1
|
Welch LG, Estranero J, Tourlomousis P, Wootton RCR, Radu V, González-Fernández C, Puchtler TJ, Murzeau CM, Dieckmann NMG, Shibahara A, Longbottom BW, Bryant CE, Talbot EL. A programmable and automated optical electrowetting-on-dielectric (oEWOD) driven platform for massively parallel and sequential processing of single cell assay operations. LAB ON A CHIP 2024; 24:3763-3774. [PMID: 39037291 DOI: 10.1039/d4lc00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, there has been an increasing emphasis on single cell profiling for high-throughput screening workflows in drug discovery and life sciences research. However, the biology underpinning these screens is often complex and is insufficiently addressed by singleplex assay screens. Traditional single cell screening technologies have created powerful sets of 'omic data that allow users to bioinformatically infer biological function, but have as of yet not empowered direct functional analysis at the level of each individual cell. Consequently, screening campaigns often require multiple secondary screens leading to laborious, time-consuming and expensive workflows in which attrition points may not be queried until late in the process. We describe a platform that harnesses droplet microfluidics and optical electrowetting-on-dielectric (oEWOD) to perform highly-controlled sequential and multiplexed single cell assays in massively parallelised workflows to enable complex cell profiling during screening. Soluble reagents or objects, such as cells or assay beads, are encapsulated into droplets of media in fluorous oil and are actively filtered based on size and optical features ensuring only desirable droplets (e.g. single cell droplets) are retained for analysis, thereby overcoming the Poisson probability distribution. Droplets are stored in an array on a temperature-controlled chip and the history of individual droplets is logged from the point of filter until completion of the workflow. On chip, droplets are subject to an automated and flexible suite of operations including the merging of sample droplets and the fluorescent acquisition of assay readouts to enable complex sequential assay workflows. To demonstrate the broad utility of the platform, we present examples of single-cell functional workflows for various applications such as antibody discovery, infectious disease, and cell and gene therapy.
Collapse
Affiliation(s)
- Lawrence G Welch
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Jasper Estranero
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Robert C R Wootton
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Valentin Radu
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Tim J Puchtler
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Claire M Murzeau
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Nele M G Dieckmann
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Aya Shibahara
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Brooke W Longbottom
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Emma L Talbot
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| |
Collapse
|
2
|
Nan L, Zhang H, Weitz DA, Shum HC. Development and future of droplet microfluidics. LAB ON A CHIP 2024; 24:1135-1153. [PMID: 38165829 DOI: 10.1039/d3lc00729d] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Huidan Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
3
|
Harriot J, Yeh M, Pabba M, DeVoe DL. Programmable Control of Nanoliter Droplet Arrays using Membrane Displacement Traps. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300963. [PMID: 38495529 PMCID: PMC10939115 DOI: 10.1002/admt.202300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/19/2024]
Abstract
A unique droplet microfluidic technology enabling programmable deterministic control over complex droplet operations is presented. The platform provides software control over user-defined combinations of droplet generation, capture, ejection, sorting, splitting, and merging sequences to enable the design of flexible assays employing nanoliter-scale fluid volumes. The system integrates a computer vision system with an array of membrane displacement traps capable of performing selected unit operations with automated feedback control. Sequences of individual droplet handling steps are defined through a robust Python-based scripting language. Bidirectional flow control within the microfluidic chips is provided using an H-bridge channel topology, allowing droplets to be transported to arbitrary trap locations within the array for increased operational flexibility. By enabling automated software control over all droplet operations, the system significantly expands the potential of droplet microfluidics for diverse biological and biochemical applications by combining the functionality of robotic liquid handling with the advantages of droplet-based fluid manipulation.
Collapse
Affiliation(s)
- Jason Harriot
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| | - Mani Pabba
- Department of Computer Science, University of Maryland, College Park, MD 20742
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
- Fishell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742
| |
Collapse
|
4
|
Cheng G, Xiao Q, Kuan CY, Ho YP. On-demand light-driven release of droplets stabilized via a photoresponsive fluorosurfactant. MICROSYSTEMS & NANOENGINEERING 2023; 9:89. [PMID: 37448968 PMCID: PMC10336138 DOI: 10.1038/s41378-023-00567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/03/2023] [Indexed: 07/18/2023]
Abstract
Water-in-oil droplets have emerged as promising microreactors for high-throughput biochemical analysis due to their features of reduced sample consumption and automated operation. For a typical screening application, droplets are often trapped for continuous monitoring of the reaction over an extended period, followed by the selective retrieval of targeted droplets based on the after-effect of biochemical reactions. While techniques for droplet trapping are well developed, retrieval of targeted droplets mainly demands complicated device fabrication or sophisticated control. Herein, facile and rapid selective droplet release is achieved by utilizing a new class of photoresponsive fluorosurfactant based on plasmonic nanoparticles. The intense photothermal response provided by this novel photoresponsive fluorosurfactant is capable of vaporizing the fluorocarbon oil at the droplet interface under laser illumination, resulting in a bubble releasing a trapped droplet on demand. A fully automated fluorescence-activated droplet release platform has also been developed to demonstrate its potential for droplet-based large-scale screening applications.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chit Yau Kuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, 999077 China
- The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Moradi Mehr S, Charsooghi MA, Businaro L, Habibi M, Moradi A. Capillary Pumping between Droplets on Superhydrophobic Surfaces. AIChE J 2022. [DOI: 10.1002/aic.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shiva Moradi Mehr
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad A. Charsooghi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Luca Businaro
- Italian National Research Council ‐ Institute for Photonics and Nanotechnologies (CNR ‐ IFN), via Cineto Romano 42 Rome Italy
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods Wageningen University AA Wageningen The Netherlands
| | - Ali‐Reza Moradi
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM) Tehran Iran
| |
Collapse
|
6
|
Duchamp M, Arnaud M, Bobisse S, Coukos G, Harari A, Renaud P. Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays. MICROMACHINES 2021; 12:1076. [PMID: 34577720 PMCID: PMC8470175 DOI: 10.3390/mi12091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Droplet microfluidics are characterized by the generation and manipulation of discrete volumes of solutions, generated with the use of immiscible phases. Those droplets can then be controlled, transported, analyzed or their content modified. In this wide droplet microfluidic toolbox, no means are available to generate, in a controlled manner, droplets co-encapsulating to aqueous phases. Indeed, current methods rely on random co-encapsulation of two aqueous phases during droplet generation or the merging of two random droplets containing different aqueous phases. In this study, we present a novel droplet microfluidic device to reliably and efficiently co-encapsulate two different aqueous phases in micro-droplets. In order to achieve this, we combined existing droplet microfluidic modules in a novel way. The different aqueous phases are individually encapsulated in droplets of different sizes. Those droplet populations are then filtered in order to position each droplet type towards its adequate trapping compartment in traps of a floating trap array. Single droplets, each containing a different aqueous phase, are thus paired and then merged. This pairing at high efficiency is achieved thanks to a unique combination of floating trap arrays, a droplet railing system and a droplet size-based filtering mechanism. The microfluidic chip design presented here provides a filtering threshold with droplets larger than 35 μm (big droplets) being deviated to the lower rail while droplets smaller than 20 μm (small droplets) remain on the upper rail. The effects of the rail height and the distance between the two (upper and lower) rails were investigated. The optimal trap dimensions provide a trapping efficiency of 100% for small and big droplets with a limited double trapping (both compartments of the traps filled with the same droplet type) of 5%. The use of electrocoalescence enables the generation of a droplet while co-encapsulating two aqueous phases. Using the presented microfluidic device libraries of 300 droplets, dual aqueous content can be generated in less than 30 min.
Collapse
Affiliation(s)
- Margaux Duchamp
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1011 Lausanne, Switzerland;
| | - Marion Arnaud
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (M.A.); (S.B.); (G.C.); (A.H.)
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (M.A.); (S.B.); (G.C.); (A.H.)
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (M.A.); (S.B.); (G.C.); (A.H.)
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (M.A.); (S.B.); (G.C.); (A.H.)
| | - Philippe Renaud
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1011 Lausanne, Switzerland;
| |
Collapse
|
7
|
Sharan P, Postek W, Gemming T, Garstecki P, Simmchen J. Study of Active Janus Particles in the Presence of an Engineered Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:204-210. [PMID: 33373252 DOI: 10.1021/acs.langmuir.0c02752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a systematic study of motion of Pt@SiO2 Janus particles at a liquid-liquid interface. A special microfluidic trap is used for creating such an interface. The increased surface energy of the large surface results in partial wetting of the substrate, leaving patches of oil on the glass surface. This allows us to directly compare the motion at the two interfaces, i.e., oil-water and solid-water interface within the same setting, guaranteeing identical conditions in terms of additional parameters. The propulsion behavior of Janus particles is found to be quantitatively similar at both surfaces. The interplay of reaction product absorption by oil, slip locking by surfactant, microscale friction, lubrication efficiency, and potential Marangoni effect controls the resemblance of motion characteristics at the two interfaces. Additionally, we also observed guidance effect on the Janus particles by the pinning line of oil patches, similar to solid side walls.
Collapse
Affiliation(s)
- Priyanka Sharan
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Thomas Gemming
- Institute of Complex Materials, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Juliane Simmchen
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
8
|
Simulation studies on picolitre volume droplets generation and trapping in T-junction microchannels. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. BIOMICROFLUIDICS 2020; 14:014112. [PMID: 32038741 PMCID: PMC7002170 DOI: 10.1063/1.5143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 05/03/2023]
Abstract
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, with parallel T-junctions and multiplexed microvalves within one chip enabling programmable injection of aqueous sample plugs, and nanoliter volumes transferred to a second microtrap array chip in which the plugs are actively discretized into picoliter droplets within a static array of membrane displacement actuators. The system employs two different multiplexer designs that reduce the number of input signals required for both sample injection and discretization. This versatile droplet-based technology offers flexible sample workflows and functionalities for the formation and manipulation of heterogeneous picoliter droplets, with particular utility for applications in biochemical synthesis and cell-based assays requiring flexible and programmable operation of parallel and multistep droplet processes. The platform is used here for the selective encapsulation of differentially labeled cells within a discrete droplet array.
Collapse
Affiliation(s)
| | - Supriya Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Don L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
10
|
He L, Luo Z, Bai B. Release of a trapped droplet in a single micro pore throat. J Colloid Interface Sci 2019; 554:1-8. [PMID: 31265964 DOI: 10.1016/j.jcis.2019.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The critical condition (i.e., critical capillary number Cac) for the release of trapped droplets is of practical importance in enhanced oil recovery and droplet microfluidics. In a recent study, Cac was obtained for a long droplet with a size much larger than the channel size. However, in real applications, trapped droplets are often finite with a size comparable to the channel, in which capillary and hydrostatic pressures alternate significantly. We hypothesize that Cac of finite droplets has a discrepancy from that of long droplets. Microfluidic experiments were performed to obtain the critical condition for the release of a finite droplet trapped in a single pore throat. A theoretical prediction via analyzing capillary and hydrostatic pressures was derived for Cac of both finite and long droplets. We find that Cac strongly depends on the droplet-to-channel size ratio (i.e., the droplet-to-convergent channel length ratio L/Lc). In particular, Cac increases with L/Lc for finite droplets (i.e., L/Lc < 1) but shows an opposite tendency for long droplets (i.e., L/Lc > 1), as demonstrated in previous studies. Via theoretical analysis, we established a predictive criterion for Cac versus L/Lc, and this criterion quantitatively agrees well with experimental data for both finite and long droplets.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhengyuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
11
|
Ahmadi F, Samlali K, Vo PQN, Shih SCC. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. LAB ON A CHIP 2019; 19:524-535. [PMID: 30633267 DOI: 10.1039/c8lc01170b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Droplet microfluidics is a technique that has the ability to compartmentalize reactions in sub nano- (or pico-) liter volumes that can potentially enable millions of distinct biological assays to be performed on individual cells. In a typical droplet microfluidic system, droplets are manipulated by pressure-based flows. This has limited the fluidic operations that can be performed in these devices. Digital microfluidics is an alternative microfluidic paradigm with precise control and manipulation over individual droplets. Here, we implement an integrated droplet-digital microfluidic (which we call 'ID2M') system in which common fluidic operations (i.e. droplet generation, cell encapsulation, droplet merging and mixing, droplet trapping and incubation, and droplet sorting) can be performed. With the addition of electrodes, we have been able to create droplets on-demand, tune their volumes on-demand, and merge and mix several droplets to produce a dilution series. Moreover, this device can trap and incubate droplets for 24 h that can consequently be sorted and analyzed in multiple n-ary channels (as opposed to typical binary channels). The ID2M platform has been validated as a robust on-demand screening system by sorting fluorescein droplets of different concentration with an efficiency of ∼96%. The utility of the new system is further demonstrated by culturing and sorting tolerant yeast mutants and wild-type yeast cells in ionic liquid based on their growth profiles. This new platform for both droplet and digital microfluidics has the potential to be used for screening different conditions on-chip and for applications like directed evolution.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
12
|
Meng L, Bian R, Guo C, Xu B, Liu H, Jiang L. Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706938. [PMID: 29707831 DOI: 10.1002/adma.201706938] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/22/2018] [Indexed: 05/15/2023]
Abstract
Recent years have witnessed the booming development of transparent flexible electrodes (TFEs) for their applications in electronics and optoelectronic devices. Various strategies have thus been developed for preparing TFEs with higher flexibility and conductivity. However, little work has focused on TFEs with anisotropic conductivity. Here, a facile strategy of directional liquid transfer is proposed, guided by a conical fibers array (CFA), based on which silver nanowires (AgNWs) are aligned on a soft poly(ethylene terephthalate) substrate in large scale. After further coating a second thin layer of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), a TFE with notable anisotropic conductivity and excellent optical transmittance of 95.2% is prepared. It is proposed that the CFA enables fine control over the receding of the three-phase contact line during the dewetting process, where AgNWs are guided and aligned by the as-generated directional stress. Moreover, anisotropic electrochemical deposition is enabled where the Cu nanoparticles deposit only on the oriented AgNWs, leading to a surface with anisotropic wetting behavior. Importantly, the approach enables alignment of AgNWs via multiple directions at one step. It is envisioned that the as-developed approach will provide an optional approach for simple and low-cost preparation of TFE with various functions.
Collapse
Affiliation(s)
- Lili Meng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
| | - Ruixin Bian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
| | - Cheng Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
| | - Bojie Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering and International Research Institute for Multidisciplinary Science, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian district, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering and International Research Institute for Multidisciplinary Science, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
13
|
Bleier BJ, Anna SL, Walker LM. Microfluidic Droplet-Based Tool To Determine Phase Behavior of a Fluid System with High Composition Resolution. J Phys Chem B 2018; 122:4067-4076. [DOI: 10.1021/acs.jpcb.8b01013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Blake J. Bleier
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shelley L. Anna
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lynn M. Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Zhang L, Liu Z, Pang Y, Wang X, Li M, Ren Y. Trapping a moving droplet train by bubble guidance in microfluidic networks. RSC Adv 2018; 8:8787-8794. [PMID: 35539830 PMCID: PMC9078607 DOI: 10.1039/c7ra13507f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Trapping a train of moving droplets into preset positions within a microfluidic device facilitates the long-term observation of biochemical reactions inside the droplets. In this paper, a new bubble-guided trapping method, which can remarkably improve the limited narrow two-phase flow rate range of uniform trapping, was proposed by taking advantage of the unique physical property that bubbles do not coalescence with two-phase fluids and the hydrodynamic characteristic of large flow resistance of bubbles. The flow behaviors of bubble-free and bubble-guided droplet trains were compared and analyzed under the same two-phase flow rates. The experimental results show that the droplets trapped by bubble-free guided trapping exhibit the four trapping modes of sequentially uniform trapping, non-uniform trapping induced by break-up and collision, and failed trapping due to squeezing through, and the droplets exhibit the desired uniform trapping in a relatively small two-phase flow rate range. Compared with bubble-free guided droplets, bubble-guided droplets also show four trapping modes. However, the two-phase flow rate range in which uniform trapping occurs is increased significantly and the uniformity of the trapped droplet array is improved. This investigation is beneficial to enhance the applicability of microfluidic chips for storing droplets in a passive way.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Mengqi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| | - Yanlin Ren
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
15
|
|
16
|
Padmanabhan S, Misteli T, DeVoe DL. Controlled droplet discretization and manipulation using membrane displacement traps. LAB ON A CHIP 2017; 17:3717-3724. [PMID: 28990023 PMCID: PMC7900922 DOI: 10.1039/c7lc00910k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An innovative platform enabling complex discretization and manipulation of aqueous droplets is described. The system uses simple membrane displacement trap elements to perform multiple functions including droplet discretization, release, metering, capture, and merging. Multi-layer PDMS devices with membrane displacement trap arrays are used to discretize sample into nanoliter scale droplet volumes, and reliably manipulate individual droplets within the arrays. Performance is characterized for varying capillary number flows, membrane actuation pressures, trap and membrane geometries, and trapped droplet volumes, with operational domains established for each platform function. The novel approach to sample digitization and droplet manipulation is demonstrated through discretization of a dilute bacteria sample, metering of individual traps to generate droplets containing single bacteria, and merging of the resulting droplets to pair the selected bacteria within a single droplet.
Collapse
Affiliation(s)
- S Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
17
|
Postek W, Kaminski TS, Garstecki P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. LAB ON A CHIP 2017; 17:1323-1331. [PMID: 28271118 DOI: 10.1039/c7lc00014f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel geometry of microfluidic channels that allows us to passively generate monodisperse emulsions of hundreds of droplets smaller than 1 nL from collections of larger (ca. 0.4 μL) mother droplets. We introduce a new microfluidic module for the generation of droplets via passive break-up at a step. The module alleviates a common problem in step emulsification with efficient removal of the droplets from the vicinity of the step. In our solution, the droplets are pushed away from the step by a continuous liquid that bypasses the mother droplets via specially engineered bypasses that lead to the step around the main channel. We show that the bypasses tighten the distribution of volume of daughter droplets and eliminate subpopulations of daughter droplets. Clearing away the just produced droplets from the vicinity of the step provides for similar conditions of break-up for every subsequent droplet and, consequently, leads to superior monodispersity of the generated emulsions. Importantly, this function is realized autonomously (passively) in a protocol in which only a sequence of large mother droplets is forced through the module. Our system features the advantage of step emulsification systems in that the volumes of the generated droplets depend very weakly on the rate of flow through the module - an increase in the flow rate by 300% causes only a slight increase of the average diameter of generated droplets by less than 5%. We combined our geometry with a simple T-junction and a simple trap-based microdroplet dilutor to produce a collection of libraries of droplets of gradually changing and known concentrations of a sample. The microfluidic system can be operated with only two syringe pumps set at constant rates of flow during the experiment.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
18
|
Teo AJT, Li KHH, Nguyen NT, Guo W, Heere N, Xi HD, Tsao CW, Li W, Tan SH. Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device. Anal Chem 2017; 89:4387-4391. [DOI: 10.1021/acs.analchem.6b05053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Adrian J. T. Teo
- Queensland
Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore (639798)
| | - King-Ho Holden Li
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore (639798)
| | - Nam-Trung Nguyen
- Queensland
Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia
| | - Wei Guo
- Queensland
Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia
- School
of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Rd, Xi’an, Shaanxi China
| | - Nadine Heere
- Queensland
Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia
- Institute
of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany
| | - Heng-Dong Xi
- School
of Aeronautics, Northwestern Polytechnical University, 127 West Youyi Rd, Xi’an, Shaanxi China
| | - Chia-Wen Tsao
- Department
of Mechanical Engineering, National Central University, No. 300,
Zhongda Road, Taoyuan, Taiwan
| | - Weihua Li
- School
of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Say Hwa Tan
- Queensland
Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia
| |
Collapse
|
19
|
Kim DY, Jin SH, Lee CS. Spontaneous generation of emulsion droplets by autonomous fluid-pumping using the gas permeability of poly(dimethylsiloxane) (PDMS). J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2016.1154862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dong-Yeong Kim
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Jeong HH, Lee B, Jin SH, Jeong SG, Lee CS. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. LAB ON A CHIP 2016; 16:1698-707. [PMID: 27075732 DOI: 10.1039/c6lc00212a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Byungjin Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Seong-Geun Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Rhee M, Light YK, Yilmaz S, Adams PD, Saxena D, Meagher RJ, Singh AK. Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. LAB ON A CHIP 2014; 14:4533-9. [PMID: 25270338 PMCID: PMC4213212 DOI: 10.1039/c4lc00823e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Picoinjection is a promising technique to add reagents into pre-formed emulsion droplets on chip however, it is sensitive to pressure fluctuation, making stable operation of the picoinjector challenging. We present a chip architecture using a simple pressure stabilizer for consistent and highly reproducible picoinjection in multi-step biochemical assays with droplets. Incorporation of the stabilizer immediately upstream of a picoinjector or a combination of injectors greatly reduces pressure fluctuations enabling reproducible and effective picoinjection in systems where the pressure varies actively during operation. We demonstrate the effectiveness of the pressure stabilizer for an integrated platform for on-demand encapsulation of bacterial cells followed by picoinjection of reagents for lysing the encapsulated cells. The pressure stabilizer was also used for picoinjection of multiple displacement amplification (MDA) reagents to achieve genomic DNA amplification of lysed bacterial cells.
Collapse
Affiliation(s)
- Minsoung Rhee
- Sandia National Laboratories, Biotechnology and Bioengineering Department, Livermore, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rhee M, Liu P, Meagher RJ, Light YK, Singh AK. Versatile on-demand droplet generation for controlled encapsulation. BIOMICROFLUIDICS 2014; 8:034112. [PMID: 25379072 PMCID: PMC4162415 DOI: 10.1063/1.4874715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/23/2014] [Indexed: 05/11/2023]
Abstract
We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis.
Collapse
Affiliation(s)
- Minsoung Rhee
- Sandia National Laboratories , Livermore, California 94550, USA
| | - Peng Liu
- Sandia National Laboratories , Livermore, California 94550, USA
| | | | - Yooli K Light
- Sandia National Laboratories , Livermore, California 94550, USA
| | | |
Collapse
|
23
|
Brouzes E, Carniol A, Bakowski T, Strey HH. Precise pooling and dispensing of microfluidic droplets towards micro- to macro-world interfacing. RSC Adv 2014; 4:38542-38550. [PMID: 25485102 DOI: 10.1039/c4ra07110g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Droplet microfluidics possesses unique properties such as the ability to carry out multiple independent reactions without dispersion of samples in microchannels. We seek to extend the use of droplet microfluidics to a new range of applications by enabling its integration into workflows based on traditional technologies, such as microtiter plates. Our strategy consists in developing a novel method to manipulate, pool and deliver a precise number of microfluidic droplets. To this aim, we present a basic module that combines droplet trapping with an on-chip valve. We quantitatively analyzed the trapping efficiency of the basic module in order to optimize its design. We also demonstrate the integration of the basic module into a multiplex device that can deliver 8 droplets at every cycle. This device will have a great impact in low throughput droplet applications that necessitate interfacing with macroscale technologies. The micro- to macro- interface is particularly critical in microfluidic applications that aim at sample preparation and has not been rigorously addressed in this context.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - April Carniol
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - Tomasz Bakowski
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - Helmut H Strey
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| |
Collapse
|
24
|
Yoon DH, Numakunai S, Nakahara A, Sekiguchi T, Shoji S. Hydrodynamic on-rail droplet pass filter for fully passive sorting of droplet-phase samples. RSC Adv 2014. [DOI: 10.1039/c4ra08354g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrodynamic droplet pass filter for droplet-phase sample sorting was developed in this study.
Collapse
Affiliation(s)
- Dong Hyun Yoon
- Faculty of Science and Engineering
- Waseda University
- Tokyo, Japan
| | | | - Asahi Nakahara
- Faculty of Science and Engineering
- Waseda University
- Tokyo, Japan
| | - Tetsushi Sekiguchi
- Institute for Nanoscience and Nanoengineering
- Waseda University
- Tokyo, Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering
- Waseda University
- Tokyo, Japan
| |
Collapse
|
25
|
Quantitative microfluidic biomolecular analysis for systems biology and medicine. Anal Bioanal Chem 2013; 405:5743-58. [PMID: 23568613 DOI: 10.1007/s00216-013-6930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/10/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
In the postgenome era, biology and medicine are rapidly evolving towards quantitative and systems studies of complex biological systems. Emerging breakthroughs in microfluidic technologies and innovative applications are transforming systems biology by offering new capabilities to address the challenges in many areas, such as single-cell genomics, gene regulation networks, and pathology. In this review, we focus on recent progress in microfluidic technology from the perspective of its applications to promoting quantitative and systems biomolecular analysis in biology and medicine.
Collapse
|
26
|
Simon MG, Lin R, Fisher JS, Lee AP. A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. BIOMICROFLUIDICS 2012; 6:14110-1411013. [PMID: 22662095 PMCID: PMC3365347 DOI: 10.1063/1.3687400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/02/2012] [Indexed: 05/10/2023]
Abstract
Here, we present a microfluidic droplet trap that takes advantage of the net Laplace pressure force generated when a droplet is differentially constricted. Mathematical simulations were first used to understand the working range of the component; followed by finite element modeling using the CFD software package to further characterize the behavior of the system. Controlled release of the trapped droplets is also demonstrated through both a mechanical method and a chemical method that manipulates the total pressure exerted on the trapped droplet. The unique design of this trapping device also provides the capability for selection of a single droplet from a train, as well as droplet fusion.
Collapse
Affiliation(s)
- Melinda G Simon
- Department of Biomedical Engineering, University of California, Irvine, 3201 Natural Sciences II, Irvine, California 92697, USA
| | | | | | | |
Collapse
|