1
|
Li J, Zhou L, Hao Y, Xing C. Nanophotonic biosensors for COVID-19 detection: advances in mechanisms, methods, and design. NANOSCALE 2025; 17:7600-7616. [PMID: 40008826 DOI: 10.1039/d4nr04423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The growing societal impact of coronavirus disease 2019 (COVID-19) has underscored the urgent need for innovative strategies to address the ongoing challenges posed by the pandemic. While rapid therapeutic interventions remain critical for short-term mitigation, equally vital is the development of accessible and efficient diagnostic tools to curb viral transmission. In this context, optical sensing technologies have emerged as foundational tools for detection and diagnosis, owing to their rapid response, user-friendliness, and adaptability. These attributes strengthen their indispensable role in identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. This review systematically outlines the structural components of SARS-CoV-2 virions and their respective biological functions, classifies optical biosensors according to their underlying principles and evaluates the advantages and limitations of each methodology in real-world diagnostic applications. By addressing current detection challenges, these optical platforms not only enhance our capacity to manage SARS-CoV-2 but also establish a framework for deploying optical sensing technologies in future pandemic scenarios.
Collapse
Affiliation(s)
- Jiawei Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Linyan Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Yabin Hao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Chenyang Xing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
2
|
Tene T, Cevallos Y, Vinueza-Naranjo PG, Inca D, Vacacela Gomez C. Black Phosphorous-Based Surface Plasmon Resonance Biosensor for Malaria Diagnosis. SENSORS (BASEL, SWITZERLAND) 2025; 25:2068. [PMID: 40218580 PMCID: PMC11991473 DOI: 10.3390/s25072068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
This study presents a black phosphorus-based surface plasmon resonance (SPR) biosensor for malaria detection, integrating silicon nitride (Si3N4) and single-stranded DNA (ssDNA) to enhance sensitivity and molecular recognition. The biosensor configurations were optimized through numerical simulations, evaluating metal thickness, dielectric layer thickness, and the number of black phosphorus layers to achieve maximum performance. The optimized system (Opt-Sys4) exhibited high sensitivity (464.4°/RIU for early-stage malaria) and improved detection accuracy, outperforming conventional SPR sensors. Performance was assessed across malaria progression stages, demonstrating a clear resonance shift, increased attenuation, and enhanced biomolecular interactions. Key metrics, including the figure of merit, limit of detection, and comprehensive sensitivity factor, confirmed the sensor's superior performance. Comparative analysis against state-of-the-art SPR biosensors further validated their capability for highly sensitive and specific malaria detection. These findings establish a promising plasmonic biosensing platform for early malaria diagnosis, potentially improving disease management in resource-limited settings.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Yesenia Cevallos
- Universidad San Francisco de Quito IMNE, Diego de Robles s/n, Cumbayá, Quito 170901, Ecuador
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | - Paola Gabriela Vinueza-Naranjo
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
- ETEL Research Group, Faculty of Engineering and Applied Sciences, Networking and Telecommunications Engineering, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| | - Deysi Inca
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | | |
Collapse
|
3
|
Tene T, Bellucci S, Vacacela Gomez C. SPR Biosensor Based on Bilayer MoS 2 for SARS-CoV-2 Sensing. BIOSENSORS 2025; 15:21. [PMID: 39852072 PMCID: PMC11763928 DOI: 10.3390/bios15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS2) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation. The optimized configuration, consisting of a 45 nm silver layer, a 13 nm silicon nitride layer, 2 MoS2 layers, and a 5 nm ssDNA layer, demonstrated superior performance for detecting SARS-CoV-2 in PBS solution. The biosensor exhibited high sensitivity at low viral concentrations, achieving a sensitivity of 375.01°/RIU, a detection accuracy of 0.002, and a quality factor of 38.34 at 1.0 mM SARS-CoV-2 concentration. Performance metrics validated the sensor's capability for reliable detection, particularly in early-stage diagnostics where timely intervention is critical. Moreover, the biosensor's linear response to refractive index changes confirmed its potential for quantitative viral concentration analysis. This study underlines the significance of integrating advanced materials, such as MoS2 and silicon nitride, to enhance SPR biosensor performance. The findings establish the proposed biosensor as a robust and precise diagnostic tool for SARS-CoV-2 detection, with potential applications in clinical diagnostics and epidemiological monitoring.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| | | |
Collapse
|
4
|
Yadav PK, Kumar A, Upadhyay S, Kumar A, Srivastava A, Srivastava M, Srivastava SK. 2D material-based surface plasmon resonance biosensors for applications in different domains: an insight. Mikrochim Acta 2024; 191:373. [PMID: 38842697 DOI: 10.1007/s00604-024-06442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.
Collapse
Affiliation(s)
- Prateek Kumar Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Rumi RB, Paul AK, Alyami SA, Moni MA. Multi-Disease Detection Using a Prism-Based Surface Plasmon Resonance Sensor: A TMM and FEM Approach. IEEE Trans Nanobioscience 2024; 23:51-62. [PMID: 37314903 DOI: 10.1109/tnb.2023.3286269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This research introduces a surface plasmon resonance (SPR)-based biosensor with multilayered structures for telecommunication wavelength in order to detect multiple diseases. The malaria and the chikungunya viruses are taken into account and the presence of these viruses are determined by examining several blood components in healthy and affected phases. Here, two distinct configurations (Al-BTO-Al-MoS2 and Cu-BTO-Cu-MoS2) are proposed and contrasted for the detection of numerous viruses. The performance characteristics of this work have been analyzed using Transfer Matrix Method (TMM) method and Finite Element Method (FEM) method under angle interrogation technique. From the TMM and FEM solutions, it is evident that the Al-BTO-Al-MoS2 structure provides the highest sensitivities of ~270 deg./RIU for malaria and ~262 deg./RIU for chikungunya viruses, with satisfactory detection accuracy of ~1.10 for malaria, ~1.64 for chikungunya, and quality factor of ~204.40 for malaria, ~208.20 for chikungunya. In addition, the Cu-BTO-Cu MoS2 structure offers the highest sensitivities of ~310 deg./RIU for malaria and ~298 deg./RIU for chikungunya, with satisfactory detection accuracy of ~0.40 for malaria, ~0.58 for chikungunya, and quality factor of ~89.85 for malaria, ~86.38 for chikungunya viruses. Therefore, the performance of the proposed sensors is analyzed using two distinct methods and gives around similar results. In a sum, this research could be utilized as a theoretical foundation and first step in the development of a real sensor.
Collapse
|
6
|
Wang H, Wang T, Yuan X, Wang Y, Yue X, Wang L, Zhang J, Wang J. Plasmonic Nanostructure Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8156. [PMID: 37836985 PMCID: PMC10575025 DOI: 10.3390/s23198156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuandong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
7
|
Wang Y, Peng Y, Sun J, Han X, Gao W, Han Q, Zhu L, Dong J, Zhang P. Active Control and Sensing Application of Ultra-Narrowband Circular Dichroism in Multilayer Chiral Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45378-45387. [PMID: 37708439 DOI: 10.1021/acsami.3c07828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Narrowband circular dichroism (CD) has attracted wide attention for its high sensitivity in detecting chiral molecules and catalysis. However, designing a chiral metasurface with excellent sensing performance that can be dynamically tuned still poses challenges. This paper introduces lithium niobate, an electrically tunable material, and a distributed Bragg reflector into chiral nanorod structures to form multilayer chiral nanorod arrays (MCNAs). Simulation results show that MCNAs can generate four strong ultra-narrowband (UNB) CD signals in the visible light spectrum. The UNB CD signal intensity was up to 0.86, and the minimum full width at half-maximum (FWHM) was up to 0.21 nm. The surface electric field and current distribution of MCNAs indicate that the four UNB CD signals mainly originate from the x and y direction Tamm resonances in the chiral nanorod layer. The refractive index of lithium niobate can be tuned by changing the electric field, allowing the active tuning of UNB CD signals. In addition, the sensing performance of MCNAs in the SARS-CoV-2 solution was analyzed, and the figure of merit (FOM) can reach an astonishing 2092. These findings not only assist with the design of UNB chiral devices but also offer new possibilities for the environmental monitoring and ultrasensitive detection of chiral molecules.
Collapse
Affiliation(s)
- Yongkai Wang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Yu Peng
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jialin Sun
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Xinyu Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Lipeng Zhu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Pin Zhang
- National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering, Army Engineering University of PLA, Nanjing 210007, China
| |
Collapse
|
8
|
Miyamura S, Oe R, Nakahara T, Koresawa H, Okada S, Taue S, Tokizane Y, Minamikawa T, Yano TA, Otsuka K, Sakane A, Sasaki T, Yasutomo K, Kajisa T, Yasui T. Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing. Sci Rep 2023; 13:14541. [PMID: 37752134 PMCID: PMC10522648 DOI: 10.1038/s41598-023-41436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.
Collapse
Affiliation(s)
- Shogo Miyamura
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Ryo Oe
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takuya Nakahara
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hidenori Koresawa
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shota Okada
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shuji Taue
- School of System Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Yu Tokizane
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Taka-Aki Yano
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Kunihiro Otsuka
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ayuko Sakane
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Koji Yasutomo
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Taira Kajisa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| | - Takeshi Yasui
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| |
Collapse
|
9
|
Muthumanikkam M, Vibisha A, Lordwin Prabhakar MC, Suresh P, Rajesh KB, Jaroszewicz Z, Jha R. Numerical Investigation on High-Performance Cu-Based Surface Plasmon Resonance Sensor for Biosensing Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:7495. [PMID: 37687950 PMCID: PMC10490717 DOI: 10.3390/s23177495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
This numerical research presents a simple hybrid structure comprised of TiO2-Cu-BaTiO3 for a modified Kretschmann configuration that exhibits high sensitivity and high resolution for biosensing applications through an angular interrogation method. Recently, copper (Cu) emerged as an exceptional choice as a plasmonic metal for developing surface plasmon sensors (SPR) with high resolution as it yields finer, thinner SPR curves than Ag and Au. As copper is prone to oxidation, especially in ambient conditions, the proposed structure involves the utilization of barium titanate (BaTiO3) film as a protection layer that not only preserves Cu film from oxidizing but enhances the performance of the sensor to a great extent. Numerical results also show that the utilization of a thin adhesive layer of titanium dioxide (TiO2) between the prism base and Cu film not only induces strong interaction between them but also enhances the performance of the sensor. Such a configuration, upon suitable optimization of the thickness of each layer, is found to enhance sensitivity as high as 552°/RIU with a figure of merit (FOM) of 136.97 RIU-1. This suggested biosensor design with enhanced sensitivity is expected to enable long-term detection with greater accuracy and sensitivity even when using Cu as a plasmonic metal.
Collapse
Affiliation(s)
- M. Muthumanikkam
- Department of ECE, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai 600025, Tamil Nadu, India; (M.M.); (M.C.L.P.); (P.S.)
| | - Alagu Vibisha
- Department of Physics, Chikkanna Government Arts College, Tiruppur 641602, Tamil Nadu, India;
| | - Michael Cecil Lordwin Prabhakar
- Department of ECE, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai 600025, Tamil Nadu, India; (M.M.); (M.C.L.P.); (P.S.)
| | - Ponnan Suresh
- Department of ECE, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai 600025, Tamil Nadu, India; (M.M.); (M.C.L.P.); (P.S.)
| | | | | | - Rajan Jha
- Nanophotonics and Plasmonic Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| |
Collapse
|
10
|
Mitu SA, Ahmed K, Bui FM, Chen L, Smirani LK, Patel SK, Sorathiya V. Au-TiO 2-Coated Spectroscopy-Based Human Teeth Disorder Detection Sensor: Design and Quantitative Analysis. MICROMACHINES 2023; 14:1191. [PMID: 37374776 DOI: 10.3390/mi14061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Human tooth functionality is the most important for the human body to become fit and healthy. Due to the disease attacks in human teeth, parts may lead to different fatal diseases. A spectroscopy-based photonic crystal fiber (PCF) sensor was simulated and numerically analyzed for the detection of dental disorders in the human body. In this sensor structure, SF11 is used as the base material, gold (Au) is used as the plasmonic material, and TiO2 is used within the gold and sensing analyte layer, and the sensing medium for the analysis of the teeth parts is the aqueous solution. The maximum optical parameter values for the human tooth parts enamel, dentine, and cementum in terms of wavelength sensitivity and confinement loss were obtained as 28,948.69 nm/RIU and 0.00015 dB/m for enamel, 33,684.99 nm/RIU and 0.00028 dB/m, and 38,396.56 nm/RIU and 0.00087 dB/m, respectively. The sensor is more precisely defined by these high responses. The PCF-based sensor for tooth disorder detection is a relatively recent development. Due to its design flexibility, robustness, and wide bandwidth, its application area has been spreading out. The offered sensor can be used in the biological sensing area to identify problems with human teeth.
Collapse
Affiliation(s)
- Sumaiya Akhtar Mitu
- Department of Information Technology, University of Information Technology & Sciences (UITS), Dhaka 1212, Bangladesh
- Group of Biophotomatiχ, Department of Information and Communication Technology (ICT), Mawlana Bhashani Science and Technology University (MBSTU), Tangail 1902, Bangladesh
| | - Kawsar Ahmed
- Group of Biophotomatiχ, Department of Information and Communication Technology (ICT), Mawlana Bhashani Science and Technology University (MBSTU), Tangail 1902, Bangladesh
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Lassaad K Smirani
- The Deanship of Information Technology and E-learning, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Shobhit K Patel
- Computer Engineering Department, Marwadi University, Rajkot 360003, India
| | - Vishal Sorathiya
- Faculty of Engineering and Technology, Parul Institute of Engineering and Technology, Parul University, Vadodara 391760, India
| |
Collapse
|
11
|
Srivastava S, Singh S, Mishra AC, Lohia P, Dwivedi DK. Numerical Study of Titanium Dioxide and MXene Nanomaterial-Based Surface Plasmon Resonance Biosensor for Virus SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:1-12. [PMID: 37360047 PMCID: PMC10171911 DOI: 10.1007/s11468-023-01874-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A novel surface plasmon resonance-based biosensor for SARS-CoV-2 virus is proposed in this article. The biosensor is a Kretschmann configuration-based structure that consists of CaF2 prism as base, at which silver (Ag), TiO2, and MXene nanolayers are used to enhance the performance. Theoretically, the performance parameters have been investigated by means of Fresnel equations and transfer matrix method (TMM). The TiO2 nanolayer not only prevents oxidation of Ag layer but also enhances the evanescent field in its vicinity. The sensor provides an ultrahigh angular sensitivity of 346°/RIU for the detection of SARS-CoV-2 virus. Some other performance parameters, including FWHM (full width at half maxima), detection accuracy (DA), limit of detection (LOD), and quality factor (QF) have also been calculated for proposed SPR biosensor with their optimized values 2.907°, 0.3439 deg-1, 1.445 × 10-5, and 118.99 RIU-1, respectively. The obtained results designate that the proposed surface plasmon resonance (SPR) based biosensor has notably enhanced angular sensitivity as compared to previous results reported in the literatures till date. This work may facilitate a significant biological sample sensing device for fast and accurate diagnosis at early stage of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Swati Srivastava
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Sachin Singh
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Adarsh Chandra Mishra
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| | - D. K. Dwivedi
- Photonics and Photovoltaic Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010 India
| |
Collapse
|
12
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
13
|
Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR. A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:448. [PMID: 37008732 PMCID: PMC10039361 DOI: 10.1007/s11082-023-04700-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a performance comparison of heterostructure surface plasmon resonance (SPR) biosensors for the application of Novel Coronavirus SARS-CoV-2 diagnosis. The comparison is performed and compared with the existing literature based on the performance parameters in terms of several prisms such as BaF2, BK7, CaF2, CsF, SF6, and SiO2, several adhesion layers such as TiO2, Chromium, plasmonic metals such as Ag, Au, and two-dimensional (2D) transition metal dichalcogenides materials such as BP, Graphene, PtSe2 MoS2, MoSe2, WS2, WSe2. To study the performance of the heterostructure SPR sensor, the transfer matrix method is applied, and to analyses, the electric field intensity near the graphene-sensing layer contact, the finite-difference time-domain approach is utilized. Numerical results show that the heterostructure comprised of CaF2/TiO2/Ag/BP/Graphene/Sensing-layer has the best sensitivity and detection accuracy. The proposed sensor has an angle shift sensitivity of 390°/refractive index unit (RIU). Furthermore, the sensor achieved a detection accuracy of 0.464, a quality factor of 92.86/RIU, a figure of merit of 87.95, and a combined sensitive factor of 85.28. Furthermore, varied concentrations (0-1000 nM) of biomolecule binding interactions between ligands and analytes have been observed for the prospects of diagnosis of the SARS-CoV-2 virus. Results demonstrate that the proposed sensor is well suited for real-time and label-free detection particularly SARS-CoV-2 virus detection.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
- Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Rajshahi, 6431 Bangladesh
| | - Shahriar Mostufa
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Biplob Hossain
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
- Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| |
Collapse
|
14
|
Guo Y, Su X, Wu K, Yong KT. Numerical Analysis of Three-dimensional Nanodisk Array-based Surface Plasmon Resonance Biosensors for SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:769-779. [PMID: 36852386 PMCID: PMC9947906 DOI: 10.1007/s11468-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED With continuous mutations of SARS-CoV-2 virus, new highly contagious and fast-spreading variants have emerged, including Delta and Omicron. The popular label-free immunosensor based on surface plasmon resonance (SPR) technique can be used for real-time monitoring of the ligand-analyte or antibody-antigen interactions occurring on the sensor surface. In this work, an SPR-based biosensor combined with a nanodisk array was presented to enhance the sensitivity toward virus detection. The nanodisk arrays were employed to enhance the adsorption of molecules for better detection by increasing the SPR field. Four optimal sensing configurations of silver or gold nanodisks on gold thin films with different aspect ratios were achieved through systematic optimization of all parameters to yield the best sensor performance. The resonance angle can be modulated simply by the aspect ratio of nanodisk array. The sensitivity of the optimized sensors has been improved, and the detection limit is smaller than that of bare gold-based sensor. The multi-jump resonance angle curves at tiny refractive index can clearly distinguish the difference of trace concentrations, which is very important for the accurate detection of trace substances. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11468-023-01802-3.
Collapse
Affiliation(s)
- Yan Guo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Xianglong Su
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Kaihua Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
A green “off–on” fluorescent sensor to detect Fe3+ and ATP using synthesized carbon dots from Rosehip. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. PHYSICA. B, CONDENSED MATTER 2023; 648:414438. [PMID: 36281340 PMCID: PMC9582926 DOI: 10.1016/j.physb.2022.414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.
Collapse
Affiliation(s)
- Serhan Yamacli
- Nuh Naci Yazgan University, Dept. of Electrical-Electronics Engineering, Kayseri, Turkey
| | - Mutlu Avci
- Cukurova University, Dept. of Biomedical Engineering, Adana, Turkey
| |
Collapse
|
17
|
Islam A, Haider F, Ahmmed Aoni R, Ahmed R. Plasmonic photonic biosensor: in situ detection and quantification of SARS-CoV-2 particles. OPTICS EXPRESS 2022; 30:40277-40291. [PMID: 36298963 DOI: 10.1364/oe.469937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We conceptualized and numerically investigated a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor for rapid detection and quantification of novel coronavirus. The plasmonic gold-based optical sensor permits three different ways to quantify the virus concentrations inside patient's body based on different ligand-analyte conjugate pairs. This photonic biosensor demonstrates viable detections of SARS-CoV-2 spike receptor-binding-domain (RBD), mutated viral single-stranded ribonucleic acid (RNA) and human monoclonal antibody immunoglobulin G (IgG). A marquise-shaped core is introduced to facilitate efficient light-tailoring. Analytes are dissolved in sterile phosphate buffered saline (PBS) and surfaced on the plasmonic metal layer for realizing detection. The 1-pyrene butyric acid n-hydroxy-succinimide ester is numerically used to immobilize the analytes on the sensing interface. Using the finite element method (FEM), the proposed sensor is studied critically and optimized for the refractive index (RI) range from 1.3348-1.3576, since the target analytes RIs fluctuate within this range depending on the severity of the viral infection. The polarization-dependent sensor exhibits dominant sensing attributes for x-polarized mode, where it shows the average wavelength sensitivities of 2,009 nm/RIU, 2,745 nm/RIU and 1,984 nm/RIU for analytes: spike RBD, extracted coronavirus RNA and antibody IgG, respectively. The corresponding median amplitude sensitivities are 135 RIU-1, 196 RIU-1 and 140 RIU-1, respectively. The maximum sensor resolution and figure of merit are found 2.53 × 10-5 RIU and 101 RIU-1, respectively for viral RNA detection. Also, a significant limit of detection (LOD) of 6.42 × 10-9 RIU2/nm is obtained. Considering modern bioassays, the proposed compact photonic sensor will be well-suited for rapid point-of-care COVID testing.
Collapse
|
18
|
Arano-Martinez JA, Martínez-González CL, Salazar MI, Torres-Torres C. A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning. BIOSENSORS 2022; 12:710. [PMID: 36140093 PMCID: PMC9496380 DOI: 10.3390/bios12090710] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
The ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all over the world, and biosensors have emerged as a key for providing an analysis based on physical and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects open up a series of options to expand the applications of optical biosensors. Nonlinearities together with computer tools are suitable for the identification of complex low-dimensional agents. Machine learning methods can approximate functions to reveal patterns in the detection of dynamic objects in the human body and determine viruses, harmful entities, or strange kinetics in cells.
Collapse
Affiliation(s)
- Jose Alberto Arano-Martinez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Claudia Lizbeth Martínez-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
19
|
Design and Analysis of Highly Sensitive LSPR-Based Metal–Insulator–Metal Nano-Discs as a Biosensor for Fast Detection of SARS-CoV-2. PHOTONICS 2022. [DOI: 10.3390/photonics9080542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For over 2 years, the coronavirus has been the most urgent challenge to humanity, and the development of rapid and accurate detection methods is crucial to control these viruses. Here, a 3D FDTD simulation of Au/SiO2/Au metal–insulator–metal (MIM) nanostructures as a biosensor was performed. The strong coupling between the two plasmonic interfaces in the Au/SiO2/Au cavity helped us to obtain relatively higher sensitivity. The attachment of SARS-CoV-2 changed the refractive index, which was used to detect SARS-CoV-2. Due to the higher overlapping of plasmonic mode with the environment of nano-discs, a higher sensitivity of 312.8 nm/RIU was obtained. The peak wavelength of the proposed structure shifted by approximately 47 nm when the surrounding medium refractive index changed from 1.35 (no binding) to 1.5 (full binding). Consequently, the SPR peak intensity variation can be used as another sensing mechanism to detect SARS-CoV-2. Finally, the previously reported refractive index changes for various concentrations of the SARS-CoV-2 S-glycoprotein solution were used to evaluate the performance of the designed biosensor.
Collapse
|
20
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 PMCID: PMC9423036 DOI: 10.1109/jsen.2022.3181423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
21
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 DOI: 10.1109/jsen.2021.3133007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
22
|
Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:1620. [PMID: 35214519 PMCID: PMC8875995 DOI: 10.3390/s22041620] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The early diagnosis of infectious diseases is critical because it can greatly increase recovery rates and prevent the spread of diseases such as COVID-19; however, in many areas with insufficient medical facilities, the timely detection of diseases is challenging. Conventional medical testing methods require specialized laboratory equipment and well-trained operators, limiting the applicability of these tests. Microfluidic point-of-care (POC) equipment can rapidly detect diseases at low cost. This technology could be used to detect diseases in underdeveloped areas to reduce the effects of disease and improve quality of life in these areas. This review details microfluidic POC equipment and its applications. First, the concept of microfluidic POC devices is discussed. We then describe applications of microfluidic POC devices for infectious diseases, cardiovascular diseases, tumors (cancer), and chronic diseases, and discuss the future incorporation of microfluidic POC devices into applications such as wearable devices and telemedicine. Finally, the review concludes by analyzing the present state of the microfluidic field, and suggestions are made. This review is intended to call attention to the status of disease treatment in underdeveloped areas and to encourage the researchers of microfluidics to develop standards for these devices.
Collapse
Grants
- BRA2017216, BE2018627,2020THRC-GD-7, D18003, LM201603, KFKT2018001 the 333 project of Jiangsu Province in 2017, the Primary Research & Development Plan of Jiangsu Province, the Taihu Lake talent plan, the Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Scien
- NSFC81971511 the National Natural Sciences Foundation of China
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Shuangsong Lv
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People’s Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| |
Collapse
|
23
|
Kumar A, Kumar A, Srivastava SK. Silicon Nitride-BP-Based Surface Plasmon Resonance Highly Sensitive Biosensor for Virus SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2022; 17:1065-1077. [PMID: 35103050 PMCID: PMC8791766 DOI: 10.1007/s11468-021-01589-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 05/12/2023]
Abstract
In this study, we propose a surface plasmon resonance (SPR)-based biosensor using silicon nitride (Si3N4), black phosphorous (BP), and thiol-tethered DNA as a ligand for fast detection of the SARS-CoV-2 virus. In the proposed biosensor, we have deposited silver (Ag), Si3N4, and BP on the base of the BK-7 prism and investigated the performance parameters on the probe in different combinations of the mentioned materials. Herein, three (Ag, Si3N4, and BP) different configurations are introduced and compared for the detection of SARS-CoV-2. Furthermore, with the help of the transfer matrix method (TMM), all the three configurations have been analyzed. Notably, the combination of Ag, Si3N4, and BP shows better sensitivity (154°/RIU) when compared with other configurations for the detection of SARS-CoV-2. This work may facilitate a new sensing device to detect SARS-CoV-2, based on the hybrid materials.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - S. K. Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|