1
|
Solanki R, Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8430-8444. [PMID: 38821861 DOI: 10.1002/jsfa.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Basak SJ, Dash J. Potassium tert-Butoxide-Mediated Cascade Synthesis of Rutaecarpine Alkaloid Analogues: Access to Molecular Complexity on Multigram Scales. J Org Chem 2024; 89:233-244. [PMID: 38037902 DOI: 10.1021/acs.joc.3c01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, we present a novel and cost-effective approach for synthesizing biologically significant analogues of rutaecarpine alkaloid through a one-step cascade reaction. The pentacyclic core of rutaecarpine alkaloid analogues is efficiently constructed using 2-aminobenzonitriles and substituted indole-2-carbaldehydes in the presence of the affordable base KOtBu. The salient feature of this approach is the promotion of a sequential cascade process within a single reaction vessel including the formation of a dihydroquinazolinone ring, oxidation, and cyclization. This method can be successfully applied on a larger scale, making it economically viable.
Collapse
Affiliation(s)
- Soumya Jyoti Basak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
4
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
5
|
Vaou N, Stavropoulou E, Voidarou C(C, Tsakris Z, Rozos G, Tsigalou C, Bezirtzoglou E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics (Basel) 2022; 11:antibiotics11081014. [PMID: 36009883 PMCID: PMC9404952 DOI: 10.3390/antibiotics11081014] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
It is accepted that the medicinal use of complex mixtures of plant-derived bioactive compounds is more effective than purified bioactive compounds due to beneficial combination interactions. However, synergy and antagonism are very difficult to study in a meticulous fashion since most established methods were designed to reduce the complexity of mixtures and identify single bioactive compounds. This study represents a critical review of the current scientific literature on the combined effects of plant-derived extracts/bioactive compounds. A particular emphasis is provided on the identification of antimicrobial synergistic or antagonistic combinations using recent metabolomics methods and elucidation of approaches identifying potential mechanisms that underlie their interactions. Proven examples of synergistic/antagonistic antimicrobial activity of bioactive compounds are also discussed. The focus is also put on the current challenges, difficulties, and problems that need to be overcome and future perspectives surrounding combination effects. The utilization of bioactive compounds from medicinal plant extracts as appropriate antimicrobials is important and needs to be facilitated by means of new metabolomics technologies to discover the most effective combinations among them. Understanding the nature of the interactions between medicinal plant-derived bioactive compounds will result in the development of new combination antimicrobial therapies.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); or (E.S.)
| | - Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
- Correspondence: (N.V.); or (E.S.)
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Zacharias Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Rozos
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
6
|
Sadeghian Z, Bayat M, Safari F. Synthesis and in vitro anticancer activity evaluation of spiro[indolo[2,1-b]quinazoline-pyrano[2,3-c]pyrazole] via sequential four-component reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sadeghian Z, Bayat M, Safari F. Synthesis and in vitro evaluation of antitumor activity of spiro[indolo[2,1-b]quinazoline-pyrano[2,3-d]pyrimidine] and spiro[indolo[2,1-b]quinazoline-pyrido[2,3-d]pyrimidine] derivatives by using 2D and 3D cell culture models. Mol Divers 2022; 26:3173-3184. [PMID: 35044579 DOI: 10.1007/s11030-022-10378-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Cancer as one of the biggest human health problems remains unsolved. The identification of novel platforms with the highest efficacy and low toxicity is a big challenge among interested researchers. In this regard, we are interested to synthesis and evaluate antitumor activity of spiro[indolo[2,1-b]quinazoline-pyrano[2,3-d]pyrimidine] and spiro[indolo[2,1-b]quinazoline-pyrido[2,3-d]pyrimidine] derivatives. The spiro heterocycles were synthesized via four-component reaction of isatoic anhydride, isatins, malononitrile, and some CH-acids including barbituric acid/thiobarbituric acid and 4(6)-aminouracil in CH2Cl2 under reflux condition. The significant features of this process are short reaction time, easy purification without chromatographic process, and high yields which make it attractive. Next, we employed 2D and 3D cell culture models to evaluate biological activity of our compounds. Our results showed that among our seven products (4a-g), the compounds 4a and 4e are the best with 50% growth inhibitory concentration (IC50) value lower than etoposide. Our results support this idea that the compounds 4a and 4e may be potential for drug designing in cancer therapy. However, more experiments will be required to find possible side effects of related compounds in vivo.
Collapse
Affiliation(s)
- Zahra Sadeghian
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
8
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
9
|
Wang Y, Li Y, Shang D, Efferth T. Interactions between artemisinin derivatives and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152998. [PMID: 31301971 DOI: 10.1016/j.phymed.2019.152998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Artemisinin was isolated and identified in 1972, which was the starting point for a new era in antimalarial drug therapy. Furthermore, numerous studies have demonstrated that artemisinin and its derivatives exhibit considerable anticancer activity both in vitro, in vivo, and even in clinical Phase I/II trials. P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) is one of the most serious causes of chemotherapy failure in cancer treatment. Interestingly, many artemisinin derivatives exhibit excellent ability to overcome P-gp mediated MDR and even show collateral sensitivity against MDR cancer cells. Furthermore, some artemisinin derivatives show P-gp-mediated MDR reversal activity. Therefore, the interaction between P-gp and artemisinin derivatives is important to develop novel combination treatment protocols with artemisinin derivatives and established anticancer drugs that are P-gp substrates. PURPOSE This systematic review provides an updated overview on the interaction between artemisinin derivatives and P-gp and the effect of artemisinin derivatives on the P-gp expression level. RESULTS Artemisinin derivatives exhibit multi-specific interactions with P-gp. The currently used artemisinin derivatives are not transported by P-gp. However, some of novel synthetized artemisinin derivatives exhibit P-gp substrate properties. Furthermore, many artemisinin derivatives act as P-gp inhibitors, which exhibit the potential to reverse MDR towards clinically used anticancer drugs. CONCLUSION Therefore, studies on the interaction between artemisinin derivatives and P-gp provide important information for the development of novel anti-cancer artemisinin derivatives to reverse P-gp mediated MDR and for the design of rational artemisinin-based combination therapies against cancer.
Collapse
Affiliation(s)
- Yulin Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yongjie Li
- Department of Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian China; College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University 55128 Mainz, Germany.
| |
Collapse
|
10
|
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 2019; 36:869-888. [PMID: 31187844 PMCID: PMC6820002 DOI: 10.1039/c9np00011a] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2000 to 2019 According to a 2012 survey from the Centers for Disease Control and Prevention, approximately 18% of the U.S. population uses natural products (including plant-based or botanical preparations) for treatment or prevention of disease. The use of plant-based medicines is even more prevalent in developing countries, where for many they constitute the primary health care modality. Proponents of the medicinal use of natural product mixtures often claim that they are more effective than purified compounds due to beneficial "synergistic" interactions. A less-discussed phenomenon, antagonism, in which effects of active constituents are masked by other compounds in a complex mixture, also occurs in natural product mixtures. Synergy and antagonism are notoriously difficult to study in a rigorous fashion, particularly given that natural products chemistry research methodology is typically devoted to reducing complexity and identifying single active constituents for drug development. This report represents a critical review with commentary about the current state of the scientific literature as it relates to studying combination effects (including both synergy and antagonism) in natural product extracts. We provide particular emphasis on analytical and Big Data approaches for identifying synergistic or antagonistic combinations and elucidating the mechanisms that underlie their interactions. Specific case studies of botanicals in which synergistic interactions have been documented are also discussed. The topic of synergy is important given that consumer use of botanical natural products and associated safety concerns continue to garner attention by the public and the media. Guidance by the natural products community is needed to provide strategies for effective evaluation of safety and toxicity of botanical mixtures and to drive discovery in botanical natural product research.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | | |
Collapse
|
11
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
12
|
Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol Res 2019; 141:541-550. [DOI: 10.1016/j.phrs.2018.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|
13
|
Wang ZX, Xiang JC, Wang M, Ma JT, Wu YD, Wu AX. One-Pot Total Synthesis of Evodiamine and Its Analogues through a Continuous Biscyclization Reaction. Org Lett 2018; 20:6380-6383. [DOI: 10.1021/acs.orglett.8b02667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Miao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Arcadi A, Cacchi S, Fabrizi G, Ghirga F, Goggiamani A, Iazzetti A, Marinelli F. Synthesis of indolo[1,2- c]quinazolines from 2-alkynylaniline derivatives through Pd-catalyzed indole formation/cyclization with N, N-dimethylformamide dimethyl acetal. Beilstein J Org Chem 2018; 14:2411-2417. [PMID: 30254707 PMCID: PMC6142776 DOI: 10.3762/bjoc.14.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/31/2018] [Indexed: 01/18/2023] Open
Abstract
An efficient strategy for the synthesis of 6-unsubstituted indolo[1,2-c]quinazolines is described. The Pd-catalyzed reaction of o-(o-aminophenylethynyl) trifluoroacetanilides with Ar-B(OH)2 afforded 2-(o-aminophenyl)-3-arylindoles, that were converted to 12-arylindolo[1,2-c]quinazolines by adding dimethylformamide dimethyl acetal (DMFDMA) to the reaction mixture after extractive work-up. This reaction outcome is different from the previously reported Pd-catalyzed sequential reaction of the same substrates with Ar-I, Ar-Br and ArN2+BF4-, that afforded 12-arylindolo[1,2-c]quinazolin-6(5H)-ones. Moreover, 12-unsubstituted indolo[1,2-c]quinazolines can be obtained both by reacting 2-(o-aminophenyl)indoles with DMFDMA or by sequential Pd-catalyzed reaction of o-(o-aminophenylethynyl)aniline with DMFDMA.
Collapse
Affiliation(s)
- Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università di L’Aquila, Via Vetoio, 671010 Coppito (AQ), Italy
| | - Sandro Cacchi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Fabio Marinelli
- Dipartimento di Scienze Fisiche e Chimiche, Università di L’Aquila, Via Vetoio, 671010 Coppito (AQ), Italy
| |
Collapse
|
15
|
Wang L, Eftekhari P, Schachner D, Ignatova ID, Palme V, Schilcher N, Ladurner A, Heiss EH, Stangl H, Dirsch VM, Atanasov AG. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Sci Rep 2018; 8:11061. [PMID: 30038271 PMCID: PMC6056500 DOI: 10.1038/s41598-018-29281-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Evodiamine, a bioactive alkaloid from the fruits of the traditional Chinese medicine Evodia rutaecarpa (Juss.) Benth. (Fructus Evodiae, Wuzhuyu), recently gained attention as a dietary supplement for weight loss and optimization of lipid metabolism. In light of its use by patients and consumers, there is an urgent need to elucidate the molecular targets affected by this natural product. Using a novel interactomics approach, the Nematic Protein Organisation Technique (NPOT), we report the identification of ATP-binding cassette transporter A1 (ABCA1), a key membrane transporter contributing to cholesterol efflux (ChE), as a direct binding target of evodiamine. The binding of evodiamine to ABCA1 is confirmed by surface plasmon resonance (SPR) experiments. Examining the functional consequences of ABCA1 binding reveals that evodiamine treatment results in increased ABCA1 stability, elevated cellular ABCA1 protein levels, and ultimately increased ChE from THP-1-derived human macrophages. The protein levels of other relevant cholesterol transporters, ABCG1 and SR-B1, remain unaffected in the presence of evodiamine, and the ABCA1 mRNA level is also not altered.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong Province, China
| | | | - Daniel Schachner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Irena D Ignatova
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, USA
| | - Veronika Palme
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Nicole Schilcher
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland.
| |
Collapse
|
16
|
Wang C, Yue F, Ai G, Yang J. Simultaneous determination of evodiamine and its four metabolites in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32:e4219. [PMID: 29470848 DOI: 10.1002/bmc.4219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cuiyun Wang
- Department of Pharmacy; Jining No. 1 People's Hospital; Jining China
| | - Fang Yue
- Department of Pharmacy; Jining No. 1 People's Hospital; Jining China
| | - Guangfeng Ai
- Department of Pharmacy; Jining No. 1 People's Hospital; Jining China
| | - Jie Yang
- Department of Pharmacy; Jining No. 1 People's Hospital; Jining China
| |
Collapse
|
17
|
Jantová S, Topoľská D, Janošková M, Pánik M, Milata V. Study of the cytotoxic/toxic potential of the novel anticancer selenodiazoloquinolone on fibroblast cells and 3D skin model. Interdiscip Toxicol 2017; 9:106-112. [PMID: 28652854 PMCID: PMC5464683 DOI: 10.1515/intox-2016-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022] Open
Abstract
The new synthetically prepared quinolone derivative 7-ethyl 9-ethyl-6-oxo-6,9-dihydro[1,2,5]selenadiazolo [3,4-h]quinoline-7-carboxylate (E2h) showed in our previous study cytotoxic effects towards tumor cells and immunomodulatory activities on RAW 264.7 cell line murine macrophages. E2h may have a potential use as a novel chemotherapeutic agent with immunomodulatory properties and the ability to induce apoptotic death of cancer cells. The aim of the present study was to examine the antiproliferative/cytotoxic activities of E2h on human non-cancer fibroblast BHNF-1 cells and reconstructed human epidermis EpiDerm™. Further the effects of E2h on tissue structure and morphology were examined. Cytotoxic/toxic studies showed that selenadiazoloquinolone is not toxic on normal human fibroblast cells BHNF-1 and dimensional skin constructs EpiDerm™. Evaluation of morphological changes in EpiDerm™ showed no change in the construction and morphology of skin tissue treated by E2h compared to control.
Collapse
Affiliation(s)
- Soňa Jantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Dominika Topoľská
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia.,Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Janošková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Miroslav Pánik
- Institute of Management, Slovak University of Technology, Bratislava, Slovakia
| | - Viktor Milata
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
18
|
Lee CM, Gu JA, Rau TG, Wang C, Yen CH, Huang SH, Lin FY, Lin CM, Huang ST. Synthetic Fluororutaecarpine Inhibits Inflammatory Stimuli and Activates Endothelial Transient Receptor Potential Vanilloid-Type 1. Molecules 2017; 22:molecules22040656. [PMID: 28422079 PMCID: PMC6153741 DOI: 10.3390/molecules22040656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
The natural product, rutaecarpine (RUT), is the main effective component of Evodia rutaecarpa which is a widely used traditional Chinese medicine. It has vasodilation, anticoagulation, and anti-inflammatory activities. However, further therapeutic applications are limited by its cytotoxicity. Thus, a derivative of RUT, 10-fluoro-2-methoxyrutaecarpine (F-RUT), was designed and synthesized that showed no cytotoxicity toward RAW264.7 macrophages at 20 μM. In an anti-inflammation experiment, it inhibited the production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages; cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) induced by LPS were also downregulated. After 24 h of treatment, F-RUT significantly inhibited cell migration and invasion of ovarian A2780 cells. Furthermore, F-RUT promoted expressions of transient receptor potential vanilloid type 1 (TRPV1) and endothelial (e)NOS in human aortic endothelial cells, and predominantly reduced the inflammation in ovalbumin/alum-challenged mice. These results suggest that the novel synthetic F-RUT exerts activities against inflammation and vasodilation, while displaying less toxicity than its lead compound.
Collapse
Affiliation(s)
- Chi-Ming Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jiun-An Gu
- Institute of Chemical Engineering, College of Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Tin-Gan Rau
- Institute of Chemical Engineering, College of Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Chi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chiao-Han Yen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shih-Hao Huang
- Department of Food and Beverage Management, Taipei College of Maritime Technology, Taipei 11174, Taiwan.
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Mao Lin
- Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, College of Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
19
|
Hricovíni M, Dvoranová D, Barbieriková Z, Jantová S, Bella M, Šoral M, Brezová V. 6-Nitroquinolones in dimethylsulfoxide: Spectroscopic characterization and photoactivation of molecular oxygen. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis. Tumour Biol 2016; 37:12791-12803. [DOI: 10.1007/s13277-016-5251-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
|
21
|
Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front Pharmacol 2016; 7:201. [PMID: 27462269 PMCID: PMC4940614 DOI: 10.3389/fphar.2016.00201] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022] Open
Abstract
Traditional Chinese medicine (TCM) is an important part of primary health care in Asian countries that has utilized complex herbal formulations (consisting 2 or more medicinal herbs) for treating diseases over thousands of years. There seems to be a general assumption that the synergistic therapeutic effects of Chinese herbal medicine (CHM) derive from the complex interactions between the multiple bioactive components within the herbs and/or herbal formulations. However, evidence to support these synergistic effects remains weak and controversial due to several reasons, including the very complex nature of CHM, misconceptions about synergy and methodological challenges to study design. In this review, we clarify the definition of synergy, identify common errors in synergy research and describe current methodological approaches to test for synergistic interaction. We discuss the strengths and weaknesses of these models in the context of CHM and summarize the current status of synergy research in CHM. Despite the availability of some scientific data to support the synergistic effects of multi-herbal and/or herb-drug combinations, the level of evidence remains low, and the clinical relevancy of most of these findings is undetermined. There remain significant challenges in the development of suitable methods for synergistic studies of complex herbal combinations.
Collapse
Affiliation(s)
- Xian Zhou
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Sai Wang Seto
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Dennis Chang
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia; School of Medicine, Western Sydney UniversityCampbelltown, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney UniversityPenrith, NSW, Australia; Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Kelvin Chan
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney UniversityPenrith, NSW, Australia; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores UniversityLiverpoor, UK; Faculty of Science, TCM Division, University of TechnologySydney, NSW, Australia
| | - Alan Bensoussan
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| |
Collapse
|
22
|
Li W, Sun X, Liu B, Zhang L, Fan Z, Ji Y. Screening and identification of hepatotoxic component inEvodia rutaecarpabased on spectrum-effect relationship and UPLC-Q-TOFMS. Biomed Chromatogr 2016; 30:1975-1983. [DOI: 10.1002/bmc.3774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Wenlan Li
- College of Pharmacy; Harbin University of Commerce; Harbin 150076 People's Republic of China
| | - Xiangming Sun
- Research Center on Life Sciences and Environmental Sciences; Harbin University of Commerce; Harbin 150076 People's Republic of China
| | - Bingmei Liu
- Heilongjiang Provincial Hospital; Harbin 150001 People's Republic of China
| | - Lihui Zhang
- Research Center on Life Sciences and Environmental Sciences; Harbin University of Commerce; Harbin 150076 People's Republic of China
| | - Ziquan Fan
- Waters (Shanghai) Co., LTD; Shanghai 201206 People's Republic of China
| | - Yubin Ji
- Research Center on Life Sciences and Environmental Sciences; Harbin University of Commerce; Harbin 150076 People's Republic of China
| |
Collapse
|
23
|
NIE JIAO, ZHAO CHANGLIN, DENG LI, CHEN JIA, YU BIN, WU XIANLIN, PANG PENG, CHEN XIAOYIN. Efficacy of traditional Chinese medicine in treating cancer. Biomed Rep 2016; 4:3-14. [PMID: 26870326 PMCID: PMC4726876 DOI: 10.3892/br.2015.537] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
The morbidity associated with cancer has rapidly increased in recent years, and in the previous 5 years has had a tendency to be the leading cause of fatality compared with cardiovascular disease. Therefore, effective measures are required with an aim to reduce the incidence. Based on the results of clinical investigation, a multidisciplinary treatment strategy for cancer, which includes radiotherapy, chemotherapy, surgery, targeted therapy and immunotherapy, are prominently used in clinical practice. However, the therapies are insufficient due to multidrug resistance, adverse effects and the presence of the root of the cancer. Therefore, there is a necessity to develop more effective or adjunctive therapies for cancer prevention and treatment. Cancer is now widely recognized as a systemic humoral disease. Similarly, the function of herbal drugs is to modulate the whole body system in a more holistic way. Recently, herbal drugs have been applied to one of the efficient approaches for cancer therapy. Furthermore, there is evidence that various herbal medicines have been proven to be useful and effective in sensitizing the conventional agents against the various factors at the cellular and molecular levels that are associated with the occurrence of cancer and in prolonging survival time, alleviating side effects of chemotherapy and radiotherapy and improving the quality of life in cancer patients.
Collapse
Affiliation(s)
- JIAO NIE
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - CHANGLIN ZHAO
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Oncology, Clifford Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510632, P.R. China
| | - LI DENG
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - JIA CHEN
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - BIN YU
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Clinical Institute, Jining Medical University, Jining, Shandong 272013, P.R. China
| | - XIANLIN WU
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Pancreatic Disease Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - PENG PANG
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - XIAOYIN CHEN
- Department of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
24
|
Discovery of substituted 1,4-dihydroquinolines as novel promising class of P-glycoprotein inhibitors: First structure–activity relationships and bioanalytical studies. Bioorg Med Chem Lett 2015; 25:3005-8. [DOI: 10.1016/j.bmcl.2015.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
|
25
|
Discovery of substituted 1,4-dihydroquinolines as novel class of ABCB1 modulators. Bioorg Med Chem 2015; 23:5015-5021. [DOI: 10.1016/j.bmc.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
|
26
|
Subba Reddy BV, Anji Babu R, Jagan Mohan Reddy B, Sridhar B, Ramalinga Murthy T, Pranathi P, Kalivendi SV, Prabhakar Rao T. A short and highly convergent approach for the synthesis of rutaecarpine derivatives. RSC Adv 2015. [DOI: 10.1039/c4ra14093a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of rutaecarpine analogues is accomplished from anthranilamide and chloroaldehyde through the halocyclization strategy.
Collapse
Affiliation(s)
- B. V. Subba Reddy
- Natural Product Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - R. Anji Babu
- Natural Product Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Department of Organic Chemistry
| | | | - B. Sridhar
- Laboratory of X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - T. Ramalinga Murthy
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - P. Pranathi
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Shasi V. Kalivendi
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - T. Prabhakar Rao
- Centre for Nuclear Magnetic Resonance
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
27
|
Efferth T, Zeino M, Volm M. Modulation of P-Glycoprotein-Mediated Multidrug Resistance by Synthetic and Phytochemical Small Molecules, Monoclonal Antibodies, and Therapeutic Nucleic Acids. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Noysang C, Mahringer A, Zeino M, Saeed M, Luanratana O, Fricker G, Bauer R, Efferth T. Cytotoxicity and inhibition of P-glycoprotein by selected medicinal plants from Thailand. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:633-641. [PMID: 24929106 DOI: 10.1016/j.jep.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai medicine has a long tradition of tonifying medicinal plants. In the present investigation, we studied the flower extracts of Jasminum sambac, Mammea siamensis, Mesua ferrea, Michelia alba, Mimusops elengi, and Nelumbo nucifera and speculated that these plants might influence metabolism and substance flow in the body. MATERIALS AND METHODS Isolation of porcine brain capillary endothelial cells (PBCECs) as well as multidrug-resistance CEM/ADR5000 leukemia cells, MDA-M;B-231 breast cancer, U-251 brain tumor, and HCT-116 colon cancer cells were used. The calcein-acetoxymethylester (AM) assay was used to measure inhibition of P-glycoprotein transport. XTT and resazurin assays served for measuring cytotoxicity. RESULTS The extracts revealed cytotoxicity towards CCRF-CEM leukemia cells to a different extent. The strongest growth inhibition was found for the n-hexane extracts of Mammea siamensis and Mesua ferrea, and the dichloromethane extracts of Mesua ferrea and Michelia alba. The flower extracts also inhibited P-glycoprotein function in porcine brain capillary endothelial cells and CEM/ADR5000 leukemia cells, indicating modulation of the blood-brain barrier and multidrug resistance of tumors. Bioactivity-guided isolation of coumarins from Mammea siamensis flowers revealed considerable cytotoxicity of mammea A/AA, deacetylmammea E/BA and deacetylmammea E/BB towards human MDA-MB-231 breast cancer, U-251 brain tumor, HCT-116 colon cancer, and CCRF-CEM leukemia cells. CONCLUSION The plants analyzed may be valuable in developing novel treatment strategies to overcome the blood-brain barrier and multidrug-resistance in tumor cells mediated by P-glycoprotein.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Brain/blood supply
- Brain/drug effects
- Cell Line, Tumor
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Flowers
- Humans
- Medicine, East Asian Traditional
- Neoplasms/drug therapy
- Neoplasms/pathology
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Swine
- Thailand
Collapse
Affiliation(s)
- Chanai Noysang
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria; Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Thai Traditional Medicine College, Rajamangala University of Technology Thayaburi, Phathumthani, Thailand
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Maen Zeino
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed Saeed
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Omboon Luanratana
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
29
|
Wen B, Roongta V, Liu L, Moore DJ. Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos 2014; 42:1044-54. [PMID: 24696463 DOI: 10.1124/dmd.114.057414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Evodiamine and rutaecarpine are the main active indoloquinazoline alkaloids of the herbal medicine Evodia rutaecarpa, which is widely used for the treatment of hypertension, abdominal pain, angina pectoris, gastrointestinal disorder, and headache. Immunosuppressive effects and acute toxicity were reported in mice treated with evodiamine and rutaecarpine. Although the mechanism remains unknown, it is proposed that metabolic activation of the indoloquinazoline alkaloids and subsequent covalent binding of reactive metabolites to cellular proteins play a causative role. Liquid chromatography-tandem mass spectrometry analysis of incubations containing evodiamine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed formation of a major GSH conjugate which was subsequently indentified as a benzylic thioether adduct on the C-8 position of evodiamine by NMR analysis. Several other GSH conjugates were also detected, including conjugates of oxidized and demethylated metabolites of evodiamine. Similar GSH conjugates were formed in incubations with rutaecarpine. These findings are consistent with a bioactivation sequence involving initial cytochrome P450-catalyzed dehydrogenation of the 3-alkylindole moiety in evodiamine and rutaecarpine to an electrophile 3-methyleneindolenine. Formation of the evodiamine and rutaecarpine GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP1A2 and CYP2D6, respectively. It was found that the 3-methyleneindolenine or another reactive intermediate was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 29 µM and kinact = 0.029 minute(-1), respectively. In summary, these findings are of significance in understanding the bioactivation mechanisms of indoloquinazoline alkaloids, and dehydrogenation of evodiamine and rutaecarpine may cause toxicities through formation of electrophilic intermediates and lead to drug-drug interactions mainly via CYP3A4 inactivation.
Collapse
Affiliation(s)
- Bo Wen
- Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey
| | | | | | | |
Collapse
|
30
|
Low-cytotoxic synthetic bromorutaecarpine exhibits anti-inflammation and activation of transient receptor potential vanilloid type 1 activities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:795095. [PMID: 24369537 PMCID: PMC3863474 DOI: 10.1155/2013/795095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/29/2013] [Indexed: 01/07/2023]
Abstract
Rutaecarpine (RUT), the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT), which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO) production and tumor necrosis factor-α release in concentration-dependent (0~20 μM) manners in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS) and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.
Collapse
|
31
|
Synergistic anticancer effects of polyphyllin I and evodiamine on freshly-removed human gastric tumors. PLoS One 2013; 8:e65164. [PMID: 23762305 PMCID: PMC3676398 DOI: 10.1371/journal.pone.0065164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022] Open
Abstract
Objective The present study was designed to examine the anticancer effect of Traditional Chinese Medicine of polyphyllin I (PPI) and evodiamine (EVO) on freshly–removed gastric tumor tissues. Methods Sixty freshly–removed gastric tumor tissues were collected. Their sensitivity to PPI, EVO, platinum (Pt), 5-FU, irinotecan (CPT-11) were determined by histoculture drug response assay (HDRA). Those samples were also formalin-fixed and paraffin-embedded, which were used to examine the mRNA expression levels of aprataxin(APTX), excision repair cross-complementing 1(ERCC1), thymidylate synthase(TS) and topoisomerase I(TOPO1) by quantitative RT-PCR. The association of the gene expression levels and in vitro sensitivity were analyzed. Results PPI, EVO, Pt, 5-FU and CPT-11 had anticancer effects on the freshly-removed gastric tumor tissues with average inhibition rates of 20.64%±14.25% for PPI, 21.14%±13.43% for EVO, 50.57%±22.37% for Pt, 53.54%±22.03% for 5-FU, and 39.33%±24.79% for CPT-11, respectively. Combination of PPI and Pt, EVO and Pt, EVO and 5-FU had higher inhibition rates than any single drug of them (P<0.001, P = 0.028, P = 0.017, respectively). The mRNA expression levels of ERCC1 were correlated with Pt sensitivity (rho = −0.645, P<0.001); the mRNA expression levels of TS were correlated with 5-FU sensitivity (rho = −0.803, P<0.001). There were also weak but significant correlations between APTX mRNA expression levels and CPT-11 sensitivity (rho = −0.376, P = 0.017) or EVO sensitivity (rho = −0.322, P = 0.036). ERCC1 mRNA expression levels was markedly suppressed by the presentation of PPI (P = 0.001) and slightly suppressed by the presentation of EVO (P = 0.04); whereas, TS mRNA expression levels was markedly decreased by the presentation of EVO (P = 0.017) and slightly decreased by the presentation of PPI (P = 0.047). Conclusion PPI and EVO both could inhibit the activity of freshly-removed gastric tumor, and they could enhance the anticancer effect of Pt and 5-FU by reducing the mRNA expression levels of ERCC1 and TS.
Collapse
|
32
|
|
33
|
Huang X, Li W, Yang XW. New cytotoxic quinolone alkaloids from fruits of Evodia rutaecarpa. Fitoterapia 2012; 83:709-14. [DOI: 10.1016/j.fitote.2012.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
34
|
Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:557-570. [PMID: 21963565 DOI: 10.1016/j.jep.2011.08.053] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/19/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
P-glycoprotein belongs to the family of ATP-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds, including anticancer drugs out of the cell. In cancerous cells, P-glycoprotein confers resistance to a broad spectrum of anticancer agents, a phenomenon termed multidrug resistance. An attractive strategy for overcoming multidrug resistance is to block the transport function of P-glycoprotein and thus increase intracellular concentrations of anticancer drugs to lethal levels. Efforts to identify P-glycoprotein inhibitors have led to numerous candidates, none of which have passed clinical trials with cancer patients due to their high toxicity. The search for naturally inhibitory products from traditional Chinese medicine may be more promising because natural products are frequently less toxic than chemically synthesized substances. In this review, we give an overview of molecular and clinical aspects of P-glycoprotein and multidrug resistance in the context of cancer as well as Chinese herbs and phytochemicals showing inhibitory activity towards P-glycoprotein.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/adverse effects
- Antineoplastic Agents, Phytogenic/therapeutic use
- Drug Resistance, Neoplasm
- Drugs, Chinese Herbal/adverse effects
- Drugs, Chinese Herbal/therapeutic use
- Humans
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Plants, Medicinal
Collapse
Affiliation(s)
- Tolga Eichhorn
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
35
|
Pan X, Hartley JM, Hartley JA, White KN, Wang Z, Bligh SWA. Evodiamine, a dual catalytic inhibitor of type I and II topoisomerases, exhibits enhanced inhibition against camptothecin resistant cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:618-624. [PMID: 22402246 DOI: 10.1016/j.phymed.2012.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/14/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
DNA topoisomerases are nuclear enzymes that are the targets for several anticancer drugs. In this study we investigated the antiproliferative activity against human leukaemia cell lines and the effects on topoisomerase I and II of evodiamine, which is a quinazolinocarboline alkaloid isolated from the fruit of a traditional Chinese medicinal plant, Evodia rutaecarpa. We report here the anti-proliferative activity against human leukaemia cells K562, THP-1, CCRF-CEM and CCRF-CEM/C1 and the inhibitory mechanism on human topoisomerases I and II, important anti-cancer drugs targets, of evodiamine. Evodiamine failed to trap [Topo-DNA] complexes and induce any detectable DNA damage in cells, was unable to bind or intercalate DNA, and arrested cells in the G(2)/M phase. The results suggest evodiamine is a dual catalytic inhibitor of topoisomerases I and II, with IC(50) of 60.74 and 78.81 μM, respectively. The improved toxicity towards camptothecin resistant cells further supports its inhibitory mechanism which is different from camptothecin, and its therapeutic potential.
Collapse
Affiliation(s)
- Xiaobei Pan
- Institute for Health Research and Policy, London Metropolitan University, London, UK
| | | | | | | | | | | |
Collapse
|
36
|
Wink M, Ashour ML, El-Readi MZ. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents. Front Microbiol 2012; 3:130. [PMID: 22536197 PMCID: PMC3332394 DOI: 10.3389/fmicb.2012.00130] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022] Open
Abstract
Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Wube AA, Hüfner A, Thomaschitz C, Blunder M, Kollroser M, Bauer R, Bucar F. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg Med Chem 2011; 19:567-79. [PMID: 21106378 PMCID: PMC3268452 DOI: 10.1016/j.bmc.2010.10.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/30/2010] [Accepted: 10/29/2010] [Indexed: 12/02/2022]
Abstract
A series of 23 new 1-methyl-2-alkenyl-4(1H)quinolones have been synthesized and evaluated in vitro for their antimycobacterial activities against fast growing species of mycobacteria, such as Mycobacterium fortuitum, M. smegmatis and M. phlei. The compounds displayed good to excellent inhibition of the growth of the mycobacterial test strains with improved antimycobacterial activity compared to the hit compound, evocarpine. The most active compounds, which possessed chain length of 11-13 carbons at position-2 displayed potent inhibitory effects with an MIC value of 1.0mg/L. In a human diploid embryonic lung cell line, MRC-5 cytotoxicity assay, the alkaloids showed weak to moderate cytotoxic activity. Biological evaluation of these evocarpine analogues on the less pathogenic fast growing strains of mycobacteria showed an interesting antimycobacterial profile and provided significant insight into the structure-activity relationships.
Collapse
Affiliation(s)
- Abraham A. Wube
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Antje Hüfner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical
Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz,
Austria
| | - Christina Thomaschitz
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Manfred Kollroser
- Institute of Forensic Medicine, Medical University of Graz,
Universitätsplatz 4/2, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy,
University of Graz, Universitätsplatz 4/1, 8010 Graz, Austria
| |
Collapse
|
38
|
Jantová S, Koňariková K, Letašiová S, Paulovičová E, Milata V, Brezová V. Photochemical and phototoxic properties of ethyl 1,4-dihydro-8-nitro-4-oxoquinoline-3-carboxylate, a new quinoline derivative. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:77-91. [DOI: 10.1016/j.jphotobiol.2010.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 11/30/2022]
|
39
|
Soomro S, Langenberg T, Mahringer A, Konkimalla VB, Horwedel C, Holenya P, Brand A, Cetin C, Fricker G, Dewerchin M, Carmeliet P, Conway EM, Jansen H, Efferth T. Design of novel artemisinin-like derivatives with cytotoxic and anti-angiogenic properties. J Cell Mol Med 2010; 15:1122-35. [PMID: 20629994 PMCID: PMC3822625 DOI: 10.1111/j.1582-4934.2010.01120.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Artemisinins are plant products with a wide range of medicinal applications. Most prominently, artesunate is a well tolerated and effective drug for treating malaria, but is also active against several protozoal and schistosomal infections, and additionally exhibits anti-angiogenic, anti-tumorigenic and anti-viral properties. The array of activities of the artemisinins, and the recent emergence of malaria resistance to artesunate, prompted us to synthesize and evaluate several novel artemisinin-like derivatives. Sixteen distinct derivatives were therefore synthesized and the in vitro cytotoxic effects of each were tested with different cell lines. The in vivo anti-angiogenic properties were evaluated using a zebrafish embryo model. We herein report the identification of several novel artemisinin-like compounds that are easily synthesized, stable at room temperature, may overcome drug-resistance pathways and are more active in vitro and in vivo than the commonly used artesunate. These promising findings raise the hopes of identifying safer and more effective strategies to treat a range of infections and cancer.
Collapse
Affiliation(s)
- Shahid Soomro
- Dafra Pharma Research & Development, Slachthuisstraat, Turnhout, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Romiti N, Tramonti G, Corti A, Chieli E. Effects of Devil's Claw (Harpagophytum procumbens) on the multidrug transporter ABCB1/P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1095-1100. [PMID: 19577448 DOI: 10.1016/j.phymed.2009.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 05/28/2023]
Abstract
UNLABELLED Devil's Claw (Harpagophytum procumbens) a plant native to Southern Africa, has historically been used in traditional medicine to treat a wide range of diseases and currently is widely employed as anti-inflammatory and pain-relieving natural remedy in Europe and other parts of the world. AIM OF THE STUDY Little is known about possible herb-drug interactions arising from effects of Devil's Claw on the major drug metabolizing enzymes or transporters. This study evaluated in vitro the effects of Devil's Claw on the multidrug transporter ABCB1/P-glycoprotein. MATERIALS AND METHODS The effects of three commercially available Devil's Claw preparations and that of pure harpagoside were studied in the human kidney (HK-2) proximal tubule cell line, constitutively expressing ABCB1/P-glycoprotein (P-gp). Pgp activity and expression were tested by the calcein-AM test and by Western blotting, respectively. RESULTS Commercial preparations inhibited P-gp activity, even if to a different extent, while pure harpagoside was almost ineffective. In cells cultured for three days in the presence of Devil's Claw preparations or pure harpagoside, a dose-dependent P-gp upregulation was found. CONCLUSIONS Our results demonstrate for the first time that Devil's Claw may interact with the multidrug transporter ABCB1/P-gp, the effect not appearing strictly related to the harpagoside relative content. Modulation of both P-gp activity and P-gp expression by Devil's Claw raise the possibility of herb-drug interactions, to be further explored in depth.
Collapse
Affiliation(s)
- Nadia Romiti
- Dipartimento di Patologia Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
41
|
Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Meinhardt S, Zintl F, Mattern J, Volm M. Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res 2008; 14:2405-12. [PMID: 18413831 DOI: 10.1158/1078-0432.ccr-07-4525] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Drug resistance is a major obstacle in cancer chemotherapy. Although the statistical probability of therapeutic success is known for larger patient groups from clinical therapy trials, it is difficult to predict the individual response of tumors. The concept of individualized therapy aims to determine in vitro the drug response of tumors beforehand to choose effective treatment options for each individual patient. EXPERIMENTAL DESIGN We analyzed the cross-resistance profiles of different tumor types (cancers of lung, breast, and colon, and leukemia) towards drugs from different classes (anthracyclines, antibiotics, Vinca alkaloids, epipodophyllotoxins, antimetabolites, and alkylating agents) by nucleotide incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Hierarchical cluster analysis and COMPARE analyses were applied. RESULTS Tumors exert broad resistance profiles, e.g., tumors resistant to one drug tend to also be resistant to other drugs, whereas sensitive tumors reveal sensitivity towards many drugs. Interestingly, the broad spectrum resistance phenotype could reliably be predicted by doxorubicin alone. Expression of the ATP-binding cassette transporter P-glycoprotein (ABCB1, MDR1) and the proliferative activity of tumors were identified as underlying mechanisms of broad spectrum resistance. To find novel compounds with activity against drug-resistant tumors, a database with 2,420 natural products was screened for compounds acting independent of P-glycoprotein and the proliferative state of tumor cells. CONCLUSIONS Tumors exert cross-resistance profiles much broader than the classical multidrug resistance phenotype. Broad spectrum resistance can be predicted by doxorubicin due to the multifactorial mode of action of this drug. Novel cytotoxic compounds from natural resources might be valuable tools for strategies to bypass broad spectrum resistance.
Collapse
Affiliation(s)
- Thomas Efferth
- German Cancer Research Center, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|