1
|
Sathishkumar N, Toley BJ. Direct comparison of colorimetric signal amplification techniques in lateral flow immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7200-7209. [PMID: 39315859 DOI: 10.1039/d4ay01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral flow immunoassay (LFIA) is widely adopted for point-of-care testing, but its limit of detection (LoD) falls short of that of laboratory-based immunoassays. Several techniques have been proposed to enhance the LoD of LFIAs using visual colorimetric readouts, yet a direct comparison of the LoDs achieved by these techniques has not been performed. In this work, we measure the LoDs of LFIAs designed for the detection of a malaria protein, PfHRP2, using four different colorimetric signal generation techniques: (i) AuNP(40 nm)-tagged detection antibodies (base case), (ii) AuNP-based enhancement of AuNP(40 nm) signal, (iii) oxidation of chloronaphthol/diaminobenzidine (CN/DAB) using HRP-tagged detection antibodies, and (iv) oxidation of CN/DAB using polyHRP(400)-tagged detection antibodies. The LoDs and the 95% confidence intervals of the LoDs achieved by the 4 techniques were 19.34 (13.37-27.62) ng mL-1, 9.57 (6.76-13.28) ng mL-1, 21.57 (14.26-32.18) ng mL-1, and 6.09 (2.23-13.47) ng mL-1, respectively. Contrary to popular perception, enzymatic signal generation using HRP-tagged detection antibodies did not improve the LoD compared to the base case of AuNP-based signal generation. Further studies revealed that the very high extinction coefficient of gold nanoparticles renders them an excellent choice for colorimetric detection, surpassing the performance of enzymatic signal generation using HRP-tagged antibodies. However, enzymatic signal generation using polyHRP-tagged antibodies improved the LoD compared to the base case. These results show that enzymatic signal amplification should not be a priori assumed to be superior to AuNP-based signal generation; and provide a reference point to LFIA developers to select an appropriate signal generation modality.
Collapse
Affiliation(s)
- N Sathishkumar
- Department of Chemical Engineering, Indian Institute of Science, Malleswaram, Bengaluru, Karnataka 560012, India.
| | - Bhushan J Toley
- Department of Chemical Engineering, Indian Institute of Science, Malleswaram, Bengaluru, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
3
|
Ma Z, Guo J, Jiang L, Zhao S. Lateral flow immunoassay (LFIA) for dengue diagnosis: Recent progress and prospect. Talanta 2024; 267:125268. [PMID: 37813013 DOI: 10.1016/j.talanta.2023.125268] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Dengue is one of the most widespread and fatal arboviral infections in the world. Early detection of dengue virus (DENV) is essential to prevent the spread of the disease and provide an immediate response. The lateral flow immunoassay (LFIA) systems are low-cost, rapid, sensitive, targeted, and straightforward detection, which is an ideal early detection candidate for point-of-care testing (POCT) in dengue-affected areas. However, current commercial LFIA kits cannot fully satisfy the sensitivity, specificity, serotype differentiation, and multiplex detection requirements. Therefore, various strategies have been applied to optimize the LFIA for DENV detection, including label material improvement, optical enhancement and novel structure design. In this review, we comprehensively presented the snapshot of dengue, the principle of LFIA, and recent progress in the LFIA optimization for dengue diagnoses. Furthermore, this review also discusses insights into the prospect of LFIA dengue diagnostic methods, such as microfluidics, multiplex design, nucleic acid-typed probes and smartphone-assisted result analysis.
Collapse
Affiliation(s)
- Ziting Ma
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jinnian Guo
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Lu Jiang
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
5
|
Hallerbach K, Khederlou K, Wentland L, Senten L, Brentano S, Keefe B, Fu E. Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays. MICROMACHINES 2023; 14:1936. [PMID: 37893373 PMCID: PMC10608873 DOI: 10.3390/mi14101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The use of lateral flow assays to detect nucleic acid targets has many applications including point-of-care diagnostics, environmental monitoring, and food safety. A sandwich format, similar to that in protein immunoassays, is often used to capture the target nucleic acid sequence with an immobilized complementary strand anchored to a substrate, and then to visualize this event using a complementary label nucleic acid bound to a nanoparticle label. A critical component of high-sensitivity nucleic acid detection is to utilize high-density capture surfaces for the effective capture of target nucleic acid. Multiple methods have been reported, including the use of streptavidin-based protein anchors that can be adsorbed to the lateral flow substrate and that can utilize the high-affinity streptavidin-biotin linkage to bind biotinylated nucleic acid capture sequences for subsequent target nucleic acid binding. However, these protein anchors have not been systematically characterized for use in the context of nucleic acid detection. In this work, we characterize several protein-based anchors on nitrocellulose for (i) capturing the robustness of the attachment of the protein anchor, (ii) capturing nucleic acid density, and (iii) targeting nucleic acid capture. Further, we demonstrate the signal gains in target nucleic acid hybridization made by increasing the density of capture nucleic acid on a nitrocellulose substrate using multiple applications of protein loading onto nitrocellulose. Finally, we use our high-density capture surfaces to demonstrate high-sensitivity nucleic acid detection in a lateral flow assay (in the context of a SARS-CoV-2 sequence), achieving a LOD of approximately 0.2 nM.
Collapse
Affiliation(s)
- Kira Hallerbach
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Khadijeh Khederlou
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Lael Wentland
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Lana Senten
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | | | - Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
8
|
Trakoolwilaiwan T, Takeuchi Y, Leung TS, Sebek M, Storozhuk L, Nguyen L, Tung LD, Thanh NTK. Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection. NANOSCALE 2023; 15:12915-12925. [PMID: 37427537 DOI: 10.1039/d3nr01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dengue disease is a viral infection that has been widespread in tropical regions, such as Southeast Asia, South Asia and South America. A worldwide effort has been made over a few decades to halt the spread of the disease and reduce fatalities. Lateral flow assay (LFA), a paper-based technology, is used for dengue virus detection and identification because of its simplicity, low cost and fast response. However, the sensitivity of LFA is relatively low and is usually insufficient to meet the minimum requirement for early detection. In this study, we developed a colorimetric thermal sensing LFA format for the detection of dengue virus NS1 using recombinant dengue virus serotype 2 NS1 protein (DENV2-NS1) as a model antigen. Plasmonic gold nanoparticles, including gold nanospheres (AuNSPs) and gold nanorods (AuNRs), and magnetic nanoparticles (MNPs), namely iron oxide nanoparticles (IONPs) and zinc ferrite nanoparticles (ZFNPs), were studied for their thermal properties for sensing assays. AuNSPs with 12 nm diameter were chosen due to their great photothermal effect against light-emitting diodes (LEDs). In the thermal sensing assay, a thermochromic sheet is used as a temperature sensor transforming heat into a visible colour. In the typical LFA, the test line is visible at 6.25 ng mL-1 while our thermal sensing LFA offers a visual signal that can be observed at as low as 1.56 ng mL-1. The colorimetric thermal sensing LFA is capable of reducing the limit of detection (LOD) of DENV2-NS1 by 4 times compared to the typical visual readout. The colorimetric thermal sensing LFA can enhance the sensitivity of detection and deliver visuality to the user to translate without the need for an infrared (IR) camera. It has the potential to expand the utilities of LFA and satisfy early diagnostic applications.
Collapse
Affiliation(s)
- Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Terence S Leung
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Matej Sebek
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Linh Nguyen
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| |
Collapse
|
9
|
Dutta R, Rajendran K, Jana SK, Saleena LM, Ghorai S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. BIOSENSORS 2023; 13:349. [PMID: 36979561 PMCID: PMC10046626 DOI: 10.3390/bios13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.
Collapse
Affiliation(s)
- Reshmi Dutta
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Kokilavani Rajendran
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Lilly M. Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Raiganj 733134, India
| |
Collapse
|
10
|
Kim J, Kim C, Park JS, Lee NE, Lee S, Cho SY, Park C, Yoon DS, Yoo YK, Lee JH. Affordable on-site COVID-19 test using non-powered preconcentrator. Biosens Bioelectron 2023; 222:114965. [PMID: 36493723 PMCID: PMC9715458 DOI: 10.1016/j.bios.2022.114965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
A simple, affordable point of care test (POCT) is necessary for on-site detection of coronavirus disease 2019 (COVID-19). The lateral flow assay (LFA) has great potential for use in POCT mainly because of factors such as low time consumption, low cost, and ease of use. However, it lacks sensitivity and limits of detection (LOD), which are essential for early diagnostics. In this study, we proposed a non-powered preconcentrator (NPP) based on nanoelectrokinetics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Antigen (Ag) lateral flow assay. The non-powered preconcentrator is composed of glass fiber-based composite paper and ion permselective material, and it can be simply operated by force balancing gravitational, capillary, and depletion-induced forces. The proposed approach helps enrich the SARS-CoV-2 viral nucleocapsid (N) proteins based on a 10-min operation, and it improved the LOD by up to 10-fold. The corresponding virus enrichment, which was evaluated using the reverse-transcriptase polymerase chain reaction (RT-PCR), revealed an improvement in ΔCt values > 3. We successfully demonstrated the enhancement of the NPP-assisted LFA, we extended to applying it to clinical samples. Further, we demonstrated an affordable, easy-to-implement form of LFA by simply designing NPP directly on the LFA buffer tube.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Cheonjung Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Na Eun Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
11
|
Le TN, Hsiao WWW, Cheng YY, Lee CC, Huynh TT, Pham DM, Chen M, Jen MW, Chang HC, Chiang WH. Spin-Enhanced Lateral Flow Immunoassay for High-Sensitivity Detection of Nonstructural Protein NS1 Serotypes of the Dengue Virus. Anal Chem 2022; 94:17819-17826. [PMID: 36512513 DOI: 10.1021/acs.analchem.2c03521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Yuan Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 10617, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 10617, Taiwan
| | - Tan-Thanh Huynh
- School of Applied Chemistry, Tra Vinh University, Tra Vinh 87110, Viet Nam
| | - Dinh Minh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Marvin Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- College of Letter and Science, the University of California, Berkeley, California 94720, U.S.A
| | - Ming-Wei Jen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- College of Education and Human Ecology, the Ohio State University, Columbus, Ohio 43210, U.S.A
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
12
|
Ince B, Sezgintürk MK. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Analyt Chem 2022; 157:116725. [PMID: 35815063 PMCID: PMC9252863 DOI: 10.1016/j.trac.2022.116725] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Bacteria, viruses, and parasites are harmful microorganisms that cause infectious diseases. Early detection of diseases is critical to prevent disease transmission and provide epidemic preparedness, as these can cause widespread deaths and public health crises, particularly in resource-limited countries. Lateral flow assay (LFA) systems are simple-to-use, disposable, inexpensive diagnostic devices to test biomarkers in blood and urine samples. Thus, LFA has recently received significant attention, especially during the pandemic. Here, first of all, the design principles and working mechanisms of existing LFA methods are examined. Then, current LFA implementation strategies are presented for communicable disease diagnoses, including COVID-19, zika and dengue, HIV, hepatitis, influenza, malaria, and other pathogens. Furthermore, this review focuses on an overview of current problems and accessible solutions in detecting infectious agents and diseases by LFA, focusing on increasing sensitivity with various detection methods. In addition, future trends in LFA-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Bahar Ince
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
13
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Khan MS, Shadman SA, Khandaker MMR. Advances and current trend of bioactive papers and paper diagnostics for health and biotechnological applications. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|
16
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
17
|
Chen CA, Yuan H, Chen CW, Chien YS, Sheng WH, Chen CF. An electricity- and instrument-free infectious disease sensor based on a 3D origami paper-based analytical device. LAB ON A CHIP 2021; 21:1908-1915. [PMID: 34008628 DOI: 10.1039/d1lc00079a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infectious diseases cause millions of deaths annually in the developing world. Recently, microfluidic paper-based analytical devices (μPADs) have been developed to diagnose such diseases, as these tests are low cost, biocompatible, and simple to fabricate. However, current μPADs are difficult to use in resource-limited areas due to their reliance on external instrumentation to measure and analyze the test results. In this work, we propose an electricity and external instrumentation-free μPAD sensor based on the colorimetric enzyme-linked immunosorbent assay (ELISA) for the diagnosis of infectious disease (3D-tPADs). Designed based on the principle of origami, the proposed μPAD enables the sequential steps of the colorimetric ELISA test to be completed in just ∼10 min. In addition, in order to obtain an accurate ELISA result without using any instrument, we have integrated an electricity-free "timer" within the μPAD that can be controlled by the buffer viscosity and fluid path volume to indicate the appropriate times for washing and color development steps, which can avoid false positive or false negative results caused by an extended or shortened amount of washing and development times. Due to the low background noise and high positive signal intensity of the μPAD, positive and negative detection results can be distinguished by just the naked eye. Furthermore, the ELISA result can be semi-quantified by comparing the results shown on the μPAD with a color chart diagram with a detection limit of HIV type 1(HIV-1) p24 antigen as low as 0.03 ng mL-1. These results demonstrate the proposed sensor can perform infectious disease diagnosis without external instrumentation or electricity, extending the application of the μPAD test for on-site detection and use in resource-limited settings.
Collapse
Affiliation(s)
- Chung-An Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Hao Yuan
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Chiao-Wen Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
18
|
Yadav S, Sharma NN, Akhtar J. Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. Analyst 2021; 146:3422-3439. [PMID: 33904559 DOI: 10.1039/d1an00214g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cost-effective rapid diagnosis of infectious diseases is an essential and important factor for curing such diseases in the global public health care picture. Owing to poor infrastructure and lack of sanitation, these diseases have an extreme impact on remote and rural areas, especially in developing countries, and there are unresolved challenges. Molecular diagnosis, such as nucleic acid analysis, plays a key role in the significant treatment of numerous infectious diseases. Current molecular diagnostic assays require a sophisticated laboratory setup with expensive components. Molecular diagnosis on a microfluidic point-of-care (POC) platform is attractive to researchers for disease detection with proper prevention. Compared to various microfluidic substrate materials, paper-based POC technologies offer significant cost-effective solutions over high-cost clinical instruments to fill the gap between the needs of users and affordability. Low-cost paper-based microfluidic POC technologies provide portable and disposable diagnostic systems for multiple disease detection that may be extremely useful in remote areas. This article presents a critical review of paper-based microfluidic device technology which has become an imminent platform to adjust the current health scenario for the detection of diseases using different stages of nucleic acid analysis, such as extraction, amplification and detection of nucleic acid, with future perspectives for paper substrates.
Collapse
Affiliation(s)
- Supriya Yadav
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Niti Nipun Sharma
- Department of Mechanical Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Jamil Akhtar
- Department of Electronics & Communication Engineering, Manipal University Jaipur, 303007, Rajasthan, India.
| |
Collapse
|
19
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
20
|
Andryukov BG, Lyapun IN, Bynina MP, Matosova EV. Simplified formats of modern biosensors: 60 years of using immunochromatographic test systems in laboratory diagnostics. Klin Lab Diagn 2021; 65:611-618. [PMID: 33245650 DOI: 10.18821/0869-2084-2020-65-10-611-618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunochromatographic test systems known to foreign laboratory diagnostic experts as lateral flow immunoassay (LFIA) are simplified tape formats of modern biosensors. For 60 years, they have been widely used for the rapid detection of target molecules (ligands) in biosubstrates and the diagnosis of many diseases and conditions. The growing popularity of these test systems for providing medical care or diagnostics in developing countries, medical facilities, in emergency situations, as well as for individual home use by patients while monitoring their health are the main factors contributing to the continuous development and improvement of these methods, the emergence of a new generation of formats. The attractiveness and popularity of these fast, easy-to-use, inexpensive and portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as the ease of interpretation of the results. These qualities have passed the test of time, and today LFIA test systems are fully consistent with the modern world concept of «point-of-care testing», finding wide application not only in medicine, but also in ecology, veterinary medicine, and agriculture. This review will highlight the modern principles of designing the most widely used formats of immunochromatographic test systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as current achievements and prospects of LFIA technology. Modern innovations aimed at improving the analytical characteristics of LFIA technology are interesting, promising and can bring additional benefits to immunochromatographic platforms that have gained popularity and attractiveness for six decades.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science.,Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I N Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - M P Bynina
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - E V Matosova
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
21
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
22
|
Prabowo MH, Chatchen S, Rijiravanich P, Limkittikul K, Surareungchai W. Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices. Anal Bioanal Chem 2020; 412:2915-2925. [PMID: 32166444 DOI: 10.1007/s00216-020-02527-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
The diagnosis of dengue infection is still a critical factor determining success in the clinical management and treatment of patients. Here, the development of microfluidic paper-based analytical devices (μPADs) utilizing a sandwich immunoassay on wax patterned paper functionalized with anti-dengue NS1 monoclonal antibodies for point-of-care detection of dengue NS1 (DEN-NS1-PAD) is reported. Various assay conditions, including the length of the channel and diluent, were optimized, and the response detected by the naked eye and digitized images within 20-30 min. The DEN-NS1-PAD was successfully tested in the field for detecting dengue NS1 in buffer, cell culture media, and human serum. The limit of detection (LoD) of the DEN-NS1-PAD obtained with the naked eye, scanner, and a smartphone camera was 200, 46.7, and 74.8 ng mL-1, respectively. The repeatability, reproducibility, and stability of the DEN-NS1-PAD were also evaluated. High true specificity and sensitivity in the serum of pediatric patients were observed. These evaluation results confirm that the DEN-NS1-PAD can potentially be used in point-of-care dengue diagnostics, which can significantly impact on the spreading of mosquito-borne diseases, which are likely to become more prevalent with the effects of global warming. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Hatta Prabowo
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Sleman, Yogyakarta, 55584, Indonesia
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Patsamon Rijiravanich
- Biosciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
23
|
Sanjaya KC, Ranzoni A, Hung J, Blaskovich MAT, Watterson D, Young PR, Cooper MA. Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay. Anal Chim Acta 2020; 1107:85-91. [PMID: 32200905 DOI: 10.1016/j.aca.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
We report a flow-cytometry based method capable of detecting a range of analytes by monitoring the analyte-induced clustering of magnetic and fluorescent nanoparticles with flow cytometry. Using the dengue viral antigen (NS1) as an example, antibodies were conjugated to magnetic and fluorescent nanoparticles in a sandwich immunoassay format. These nanoparticles formed clusters when NS1 was present in a sample and the cluster formation was directly proportional to the concentration of antigen. Simultaneous flow cytometry measurement of cluster size, as detected by the forward scatter channel, combined with fluorescence intensity led to a reduction in the assay background signal, resulting in improved analytical sensitivity. We were able to detect 2.5 ng mL-1 of NS1 in serum samples by quantifying the clusters, a two-log fold improvement in the assay limit of detection over total fluorescence quantification alone.
Collapse
Affiliation(s)
- K C Sanjaya
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Andrea Ranzoni
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Jacky Hung
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Daniel Watterson
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
24
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Lai YT, Tsai CH, Hsu JC, Lu YW. Microfluidic Time-Delay Valve Mechanism on Paper-Based Devices for Automated Competitive ELISA. MICROMACHINES 2019; 10:E837. [PMID: 31801238 PMCID: PMC6953116 DOI: 10.3390/mi10120837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Paper-based technologies have been drawing increasing attentions in the biosensor field due to their economical, ecofriendly, and easy-to-fabricate features. In this paper, we present a time-delay valve mechanism to automate a series of procedures for conducting competitive enzyme-linked immunosorbent assay (ELISA) on a paper-based device. The mechanism employs a controllable time-delay valve, which has surfactants to dissolve the hydrophobic barriers, in a fluid pathway. The valves can regulate the liquid and sequentially deliver the sample flow for automating ELISA procedures in microchannels. Competitive ELISA is achieved in a single step once the sample, or small molecule pesticide (e.g., Imidacloprid), is applied onto the paper-based device with a comparable sensitivity to plate-based competitive ELISA. The results further demonstrate the appositeness of using paper-based devices with the valve designs for on-the-go ELISA detection in agriculture and biomedical applications.
Collapse
Affiliation(s)
- Yu-Ting Lai
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10016, Taiwan;
| | - Chia-Hsin Tsai
- Department of Entomology, National Taiwan University, Taipei 10016, Taiwan; (C.-H.T.); (J.-C.H.)
| | - Ju-Chun Hsu
- Department of Entomology, National Taiwan University, Taipei 10016, Taiwan; (C.-H.T.); (J.-C.H.)
| | - Yen-Wen Lu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10016, Taiwan;
| |
Collapse
|
26
|
Tran TV, Nguyen BV, Nguyen TTP, Tran TT, Pham KG, Le QB, Do BN, Pham HN, Nguyen CV, Dinh DPH, Ha VT, Doan THT, Le HQ. Development of a highly sensitive magneto-enzyme lateral flow immunoassay for dengue NS1 detection. PeerJ 2019; 7:e7779. [PMID: 31579630 PMCID: PMC6765353 DOI: 10.7717/peerj.7779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023] Open
Abstract
Background Dengue infection represents a global health issue of growing importance. Dengue non-structural protein 1 (NS1) plays a central role in the early detection of the disease. The most common method for NS1 detection is testing by lateral flow immunoassays (LFIAs) with varying sensitivity. In this study, we present a highly sensitive magneto-enzyme LFIA for prompt diagnosis of dengue. Methods We have demonstrated the development of a magneto-enzyme LFIA combining super-paramagnetic nanoparticles as labels and Biotin–Streptavidin signal amplification strategy to detect dengue NS1. Factors affecting the test performance including antibody pair, super-paramagnetic nanoparticle size, nitrocellulose membrane type, amounts of detection and capture antibodies, and amounts of Streptavidin-polyHRP were optimized. Analytical sensitivity and cross-reactivity were determined. Clinical performance of the novel assay was evaluated using a panel of 120 clinical sera. Results This newly developed assay could detect NS1 of all four serotypes of dengue virus (DENV). The limit of detection (LOD) was found to be as low as 0.25 ng ml−1 for DENV-1 and DENV-3, 0.1 ng ml−1 for DENV-2, and 1.0 ng ml−1 for DENV-4. The LOD for DENV-2 was a 50-fold improvement over the best values previously reported. There was an absence of cross-reactivity with Zika NS1, Hepatitis B virus, Hepatitis C virus, and Japanese encephalitis virus. The sensitivity and specificity of the novel assay were 100% when tested on clinical samples. Conclusions We have successfully developed a magneto-enzyme LFIA, allowing rapid and highly sensitive detection of dengue NS1, which is essential for proper management of patients infected with DENV.
Collapse
Affiliation(s)
| | | | - Thao T P Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tung T Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | - Quang B Le
- Military Medical University, Hanoi, Vietnam
| | - Binh N Do
- Military Medical University, Hanoi, Vietnam
| | | | | | - Duong P H Dinh
- Nguyen Hue High School for Gifted Students, Hanoi, Vietnam
| | - Van T Ha
- Hanoi-Amsterdam High School for Gifted Students, Hanoi, Vietnam
| | - Trang H T Doan
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Hoa Q Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
27
|
Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Choi YS, Lee MR, Kim CS, Lee KH. Detection of proline using a novel paper-based analytical device for on-site diagnosis of drought stress in plants. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:045002. [PMID: 31042988 DOI: 10.1063/1.5055798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
We developed and characterized a paper-based microfluidic sensor for the on-site diagnosis of drought stress in plants. Proline was used as a biomarker for analyzing drought stress, which was extracted by a colorimetric method using the proline-ninhydrin reaction. Paper was used as the main sensor material for the on-site detection of proline as it is easily transportable and cost-effective. The paper-based sensor was fabricated using wax-printing and origami methods, and the sensor was precoated with ninhydrin to allow for easy and convenient on-site use. Furthermore, a sample-to-ninhydrin ratio of 1:2 was found to confer optimal sensitivity to the drought diagnosis sensor. The concentration of proline in a sample was quantified by red-green-blue analysis to determine the change in green color intensity levels in response to distinct proline concentrations, which were detected by the sensor. The limit of detection of proline using the devised sensor was 657 µM, and the green color intensity level decreased with increasing proline concentration. In addition, the sensor was validated in an experimental drought stress model with Arabidopsis and subjected to drought stress for 21 days, and the amount of proline detected was 10 mM. The devised paper-based microfluidic sensor highlights the possibility of the on-site evaluation of drought stress in plants with potential to be utilized in various agricultural areas in the future.
Collapse
Affiliation(s)
- Young-Soo Choi
- Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju 61186, South Korea
| | - Mi Rha Lee
- Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju 61186, South Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 61186, South Korea
| | - Kyeong-Hwan Lee
- Agricultural Robotics and Automation Research Center, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
29
|
Zadehkafi A, Siavashi M, Asiaei S, Bidgoli MR. Simple geometrical modifications for substantial color intensity and detection limit enhancements in lateral-flow immunochromatographic assays. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:1-8. [PMID: 30772779 DOI: 10.1016/j.jchromb.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/10/2018] [Accepted: 01/24/2019] [Indexed: 11/27/2022]
Abstract
One of the ongoing challenges in lateral flow Immunochromatographic assays (LFIA), is lowering the limit of detection and enhancing their signal quality, i.e. the color intensity. There are a number of rather costly and complicated processes for this aim, such as the use of functionalized materials/membranes and additional spectroscopic readout units. Nonetheless, there are simple and easy to practice alternatives, to be uncovered by analyzing the essential parameters of immunological reactions. The color intensity of the test line is a function of analytes flow velocity and their reaction rate. Detection pad width and test line position impact the flow velocity and reaction rate kinetics, examined in this paper for the limit of detection (LOD) and test-line color intensity. Firstly, the impact of width on the LOD was examined for human chorionic gonadotropin (pregnancy biomarker). Test line color intensity was measured using five different widths of the detection pad (trapezoidal) and four different test line positions, and the trends observed were explained according to the measured evolution of the velocity along the chromatography paper. With a constant width absorbent pad, LOD was cut by half to 5 mIU/ml by using a narrowing width detection pad, which keeps the wicking velocity higher than normal strips, and compared to them, color intensity increase between 55 and 150%, depending on the concentration. Nevertheless, a widening detection pad might cut the color intensity up to 150%, compared to normal strips, due to a profound decline of the analyte to ligand ratio at the test line. In addition, adequately sending the test line away from the conjugate pad yields the highest possible color intensity, for up to 400% of increase, in lower concentrations and narrowing test pads. However, further distancing the test line downfalls the color intensity.
Collapse
Affiliation(s)
- Ali Zadehkafi
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | - Majid Siavashi
- Applied Multi-Phase Fluid Dynamics Lab., School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran.
| | - Mostafa Rabbani Bidgoli
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| |
Collapse
|
30
|
A Historical Perspective on Paper Microfluidic Based Point-of-Care Diagnostics. ADVANCED FUNCTIONAL MATERIALS AND SENSORS 2019. [PMCID: PMC7123359 DOI: 10.1007/978-981-15-0489-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Paper-based microfluidic systems have emerged as one of the most favorable technologies used in many potential applications such as point-of-care diagnostics, flexible electronics, energy storage, etc. From the past several decades, paper-based technology has readily accepted in the academic research lab and industries as well. The paper-based devices have changed the life of humankind. The distinguishing characteristics of paper substrate like low cost, biodegradability, biocompatibility, and ease of fabrication helped their adaptability in biosensing applications. This chapter gives a concise overview of the historical perspective of paper-based devices, classification of paper types, and their recent applications.
Collapse
|