate drugs for colitis treatment.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yuhong Xie
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Cailan Li
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Nathan J, Shameera R, Ramachandran A. Impact of nutraceuticals on immunomodulation against viral infections-A review during COVID-19 pandemic in Indian scenario. J Biochem Mol Toxicol 2023; 37:e23320. [PMID: 36799127 DOI: 10.1002/jbt.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 is a censorious global emergency after World War II. Research on the coronavirus uncovered essential information that aided in the development of the vaccine, and specific coronavirus disease 2019 (COVID-19) vaccines were later developed and were approved for usage in humans. But then, mutations in the coronavirus gave rise to new variants and questioned the vaccine's efficacy against them. On the other hand, the investigation of traditional medicine was also on its path to find a novel outcome against COVID-19. On a comparative analysis between India and the United States, India had low death rate and high recovery rate than the latter. The dietary regulation of immunity may be the factor that makes the above difference. The immunity gained from the regular diet of Indian culture nourishes Indian people with essential phytochemicals that support immunity and metabolism. Dietary phytochemicals or nutraceuticals possess antioxidant, anti-inflammatory, and anticancer properties, out of which our concern will be on immune-boosting phytochemicals from our daily nutritional supplements. In several case studies, dietary substance like lemon, ginger, and spinach was reported in the recovery of COVID-19 patients. Thus in this review, we discuss coronavirus and its available variants, vaccines, and the effect of nutraceuticals against the coronavirus. Further, we denote that the immunity of the Indian population may be high because of their diet, which adds natural phytochemicals to boost their immunity and metabolism.
Collapse
Affiliation(s)
- Jhansi Nathan
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Rabiathul Shameera
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Arunkumar Ramachandran
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
5
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
6
|
Wang L, Gao M, Kang G, Huang H. The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease. Front Nutr 2021; 8:798038. [PMID: 34970585 PMCID: PMC8713745 DOI: 10.3389/fnut.2021.798038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), characterized by the chronic inflammation of the gastrointestinal tract, is comprised of two idiopathic chronic intestinal inflammatory diseases. As the incidence of IBD increases, so does the need for safe and effective treatments. Trillions of microorganisms are colonized in the mammalian intestine, coevolve with the host in a symbiotic relationship. Gut microbiota has been reported to be involved in the pathophysiology of IBD. In this regard, phytonutrients flavonoids have received increasing attention for their anti-oxidant and anti-inflammatory activities. In this review, we address recent advances in the interactions among flavonoids, gut microbiota, and IBD. Moreover, their possible potential mechanisms of action in IBD have been discussed. We conclude that there is a complex interaction between flavonoids and gut microbiota. It is expected that flavonoids can change or reshape the gut microbiota to provide important considerations for developing treatments for IBD.
Collapse
Affiliation(s)
- Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Chen B, Luo J, Han Y, Du H, Liu J, He W, Zhu J, Xiao J, Wang J, Cao Y, Xiao H, Song M. Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7663-7674. [PMID: 34182753 DOI: 10.1021/acs.jafc.1c03046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the preventive effect of tangeretin (TAN), a natural flavonoid derivative from citrus fruits, on the dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. Our results showed that dietary TAN (0.04% and 0.08% w/w in the diet) significantly reduced the severity of colitis caused by DSS treatment in mice, evidenced by the increased colon length, the reduced disease activity index, and the attenuated colonic tissue damages. Moreover, dietary TAN inhibited the inflammatory response via down-regulating the overexpression of colonic inflammatory cytokines. Immunohistochemical analysis revealed that the intestinal barrier function was restored by TAN through enhancing claudin-1 and ZO-1 expressions. Additionally, dietary TAN modulated gut microbiota in colitic mice via enhancing gut microbiota diversity, ascending the level of beneficial bacteria, e.g., Lachnospiraceae and Lactobacillaceae, and descending the level of harmful bacteria, e.g., Enterobacteriaceae and Alistipes. Besides, dietary TAN promoted short-chain fatty acids production in DSS-treated mice. Altogether, these findings provided scientific evidence for the rational utilization of TAN as a preventive agent against colonic inflammation and related diseases.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jiakang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Wei He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
8
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
9
|
Chang SN, Dey DK, Oh ST, Kong WH, Cho KH, Al-Olayan EM, Hwang BS, Kang SC, Park JG. Phorbol 12-Myristate 13-Acetate Induced Toxicity Study and the Role of Tangeretin in Abrogating HIF-1α-NF-κB Crosstalk In Vitro and In Vivo. Int J Mol Sci 2020; 21:9261. [PMID: 33291656 PMCID: PMC7729754 DOI: 10.3390/ijms21239261] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) is a potent tumor promoter and highly inflammatory in nature. Here, we investigated the toxic effects of PMA on different model system. PMA (10 μg) caused chromosomal aberrations on the Allium cepa root tip and induced mitotic dysfunction. Similarly, PMA caused embryonic and larval deformities and a plummeted survivability rate on zebrafish embryo in a dose-dependent manner. Persistently, PMA treatment on immortalized human keratinocyte human keratinocyte (HaCaT) cells caused massive inflammatory rush at 4 h and a drop in cell survivability at 24 h. Concomitantly, we replicated a cutaneous inflammation similar to human psoriasis induced by PMA. Herein, we used tangeretin (TAN), as an antagonist to counteract the inflammatory response. Results from an in vivo experiment indicated that TAN (10 and 30 mg/kg) significantly inhibited PMA stimulated epidermal hyperplasia and intra-epidermal neutrophilic abscesses. In addition, its treatment effectively neutralized PMA induced elevated reactive oxygen species (ROS) generation on in vitro and in vivo systems, promoting antioxidant response. The association of hypoxia-inducible factor 1-alpha (HIF-1α)-nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) crosstalk triggered by PMA enhanced PKCα-ERK1/2-NF-κB pathway; its activation was also significantly counteracted after TAN treatment. Conclusively, we demonstrated TAN inhibited the nuclear translocation of HIF-1α and NF-κB p65. Collectively, TAN treatment ameliorated PMA incited malignant inflammatory response by remodeling the cutaneous microenvironment.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Seong Taek Oh
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
- Okinawa Research Center Co. Ltd., 13-33, Suzaki, Uruma-si, Okinawa Ken 904-2234, Japan
| | - Won Ho Kong
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Kiu Hyung Cho
- Research Group, Gyeongbuk Institute for Bio Industry (GIB), Andong 36728, Korea;
| | - Ebtesam M. Al-Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea;
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| |
Collapse
|
10
|
Zheng J, Shao Y, Jiang Y, Chen F, Liu S, Yu N, Zhang D, Liu X, Zou L. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res 2019; 11:5231-5242. [PMID: 31239776 PMCID: PMC6559145 DOI: 10.2147/cmar.s200974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a particularly prevalent type of liver cancer and is one of the deadliest malignancies in Asia. Tangeretin is a biological compound extracted from traditional Chinese herbs and has been shown to have potential antitumour properties; however, its mechanism remains largely unknown. Therefore, we sought to determine the role of Tangeretin in HepG2 cells subjected to antitumour treatment. Materials and methods: Cell proliferation was quantified using CCK-8, EdU and colony formation assays, and cell migration was quantified using transwell migration and wound healing assays. Protein expression was assessed using Western blot analysis. Small interfering RNA was used to interfer protein expression. Immunoprecipitation was performed to detect the protein-protein interactions. Results: Tangeretin decreased cell proliferation and increased G2/M arrest. Tangeretin decreased cell migration. Tangeretin increased the LC3II/LC3I ratio and decreased p62 expression in HepG2 cells. Furthermore, the knockdown of BECLIN1 expression in HepG2 cells partially converted the Tangeretin-induced inhibition of proliferation, migration and autophagy. In addition, Tangeretin activated the JNK1/Bcl-2 pathway and disturbed the interaction between Bcl-2 and BECLIN1. Together, our findings demonstrate that Tangeretin inhibited the proliferation and migration of HepG2 cells through JNK/Bcl-2/BECLIN1 pathway-mediated autophagy. Conclusion: Our study contributes to the understanding of the inhibitory mechanism of Tangeretin on HCC development.
Collapse
Affiliation(s)
- Jiao Zheng
- Drug Clinical Trial Institution Department, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yaqin Shao
- Drug Clinical Trial Institution Department, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Sulai Liu
- Hunan Research Center of Biliary Disease, Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, Changsha, Hunan, People’s Republic of China
| | - Nanhui Yu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Dandan Zhang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Lianhong Zou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
11
|
Cai H, Xu Y, Xie L, Duan Y, Zhou J, Liu J, Niu M, Zhang Y, Shen L, Pei K, Cao G. Investigation on Spectrum-Effect Correlation between Constituents Absorbed into Blood and Bioactivities of Baizhu Shaoyao San before and after Processing on Ulcerative Colitis Rats by UHPLC/Q-TOF-MS/MS Coupled with Gray Correlation Analysis. Molecules 2019; 24:molecules24050940. [PMID: 30866532 PMCID: PMC6429276 DOI: 10.3390/molecules24050940] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Baizhu Shaoyao San (BSS) is a crucial traditional Chinese medicinal formula widely applied for the treatment of painful diarrhea, diarrhea-predominant irritable bowel syndrome, ulcerative colitis, and some other gastrointestinal diseases. Corresponding to the clinical medication, the three medicinal herbs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, and Citri Reticulatae Pericarpium) included in BSS should be processed using some specific methods of stir-frying. To find the underlying correlations between serum chemical profiles and curative effects of crude and processed BSS on ulcerative colitis rats, and further explore for the effective material basis of processing, an UHPLC/Q-TOF-MS/MS technique coupled with gray correlation analysis (GCA) was developed. A total of 134 compounds were identified in rat sera after oral administration of BSS, among which 24 compounds were prototypes and 110 compounds were metabolites. Meanwhile, an ulcerative colitis model was established in rats by enema with 2,4,6-trinitrobenzene sulfonic acid, and the pharmacodynamic indicators for drug efficacies were evaluated as well. According to the results, processed BSS showed better efficacy than crude BSS. The top 10 potential effective components with high degree of correlation were identified based on GCA results, which were thought to be the crucial compounds that contributed to the enhancement of therapeutic effects in BSS after processing.
Collapse
Affiliation(s)
- Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yangyang Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jia Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Minjie Niu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yating Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lin Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
12
|
Elhennawy MG, Lin HS. Determination of Tangeretin in Rat Plasma: Assessment of Its Clearance and Absolute Oral Bioavailability. Pharmaceutics 2017; 10:pharmaceutics10010003. [PMID: 29286295 PMCID: PMC5874816 DOI: 10.3390/pharmaceutics10010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023] Open
Abstract
Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ) was 15 ng/mL; the intra- and inter-day assay variations expressed in the form of relative standard deviation (RSD) were all less than 10%; and the assay accuracy was within 100 ± 15%. Subsequently, pharmacokinetic profiles of TAN were explored and established. Upon single intravenous administration (10 mg/kg), TAN had rapid clearance (Cl = 94.1 ± 20.2 mL/min/kg) and moderate terminal elimination half-life (t1/2 λz = 166 ± 42 min). When TAN was given as a suspension (50 mg/kg), poor but erratic absolute oral bioavailability (mean value < 3.05%) was observed; however, when TAN was given in a solution prepared with randomly methylated-β-cyclodextrin (50 mg/kg), its plasma exposure was at least doubled (mean bioavailability: 6.02%). It was obvious that aqueous solubility hindered the oral absorption of TAN and acted as a barrier to its oral bioavailability. This study will facilitate further investigations on the medicinal potentials of TAN.
Collapse
Affiliation(s)
- Mai Gamal Elhennawy
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
13
|
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, Fitzpatrick LR, Nabavi SM, Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J Gastroenterol 2017; 23:5097-5114. [PMID: 28811706 PMCID: PMC5537178 DOI: 10.3748/wjg.v23.i28.5097] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
The inflammatory process plays a central role in the development and progression of numerous pathological situations, such as inflammatory bowel disease (IBD), autoimmune and neurodegenerative diseases, metabolic syndrome, and cardiovascular disorders. IBDs involve inflammation of the gastrointestinal area and mainly comprise Crohn’s disease (CD) and ulcerative colitis (UC). Both pathological situations usually involve recurring or bloody diarrhea, pain, fatigue and weight loss. There is at present no pharmacological cure for CD or UC. However, surgery may be curative for UC patients. The prescribed treatment aims to ameliorate the symptoms and prevent and/or delay new painful episodes. Flavonoid compounds are a large family of hydroxylated polyphenolic molecules abundant in plants, including vegetables and fruits which are the major dietary sources of these compounds for humans, together with wine and tea. Flavonoids are becoming very popular because they have many health-promoting and disease-preventive effects. Most interest has been directed towards the antioxidant activity of flavonoids, evidencing a remarkable free-radical scavenging capacity. However, accumulating evidence suggests that flavonoids have many other biological properties, including anti-inflammatory, antiviral, anticancer, and neuroprotective activities through different mechanisms of action. The present review analyzes the available data about the different types of flavonoids and their potential effectiveness as adjuvant therapy of IBDs.
Collapse
|