1
|
Jahan H, Tufail P, Shamim S, Mohammed Khan K, Gennari M, Pizzi M, Iqbal Choudhary M. 1,2,4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: An approach to prevent inflammation-induced late diabetic complications. Int Immunopharmacol 2024; 142:113145. [PMID: 39303537 DOI: 10.1016/j.intimp.2024.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Monocytes mainly contribute to the development and progression of vascular inflammatory conditions via the M1 polarization. The elevated levels of advanced glycation end products (AGEs) in diabetic environment lead to severe inflammation, and the release of pro-inflammatory mediators. This shifts the balance towards the pro-inflammatory state of monocytes. OBJECTIVE The current study was aimed to determine the antiglycation activity of 1,2,4-triazine derivatives, and study of their molecular basis in regulating the AGEs-mediated inflammatory responses in THP-1 monocytes. METHODS Primarily, the antiglycation activity of a series of 1,2,4-triazine derivatives was evaluated against MGO-AGEs in vitro. The toxicity of antiglycation compounds was determined by a metabolic assay, using human hepatocyte (HepG2) and monocyte (THP-1) cell lines. DCFH-DA probe was used to evaluate the antioxidant potential of the compounds. Immunocytochemistry, Western blotting, and ELISA techniques were employed to determine the levels of pro-inflammatory markers (NF-κB, RAGE, COX-1, COX-2, and PGE2) in THP-1 monocytes under in-vitro hyperglycemic conditions. RESULTS Results indicate that the triazine derivatives 22, and 23 were the most potent antiglycation agents among the entire series, while non-toxic to HepG2, and THP-1 cells. Both compounds inhibited the AGEs-induced upstream and downstream signaling of NADPH oxidase and inflammatory mediators p38 and NF-κβ, respectively, in THP-1 monocytes. They also inhibited the induction of COX-2 and its product PGE2 by suppressing AGE-RAGE interactions. Moreover, compounds 22, and 23 reversed the AGEs-mediated suppression of COX-1 in THP-1 monocytes. CONCLUSION In conclusion, 1,2,4-triazine derivatives 22, and 23 have the potential to suppress inflammatory responses under the diabetic environment through AGE-RAGE-NF-κβ/p38 nexus in THP-1 monocytes. These findings identify triazines 22, and 23 as compelling candidates for drug development, potentially beneficial for the diabetic patients with an elevated risk of vascular complications, such as atherosclerosis.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahbaz Shamim
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Michele Gennari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Croes CACC, Chrysanthou M, Hoppenbrouwers T, Wichers H, Keijer J, Savelkoul HFJ, Teodorowicz M. Diabetic Glycation of Human Serum Albumin Affects Its Immunogenicity. Biomolecules 2024; 14:1492. [PMID: 39766199 PMCID: PMC11673269 DOI: 10.3390/biom14121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here. HSA was glycated with D-glucose, MGO, or glyoxylic acid (CML). Glycation-related biochemical changes were characterized using various biochemical methods. The binding of differentially glycated HSA to AGE receptors was determined with inhibition ELISAs, and the impact on inflammatory markers in macrophage cell line THP-1 and adherent monocytes isolated from human peripheral blood mononuclear cells (PBMCs) was studied. All glycation methods led to unique AGE profiles and had a distinct impact on protein structure. Glycation resulted in increased binding of HSA to the AGE receptors, with MGO modification showing the highest binding, followed by glucose and, lastly, CML. Additionally, modification of HSA with MGO led to the increased expression of pro-inflammatory markers in THP-1 macrophages and enhanced phosphorylation of NF-κB p65. The same pattern, although less prominent, was observed for HSA glycated with glucose and CML, respectively. An increase in pro-inflammatory markers was also observed in PBMC-derived monocytes exposed to all glycated forms of HSA, although HSA-CML led to a significantly higher inflammatory response. In conclusion, the type of HSA glycation impacts immune functional readouts with potential relevance for diabetes.
Collapse
Affiliation(s)
- Cresci-Anne C. C. Croes
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Marialena Chrysanthou
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
| | - Tamara Hoppenbrouwers
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Harry Wichers
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| |
Collapse
|
3
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
4
|
Zhang YY, Jin PP, Guo DZ, Bian D. Modified Zhenwu Tang delays chronic renal failure progression by modulating oxidative stress and hypoxic responses in renal proximal tubular epithelial cells. Heliyon 2024; 10:e31265. [PMID: 38803876 PMCID: PMC11128522 DOI: 10.1016/j.heliyon.2024.e31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, 050000, China
| | - Pei-pei Jin
- Hebei Yiling Hospital, Hebei, Shijiazhuang, 050000, China
| | - Deng-zhou Guo
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| | - Dong Bian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| |
Collapse
|
5
|
Wu Z, Jankowski V, Jankowski J. Irreversible post-translational modifications - Emerging cardiovascular risk factors. Mol Aspects Med 2022; 86:101010. [PMID: 34404548 DOI: 10.1016/j.mam.2021.101010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
Despite the introduction of lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies for primary prevention of cardiovascular and heart diseases (CVD), it remains the number one cause of death globally, raising the question for novel/further essential factors besides traditional risk factors such as cholesterol, blood pressure and coagulation. With continuous identification and characterization of non-enzymatic post-translationally modified isoforms of proteins and lipoproteins, it is becoming increasingly clear that irreversible non-enzymatic post-translational modifications (nPTMs) alter the biological functions of native proteins and lipoproteins thereby transforming innate serum components into CVD mediators. In particular renal insufficiency and metabolic imbalance are major contributors to the systemically increased concentration of reactive metabolites and thus increased frequency of nPTMs, promoting multi-morbid disease development centering around cardiovascular disease. nPTMs are significantly involved in the onset and progression of cardiovascular disease and represent a significant and novel risk factor. These insights represent potentially new avenues for risk assessment, prevention and therapy. This review chapter summarizes all forms of nPTMs found in CKD and under metabolic imbalance and discusses the biochemical connections between molecular alterations and the pathological impact on increased cardiovascular risk, novel nPTM-associated non-traditional cardiovascular risk factors, and clinical implication of nPTM in cardiovascular disease.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Hosseinipoor H, Kariminejad SY, Salehi M, Heidari M, Goodarzi MT, Karimi MH. The effects of metformin monotherapy and combination of metformin and glibenclamide therapy on the expression of RAGE, Sirt1, and Nrf2 genes in peripheral blood mononuclear cells of type 2 diabetic patients. J Diabetes Metab Disord 2022; 21:369-377. [PMID: 35673478 PMCID: PMC9167355 DOI: 10.1007/s40200-022-00984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Purpose Although metformin is the first-line treatment of type 2 diabetes mellitus (T2DM), a few studies have evaluated the benefits of monotherapies (metformin) versus combination therapy (metformin and glibenclamide) for treatment of T2DM patients. The present study aimed to evaluate the effect of monotherapy with metformin compared to combination therapy with metformin and glibenclamide on the expression of RAGE, Nrf 2, and Sirt1genes. Methods EightyT2DM patients and 40 healthy individuals participated in this case-control study. The patients in the treatment group were divided into two groups who received either metformin alone (n = 40) or metformin in combination with glibenclamide (n = 40). FBS, HbA1c, and fructosamine were measured. The expression of RAGE, Nrf 2, and Sirt 1 genes in PBMC of all subjects were assessed using real-time PCR. Results RAGE gene expression in both treatment groups was significantly lower than the control (P < 0.05). RAGE gene expression was significantly reduced in the combination of metformin and glibenclamide treated group compared to metformin group (P < 0.05). Additionally, the expression of Sirt 1 and Nrf 2 genes in both treatment groups was higher than that of the control group (P < 0.05). The expression of Sirt 1 and Nrf 2 genes in metformin and glibenclamide treated group were higher than the metformin group (P < 0.05). Conclusion Combination therapy (metformin and glibenclamide) showed stronger effect on repression of the RAGE gene and activation of Nrf 2 and Sirt 1 genes compared to monotherapy (metformin); therefore, it can be concluded that combination therapy may have more protective effects on the T2DM patients. No significant correlation was observed between HbA1c and RAGE, Sirt 1, and Nrf 2 genes expression.
Collapse
Affiliation(s)
- Hashem Hosseinipoor
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Moharram Salehi
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
7
|
Ortiz-Martínez M, González-González M, Martagón AJ, Hlavinka V, Willson RC, Rito-Palomares M. Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus. Curr Diab Rep 2022; 22:95-115. [PMID: 35267140 PMCID: PMC8907395 DOI: 10.1007/s11892-022-01453-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a complex, chronic illness characterized by elevated blood glucose levels that occurs when there is cellular resistance to insulin action, pancreatic β-cells do not produce sufficient insulin, or both. Diabetes prevalence has greatly increased in recent decades; consequently, it is considered one of the fastest-growing public health emergencies globally. Poor blood glucose control can result in long-term micro- and macrovascular complications such as nephropathy, retinopathy, neuropathy, and cardiovascular disease. Individuals with diabetes require continuous medical care, including pharmacological intervention as well as lifestyle and dietary changes. RECENT FINDINGS The most common form of diabetes mellitus, type 2 diabetes (T2DM), represents approximately 90% of all cases worldwide. T2DM occurs more often in middle-aged and elderly adults, and its cause is multifactorial. However, its incidence has increased in children and young adults due to obesity, sedentary lifestyle, and inadequate nutrition. This high incidence is also accompanied by an estimated underdiagnosis prevalence of more than 50% worldwide. Implementing successful and cost-effective strategies for systematic screening of diabetes mellitus is imperative to ensure early detection, lowering patients' risk of developing life-threatening disease complications. Therefore, identifying new biomarkers and assay methods for diabetes mellitus to develop robust, non-invasive, painless, highly-sensitive, and precise screening techniques is essential. This review focuses on the recent development of new clinically validated and novel biomarkers as well as the methods for their determination that represent cost-effective alternatives for screening and early diagnosis of T2DM.
Collapse
Affiliation(s)
- Margarita Ortiz-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México.
| | - Alexandro J Martagón
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Victoria Hlavinka
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C Willson
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
| |
Collapse
|
8
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
9
|
Giglio RV, Stoian AP, Haluzik M, Pafili K, Patti AM, Rizvi AA, Ciaccio M, Papanas N, Rizzo M. Novel molecular markers of cardiovascular disease risk in type 2 diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166148. [PMID: 33892081 DOI: 10.1016/j.bbadis.2021.166148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Diabetes represents the leading risk factor for the development of cardiovascular disease (CVD). Chronic hyperglycemia and/or acute post-prandial changes in blood glucose determine an increase in reactive oxygen species (ROS), which play a fundamental role in endothelial dysfunction and in the nuclear transport of pro-atherogenic transcription factors that activate the "inflammasome". In addition, the glycemic alteration favors the formation and stabilization of atherosclerotic plaque through the mechanism of non-enzymatic glycation of different molecules, with the establishment of the so-called "advanced glycosylation end products" (AGE). Laboratory information provided by the level of biomarkers could make a quantitative and qualitative contribution to the clinical process of screening, prediction, prevention, diagnosis, prognosis and monitoring of cardiovascular (CV) risk linked to diabetes. This review describes the importance of specific biomarkers, with particular focus on novel ones, for stratifying and management of diabetes CV risk.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Anca Pantea Stoian
- Faculty of General Medicine, Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University, Bucharest, Romania
| | - Martin Haluzik
- Centre for Experimental Medicine and Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kalliopi Pafili
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Angelo Maria Patti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Ali Abbas Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA; Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, South Carolina, USA
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, South Carolina, USA
| |
Collapse
|
10
|
Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 2021; 12:1057-1069. [PMID: 34326954 PMCID: PMC8311477 DOI: 10.4239/wjd.v12.i7.1057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
Collapse
Affiliation(s)
- Hong-Yan Qiu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jun-Feng Shi
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
11
|
Figueroa SM, Araos P, Reyes J, Gravez B, Barrera-Chimal J, Amador CA. Oxidized Albumin as a Mediator of Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10030404. [PMID: 33800425 PMCID: PMC8000637 DOI: 10.3390/antiox10030404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Renal diseases are a global health concern, and nearly 24% of kidney disease patients are overweight or obese. Particularly, increased body mass index has been correlated with oxidative stress and urinary albumin excretion in kidney disease patients, also contributing to increased cardiovascular risk. Albumin is the main plasma protein and is able to partially cross the glomerular filtration barrier, being reabsorbed mainly by the proximal tubule through different mechanisms. However, it has been demonstrated that albumin suffers different posttranslational modifications, including oxidation, which appears to be tightly linked to kidney damage progression and is increased in obese patients. Plasma-oxidized albumin levels correlate with a decrease in estimated glomerular filtration rate and an increase in blood urea nitrogen in patients with chronic kidney disease. Moreover, oxidized albumin in kidney disease patients is independently correlated with higher plasma levels of transforming growth factor beta (TGF-β1), tumor necrosis factor (TNF-α), and interleukin (IL)-1β and IL-6. In addition, oxidized albumin exerts a direct effect on neutrophils by augmenting the levels of neutrophil gelatinase-associated lipocalin, a well-accepted biomarker for renal damage in patients and in different experimental settings. Moreover, it has been suggested that albumin oxidation occurs at early stages of chronic kidney disease, accelerating the patient requirements for dialytic treatment during disease progression. In this review, we summarize the evidence supporting the role of overweight- and obesity-induced oxidative stress as a critical factor for the progression of renal disease and cardiovascular morbimortality through albumin oxidation.
Collapse
Affiliation(s)
- Stefanny M. Figueroa
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Patricio Araos
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Javier Reyes
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Basile Gravez
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
| | - Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Cristián A. Amador
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (S.M.F.); (P.A.); (J.R.); (B.G.)
- Correspondence: ; Tel.: +56-22-303-6662
| |
Collapse
|
12
|
Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: The role of autophagy. J Biochem Mol Toxicol 2021; 35:e22710. [PMID: 33506967 DOI: 10.1002/jbt.22710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
The critical roles played by advanced glycation endproducts (AGEs) accumulation in diabetes and diabetic complications have gained intense recognition. AGEs interfere with the normal functioning of almost every organ with multiple actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction, and oxidative stress. However, the development of a potential treatment strategy is yet to be established. Autophagy is an evolutionarily conserved cellular process that maintains cellular homeostasis with the degradation and recycling systems. AGEs can activate autophagy signaling, which could be targeted as a therapeutic strategy against AGEs induced problems. In this review, we have provided an overview of the adverse effects of AGEs, and we put forth the notion that autophagy could be a promising targetable strategy against AGEs.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Giglio RV, Lo Sasso B, Agnello L, Bivona G, Maniscalco R, Ligi D, Mannello F, Ciaccio M. Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 2020; 9:3634. [PMID: 33187372 PMCID: PMC7697299 DOI: 10.3390/jcm9113634] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a heterogeneous and dysmetabolic chronic disease in which the laboratory plays a fundamental role, from diagnosis to monitoring therapy and studying complications. Early diagnosis and good glycemic control should start as early as possible to delay and prevent metabolic and cardio-vascular complications secondary to this disease. Glycated hemoglobin is currently used as the reference parameter. The accuracy of the glycated hemoglobin dosage may be compromised in subjects suffering from chronic renal failure and terminal nephropathy, affected by the reduction in the survival of erythrocytes, with consequent decrease in the time available for glucose to attach to the hemoglobin. In the presence of these renal comorbidities as well as hemoglobinopathies and pregnancy, glycated hemoglobin is not reliable. In such conditions, dosage of glycated albumin can help. Glycated albumin is not only useful for short-term diagnosis and monitoring but predicts the risk of diabetes, even in the presence of euglycemia. This protein is modified in subjects who do not yet have a glycemic alteration but, as a predictive factor, heralds the risk of diabetic disease. This review summarizes the importance of glycated albumin as a biomarker for predicting and stratifying the cardiovascular risk linked to multiorgan metabolic alterations.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
| | - Bruna Lo Sasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
| | - Giulia Bivona
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
14
|
Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, d'Hellencourt CL, Rondeau P. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvasc Res 2020; 133:104098. [PMID: 33075405 DOI: 10.1016/j.mvr.2020.104098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
During diabetes mellitus, advanced glycation end-products (AGEs) are major contributors to the development of alterations in cerebral capillaries, leading to the disruption of the blood-brain barrier (BBB). Consequently, this is often associated with an amplified oxidative stress response in microvascular endothelial cells. As a model to mimic brain microvasculature, the bEnd.3 endothelial cell line was used to investigate cell barrier function. Cells were exposed to native bovine serum albumin (BSA) or modified BSA (BSA-AGEs). In the presence or absence of the antioxidant compound, N-acetyl-cysteine, cell permeability was assessed by FITC-dextran exclusion, intracellular free radical formation was monitored with H2DCF-DA probe, and mitochondrial respiratory and redox parameters were analyzed. We report that, in the absence of alterations in cell viability, BSA-AGEs contribute to an increase in endothelial cell barrier permeability and a marked and prolonged oxidative stress response. Decreased mitochondrial oxygen consumption was associated with these alterations and may contribute to reactive oxygen species production. These results suggest the need for further research to explore therapeutic interventions to restore mitochondrial functionality in microvascular endothelial cells to improve brain homeostasis in pathological complications associated with glycation.
Collapse
Affiliation(s)
- Anthony Dobi
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Sarah Rosanaly
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Pascal Baret
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; CHU de La Réunion, Centre d'Investigation Clinique, 97400 Saint-Denis, France
| | - G Jean Harry
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA.
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France.
| |
Collapse
|
15
|
Adeshara KA, Bangar NS, Doshi PR, Diwan A, Tupe RS. Action of metformin therapy against advanced glycation, oxidative stress and inflammation in type 2 diabetes patients: 3 months follow-up study. Diabetes Metab Syndr 2020; 14:1449-1458. [PMID: 32769032 DOI: 10.1016/j.dsx.2020.07.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Persistence hyperglycemia results in the formation of advanced glycation end products (AGEs) by non-enzymatic glycation. AGEs and their receptor RAGE play an important role in generation of inflammatory molecules and oxidative stress. Metformin regulates insulin responsive gene and helps to achieve glycemic control however, no extensive study reported about its role against glycation induced oxidative stress and vascular inflammation. Therefore, present work focused on clinical relevance of three months metformin therapy in type 2 diabetes mellitus patients against glycation induced oxidative stress and vascular inflammation. METHODS Among recruited 40 medicated-naive type 2 diabetes mellitus patients, 31 patients were continued with metformin therapy. Biomarkers of plasma protein glycation (fructosamine, protein carbonyls, β-amyloid) antioxidants and oxidative stress markers (GSH, catalase, NO, PON-1, AOPP, LPO; RAGE isoforms (sRAGE, esRAGE); inflammatory markers (IL-6, TNF-α) were determined at baseline and after 3-months of treatment. The expression profile of membrane RAGE, NF-κB, CML was studied in PBMNCs and GLUT-1 in erythrocyte ghost by western blotting. RESULTS Metformin showed maximum percent declined from baseline to three months therapy in levels of fructosamine, β-amyloid, sRAGE, inflammatory cytokines (IL-6, TNF-α) and percent increment in esRAGE and antioxidants levels. It showed reduced levels of IL-6 and TNF-α by declining expression of CML, membrane RAGE and NF-κB in type 2 diabetes mellitus patients after three months therapy. CONCLUSIONS First report in Indian diabetes mellitus patients, where metformin showed effective inhibition against glycation and receptor mediated cellular inflammation. However, these findings need to be tested in a randomized trial.
Collapse
Affiliation(s)
- Krishna A Adeshara
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Nilima S Bangar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Paras R Doshi
- Department of Medicine, Bharati Vidyapeeth's Medical College and Bharati Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Arundhati Diwan
- Department of Medicine, Bharati Vidyapeeth's Medical College and Bharati Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra State, India.
| |
Collapse
|
16
|
Pestel J, Robert M, Corbin S, Vidal H, Eljaafari A. Involvement of glycated albumin in adipose-derived-stem cell-mediated interleukin 17 secreting T helper cell activation. World J Stem Cells 2020; 12:621-632. [PMID: 32843918 PMCID: PMC7415245 DOI: 10.4252/wjsc.v12.i7.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGE) are a marker of various diseases including diabetes, in which they participate to vascular damages such as retinopathy, nephropathy and coronaropathy. Besides those vascular complications, AGE are involved in altered metabolism in many tissues, including adipose tissue (AT) where they contribute to reduced glucose uptake and attenuation of insulin sensitivity. AGE are known to contribute to type 1 diabetes (T1D) through promotion of interleukin (IL)-17 secreting T helper (Th17) cells.
AIM To investigate whether lean adipose-derived stem cells (ASC) could be able to induce IL-17A secretion, with the help of AGE.
METHODS As we have recently demonstrated that ASC are involved in Th17 cell promotion when they are harvested from obese AT, we used the same co-culture model to measure the impact of glycated human serum albumin (G-HSA) on human lean ASC interacting with blood mononuclear cells. IL-17A and pro-inflammatory cytokine secretion were measured by ELISA. Receptor of AGE (RAGE) together with intercellular adhesion molecule 1 (ICAM-1), human leukocyte Antigen (HLA)-DR, cluster of differentiation (CD) 41, and CD62P surface expressions were measured by cytofluorometry. Anti-RAGE specific monoclonal antibody was added to co-cultures in order to evaluate the role of RAGE in IL-17A production.
RESULTS Results showed that whereas 1% G-HSA only weakly potentiated the production of IL-17A by T cells interacting with ASC harvested from obese subjects, it markedly increased IL-17A, but also interferon gamma and tumor necrosis factor alpha production in the presence of ASC harvested from lean individuals. This was associated with increased expression of RAGE and HLA-DR molecule by co-cultured cells. Moreover, RAGE blockade experiments demonstrated RAGE specific involvement in lean ASC-mediated Th-17 cell activation. Finally, platelet aggregation and ICAM-1, which are known to be induced by AGE, were not involved in these processes.
CONCLUSION Thus, our results demonstrated that G-HSA potentiated lean ASC-mediated IL-17A production in AT, suggesting a new mechanism by which AGE could contribute to T1D pathophysiology.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060 CarMen, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
| | - Maud Robert
- INSERM U1060 CarMen, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- Department of Surgery in Gastro-enterology, Edouard Herriot Hospital, Lyon 69003, France
| | - Sara Corbin
- Public Health Department, Hospices Civils de Lyon, 1 quai des célestins Lyon 69002, France
| | - Hubert Vidal
- INSERM U1060 CarMen, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
| | - Assia Eljaafari
- INSERM U1060 CarMen, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, Batiment CENS-ELI, Centre Hospitalier Lyon Sud, Pierre Bénite 69310, France
- DO-IT Research Team, Hospices Civils de Lyon, 1 quai des célestins, Lyon 69002, France
| |
Collapse
|
17
|
Fayazi R, Habibi-Rezaei M, Heiat M, Javadi-Zarnaghi F, Taheri RA. Glycated albumin precipitation using aptamer conjugated magnetic nanoparticles. Sci Rep 2020; 10:10716. [PMID: 32612182 PMCID: PMC7329883 DOI: 10.1038/s41598-020-67469-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
To develop a strategy for the elimination of prefibrillar amyloid aggregates, a three-step non-modified DNA aptamer conjugation on silica-coated magnetic nanoparticles was carried out to achieve aptamer conjugated on MNP (Ap-SiMNP). Prefibrillar amyloid aggregates are generated under a diabetic condition which are prominently participated in developing diabetic complications. The binding properties of candidate DNA aptamer against serum albumin prefibrillar amyloid aggregates (AA20) were verified using electrophoretic mobility shift assay (EMSA) and surface plasmon resonance spectroscopy (SPR) analysis. The chloro-functionalized silica-coated MNPs were synthesized then a nano-targeting structure as aptamer conjugated on MNP (Ap-SiMNP) was constructed. Finally, Ap-SiMNP was verified for specific binding efficiency and AA20 removal using an external magnetic field. The candidate aptamer showed a high binding capacity at EMSA and SPR analysis (KD = 3.4 × 10─9 M) and successfully used to construct Ap-SiMNP. Here, we show a proof of concept for an efficient bio-scavenger as Ap-SiMNP to provide a promising opportunity to consider as a possible strategy to overcome some diabetic complications through specific binding/removal of toxic AA20 species.
Collapse
Affiliation(s)
- R Fayazi
- School of Biology, University of Tehran, P.O.Box 14155-6455, Tehran, Iran
| | - M Habibi-Rezaei
- School of Biology, University of Tehran, P.O.Box 14155-6455, Tehran, Iran.
- Center of Excellence in Nano-Biomedicine, University of Tehran, Tehran, Iran.
| | - M Heiat
- Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - F Javadi-Zarnaghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - R A Taheri
- Nanobiotechnolology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9020142. [PMID: 32041293 PMCID: PMC7070562 DOI: 10.3390/antiox9020142] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions, favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury, and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular levels of hydrogen peroxide (H2O2), superoxide (O2−), and nitric oxide (NO). The interaction of AGEs with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell metabolism under various pathological conditions. This short review will summarize all evidence that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the latest research about the use of natural compounds with antioxidant properties to prevent the harmful effects of AGEs on health.
Collapse
Affiliation(s)
- Vanesa Cepas
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy;
| | - Juan C. Mayo
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| | - Rosa M. Sainz
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| |
Collapse
|
19
|
Martinez Fernandez A, Regazzoni L, Brioschi M, Gianazza E, Agostoni P, Aldini G, Banfi C. Pro-oxidant and pro-inflammatory effects of glycated albumin on cardiomyocytes. Free Radic Biol Med 2019; 144:245-255. [PMID: 31260731 DOI: 10.1016/j.freeradbiomed.2019.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is the most abundant circulating protein in the body and presents an extensive range of biological functions. As such, it is prone to undergo post-translational modifications (PTMs). The non-enzymatic early glycation of HSA, one of the several PTMs undergone by HSA, arises from the addition of reducing sugars to amine group residues, thus modifying the structure of HSA. These changes may affect HSA functions impairing its biological activity, finally leading to cell damage. The aim of this study was to quantitate glycated-HSA (GA) levels in the plasma of heart failure (HF) patients and to evaluate the biological effects of GA on HL-1 cardiomyocytes. Plasma GA content from HF patients and healthy subjects was measured by direct infusion electrospray ionization mass spectrometry (ESI-MS). Results pointed out a significant increase of GA in HF patients with respect to the control group (p < 0.05). Additionally, after stimulation with GA, proteomic analysis of HL-1 secreted proteins showed the modulation of several proteins involved, among other processes, in the response to stress. Further, stimulated cells showed a rapid increase in ROS generation, higher mRNA levels of the inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), and higher levels of the oxidative 4-HNE-protein adducts and carbonylated proteins. Our findings show that plasma GA is increased in HF patients. Further, GA exerts pro-inflammatory and pro-oxidant effects on cardiomyocytes, which suggest a causal role in the etiopathogenesis of HF.
Collapse
MESH Headings
- Aged
- Case-Control Studies
- Cell Death
- Cell Line
- Dyslipidemias/blood
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Female
- Gene Expression Profiling
- Gene Ontology
- Glycation End Products, Advanced
- Glycosylation
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/pathology
- Humans
- Hypertension/blood
- Hypertension/genetics
- Hypertension/pathology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lysine/analogs & derivatives
- Lysine/blood
- Male
- Middle Aged
- Molecular Sequence Annotation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/genetics
- Protein Carbonylation
- Protein Processing, Post-Translational
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Serum Albumin/pharmacology
- Serum Albumin, Human/chemistry
- Serum Albumin, Human/genetics
- Serum Albumin, Human/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Glycated Serum Albumin
Collapse
Affiliation(s)
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
20
|
Insulin attenuates epileptiform discharge-induced oxidative stress by increasing zinc-α2-glycoprotein in primary cultured cortical neurons. Neuroreport 2019; 30:580-585. [DOI: 10.1097/wnr.0000000000001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Shen Y, Ding FH, Dai Y, Wang XQ, Zhang RY, Lu L, Shen WF. Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol 2018; 17:26. [PMID: 29422093 PMCID: PMC5804044 DOI: 10.1186/s12933-018-0671-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extent of coronary collateral formation is a primary determinant of the severity of myocardial damage and mortality after coronary artery occlusion. Type 2 diabetes mellitus (T2DM) represents an important risk factor for impaired collateral vessel growth. However, the mechanism of reduced coronary collateralization in type 2 diabetic patients remains unclear. METHODS With the reference to the recent researches, this review article describes the pathogenic effects of T2DM on collateral development and outlines possible clinical and biochemical markers associated with reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion (CTO). RESULTS Diffuse coronary atherosclerosis in T2DM reduces pressure gradient between collateral donor artery and collateral recipient one, limiting collateral vessel growth and function. An interaction between advanced glycation end-products and their receptor activates several intracellular signaling pathways, enhances oxidative stress and aggravates inflammatory process. Diabetic condition decreases pro-angiogenic factors especially vascular endothelial growth factor and other collateral vessel growth related parameters. Numerous clinical and biochemical factors that could possibly attenuate the development of coronary collaterals have been reported. Increased serum levels of glycated albumin, cystatin C, and adipokine C1q tumor necrosis factor related protein 1 were associated with poor coronary collateralization in type 2 diabetic patients with stable coronary artery disease and CTO. Diastolic blood pressure and stenosis severity of the predominant collateral donor artery also play a role in coronary collateral formation. CONCLUSIONS T2DM impairs collateral vessel growth through multiple mechanisms involving arteriogenesis and angiogenesis, and coronary collateral formation in patients with T2DM and CTO is influenced by various clinical, biochemical and angiographic factors. This information provides insights into the understanding of coronary pathophysiology and searching for potential new therapeutic targets in T2DM.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Feng Hua Ding
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Yang Dai
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025 People’s Republic of China
| | - Xiao Qun Wang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Rui Yan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025 People’s Republic of China
| | - Wei Feng Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
22
|
Peyron I, Dimitrov JD, Delignat S, Gangadharan B, Srivastava A, Kaveri SV, Lacroix-Desmazes S. Oxidation of factor VIII increases its immunogenicity in mice with severe hemophilia A. Cell Immunol 2018; 325:64-68. [PMID: 29395036 DOI: 10.1016/j.cellimm.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/30/2017] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
The development of antibodies against therapeutic factor VIII (FVIII) represents the major complication of replacement therapy in patients with severe hemophilia A. Amongst the environmental risk factors that influence the anti-FVIII immune response, the presence of active bleeding or hemarthrosis has been evoked. Endothelium damage is typically associated with the release of oxidative compounds. Here, we addressed whether oxidation contributes to FVIII immunogenicity. The control with N-acetyl cysteine of the oxidative status in FVIII-deficient mice, a model of severe hemophilia A, reduced the immune response to exogenous FVIII. Ex vivo exposure of therapeutic FVIII to HOCl induced a mild oxidation of the molecule as evidenced by the loss of free amines and resulted in increased FVIII immunogenicity in vivo when compared to native FVIII. The increased immunogenicity of oxidized FVIII was not reverted by treatment of mice with N-acetyl cysteine, and did not implicate an increased maturation of professional antigen-presenting cells. Our data document that oxidation influences the immunogenicity of therapeutic FVIII.
Collapse
Affiliation(s)
- Ivan Peyron
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Jordan D Dimitrov
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sandrine Delignat
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Bagirath Gangadharan
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Srinivas V Kaveri
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France
| | - Sébastien Lacroix-Desmazes
- INSERM, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris6, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France; Université Paris Descartes, UMR S 1138, Centre de recherche des Cordeliers, Paris F-75006, France.
| |
Collapse
|
23
|
Yaribeygi H, Farrokhi FR, Rezaee R, Sahebkar A. Oxidative stress induces renal failure: A review of possible molecular pathways. J Cell Biochem 2018; 119:2990-2998. [DOI: 10.1002/jcb.26450] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Habib Yaribeygi
- Health Research CenterBaqiyatallah University of Medical SciencesTehranIran
- Chronic Kidney Diseases Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Farin R. Farrokhi
- Chronic Kidney Diseases Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterInstitute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
24
|
Neelofar K, Ahmad J. An overview of in vitro and in vivo glycation of albumin: a potential disease marker in diabetes mellitus. Glycoconj J 2017; 34:575-584. [PMID: 28812216 DOI: 10.1007/s10719-017-9789-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/27/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glycation of macromolecules, especially proteins leading to their oxidation is increased in diabetes mellitus due to hyperglycaemia and play an important role in associated complications of the disease. Protein glycation mostly occurs in intra chain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). This review deals with the structural studies of in vitro and in vivo glycated human serum albumin (HSA). The aim of this review is to explain the disturbance in secondary and tertiary structure of albumin upon glucosylation and the immunogenic potential of modified albumin. Amadori-albumin may have enough potential to provoke the immunoregulatry cells and generate autoantibodies in diabetic patients. Role of Amadori-albumin in the induction of autoantibodies in type2 diabetes especially in chronic kidney disease (CKD) patients has been discussed. This review also considers various studies that investigate the effects of glycation on the structural and immunological properties of HSA. The use of glycated albumin (GA) as a short to intermediate term marker for glycaemic control in diabetes is also focused.
Collapse
Affiliation(s)
- Km Neelofar
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
25
|
Baret P, Le Sage F, Planesse C, Meilhac O, Devin A, Bourdon E, Rondeau P. Glycated human albumin alters mitochondrial respiration in preadipocyte 3T3-L1 cells. Biofactors 2017; 43:577-592. [PMID: 28543688 DOI: 10.1002/biof.1367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Diabetes and obesity are strongly associated with increased levels of circulating advanced glycation end products (AGEs) and reactive oxygen species (ROS). These two molecular phenomena affect the physiology of adipose tissue, a biological driver of the metabolic syndrome, leading to an inflammatory profile and insulin resistance, which could contribute to obesity/diabetes-associated complications, such as cardiovascular diseases. Herein, we investigated the impact of AGEs on mitochondrial bioenergetics in murine preadipocyte cells (3T3-L1) and cellular redox homeostasis. We show that incubation of preadipocytes with AGEs stimulates mitochondrial activity and respiration while inducing oxidative stress. This AGE-induced intracellular ROS production was blocked by diphenylene iodonium, an NAD(P)H oxidase inhibitor. In parallel, antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) were found to be activated upon AGE treatment. Our results suggest that AGE-induced oxidative stress is generated by NAD(P)H oxidase and leads to a cellular proliferation arrest associated with enhanced mitochondrial metabolism and biogenesis, and with increased levels of ROS-detoxifying enzymes, as well. These new data show how AGEs may be involved in hyperglycemia-induced oxidative damage in preadipocytes and their potential links to diabetes progression. © 2017 BioFactors, 43(4):577-592, 2017.
Collapse
Affiliation(s)
- Pascal Baret
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Fanny Le Sage
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- CHU de La Réunion, Centre d'Investigation Clinique, Saint-Denis, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Emmanuel Bourdon
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| |
Collapse
|
26
|
Patche J, Girard D, Catan A, Boyer F, Dobi A, Planesse C, Diotel N, Guerin-Dubourg A, Baret P, Bravo SB, Paradela-Dobarro B, Álvarez E, Essop MF, Meilhac O, Bourdon E, Rondeau P. Diabetes-induced hepatic oxidative stress: a new pathogenic role for glycated albumin. Free Radic Biol Med 2017; 102:133-148. [PMID: 27890722 DOI: 10.1016/j.freeradbiomed.2016.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/29/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023]
Abstract
Increased oxidative stress and advanced glycation end-product (AGE) formation are major contributors to the development of type 2 diabetes. Here plasma proteins e.g. albumin can undergo glycoxidation and play a key role in diabetes onset and related pathologies. However, despite recent progress linking albumin-AGE to increased oxidative stress and downstream effects, its action in metabolic organs such as the liver remains to be elucidated. The current study therefore investigated links between oxidative perturbations and biochemical/structural modifications of plasma albumin, and subsequent downstream effects in transgenic db/db mouse livers and HepG2 cells, respectively. Our data reveal increased oxidative stress biomarkers and lipid accumulation in plasma and livers of diabetic mice, together with albumin glycoxidation. Purified mouse albumin modifications resembled those typically found in diabetic patients, i.e. degree of glycation, carbonylation, AGE levels and in terms of chemical composition. Receptor for AGE expression and reactive oxygen species production were upregulated in db/db mouse livers, together with impaired proteolytic, antioxidant and mitochondrial respiratory activities. In parallel, acute exposure of HepG2 cells to glycated albumin also elicited intracellular free radical formation. Together this study demonstrates that AGE-modified albumin can trigger damaging effects on the liver, i.e. by increasing oxidative stress, attenuating antioxidant capacity, and by impairment of hepatic proteolytic and respiratory chain enzyme activities.
Collapse
Affiliation(s)
- Jessica Patche
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Dorothée Girard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Aurélie Catan
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Florence Boyer
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Anthony Dobi
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Alexis Guerin-Dubourg
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France; Centre Hospitalier Gabriel Martin, Saint-Paul de La Réunion, France
| | - Pascal Baret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
| | - Susana B Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Beatriz Paradela-Dobarro
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France; CHU de La Réunion, Centre d'Investigation Clinique, Saint-Denis F-97400, France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France.
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France.
| |
Collapse
|
27
|
Wang JY, Chuang HN, Chiu JH, Fu SL, Tsai TH, Tsou AP, Hu CP, Chi CW, Yeh SF, Lui WY, Wu CW, Chou CK. Effects of Scutellaria baicalensis Georgi on Macrophage-Hepatocyte Interaction Through Cytokines Related to Growth Control of Murine Hepatocytes. Exp Biol Med (Maywood) 2016; 231:444-55. [PMID: 16565440 DOI: 10.1177/153537020623100410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of this study is to elucidate the effects of Scutellaria baicalensis Georgi (SbG) extract and its constituents on macrophage-hepatocyte interaction in primary cultures. By using trans-well primary Kupffer cell culture or conditioned medium (CM) from murine macrophage RAW264.7 cell line (RAW cells), effects of SbG on hepatocyte growth were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and trypan blue exclusion assay. Cytokine production, antibody-neutralization studies, and molecular mechanisms of transforming growth factor (TGF)-β1 gene expression were elucidated on SbG-treated RAW264.7 cells. In addition, recombinant human TGF-β1 (r-human TGF-β1) was added to elucidate the mechanisms of SbG effects on cultured hepatocytes. Immunohistochemistry using anti-NF-κB antibody was used to determine the possible signal transduction pathways in primary hepatocyte culture. The results showed that SbG stimulated the proliferation of cultured hepatocytes, possibly through NF-κB, but not of Toll-like receptor 4 activation; whereas SbG-RAW-CM and SbG in trans-well significantly suppressed the proliferation of hepatocytes. Antibody-neutralization studies revealed that TGF-β1 was the main antimitotic cytokine in SbG-treated RAW cells CM. The growth stimulation effect of SbG on cultured hepatocytes was inhibited by exogenous administration of r-human TGF-β1. Furthermore, SbG induced NF-κB translocation into the nuclei of cultured cells. In the RAW264.7 line, SbG and baicalin stimulated TGF-β1 gene expression via NF-κB and protein kinase C activation. We conclude that SbG stimulates hepatocyte growth via activation of the NF-κB pathway and induces TGF-β1 gene expression through the Kupffer cell–hepatocyte interaction, which subsequently results in the inhibition of SbG-stimulated hepatocyte growth.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Choi HY, Park SK, Yun GY, Choi AR, Lee JE, Ha SK, Park HC. Glycated Albumin is Independently Associated With Arterial Stiffness in Non-Diabetic Chronic Kidney Disease Patients. Medicine (Baltimore) 2016; 95:e3362. [PMID: 27100419 PMCID: PMC4845823 DOI: 10.1097/md.0000000000003362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycated albumin (GA) exhibits atherogenic effects and increased serum GA levels are associated with the development of cardiovascular complications in diabetic patients. GA production also increases with aging, oxidative stress, and renal dysfunction. We performed this study to further ascertain the association between GA and arterial stiffness in nondiabetic chronic kidney disease (CKD) patients. We enrolled 129 nondiabetic CKD patients. Arterial stiffness was measured by brachial-ankle pulse wave velocity (baPWV) using a volume plethysmographic instrument along with simultaneous measurements of GA. Insulin resistance was determined with the homeostatic model assessment. The estimated glomerular filtration rate was calculated using serum creatinine and cystatin C according to the CKD-EPI Creatinine-Cystatin C equation adjusted for age, sex, and race (eGFRcr-cys). Nondiabetic CKD patients with arterial stiffness (baPWV ≥1400 cm/s) showed higher GA levels than those without arterial stiffness (14.2 [8.7-20.2]% vs 13.0 [8.8-18.9]%, P = 0.004). In the subgroup analysis, the patients who had both a higher GA level and a lower eGFRcr-cys, showed the highest baPWV compared with patients with a higher GA or a lower GFR alone. By Spearman's correlation analysis, GA correlated significantly with baPWV (r = +0.291, P = 0.001) and fasting serum glucose level (r = +0.191, P = 0.030), whereas The homeostatic model assessment of insulin resistance did not show any significant correlation with baPWV. Systolic blood pressure (r = +0.401 P < 0.001), age (r = +0.574, P < 0.001), high-density lipoprotein (HDL)-cholesterol level (r = -0.317, P < 0.001), and eGFRcr-cys (r = -0.285, P = 0.002) had a significant correlation with baPWV. According to multivariable logistic regression analysis, higher GA and systolic blood pressure were the independent risk factors affecting arterial stiffness. Our results suggest that serum GA is a potential risk factor of arterial stiffness in nondiabetic CKD patients.
Collapse
Affiliation(s)
- Hoon Young Choi
- From the Department of Internal Medicine, Gangnam Severance Hospital (HYC, SKP, GYY, ARC, SKH, HCP); Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine (HYC, HCP), Seoul; and Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine (JEL), Gyeongi-do, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Raposeiras-Roubín S, González-Peteiro M, González-Juanatey JR, Álvarez E. Glycated human serum albumin induces NF-κB activation and endothelial nitric oxide synthase uncoupling in human umbilical vein endothelial cells. J Diabetes Complications 2015; 29:984-92. [PMID: 26297216 DOI: 10.1016/j.jdiacomp.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
AIMS Non-enzymatic glycated proteins could mediate diabetes vascular complications, but the molecular mechanisms are unknown. Our objective was to find new targets involved in the glycated human serum albumin (gHSA)-enhanced extracellular reactive oxygen species (ROS) production in human endothelial cells. METHODS & RESULTS Some nuclear factors and phosphorylation cascades were analysed. gHSA activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which up-regulated NOX4 and P22PHOX and enhanced ROS production. Pharmacological inhibition of NF-κB reversed gHSA-enhanced NOX4 expression and decreased gHSA-induced ROS production in extra- and intracellular spaces. The inhibition of activator protein-1 (AP-1) induced a rise in NOX4 and P22PHOX subunit expression and a down-regulation of endothelial nitric oxide synthase (eNOS). AP-1 inhibition also enhanced extracellular ROS production in the presence of serum albumin, but not with gHSA. These results were explained by the eNOS uncoupling induced by gHSA, also demonstrated in this study. Phosphatidylinositol 3-kinase or mitogen-activated protein kinase kinase 1/2 did not show to be involved in gHSA-induced ROS production. CONCLUSIONS All together, the results suggested that gHSA-enhanced ROS production in endothelium is mediated by: 1) NF-κB activation and subsequence up-regulation of NADPH oxidase, 2) eNOS uncoupling. AP-1, although is not directly affected by gHSA, is another target for regulating NADPH oxidase and eNOS expression in endothelial cells.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Beatriz Paradela-Dobarro
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Sergio Raposeiras-Roubín
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Mercedes González-Peteiro
- Unidad de Medicina Materno-Fetal, Servicio de Obstetricia, Complejo Hospitalario Universitario de Santiago de Compostela, 15706 A Coruña, Spain
| | - José R González-Juanatey
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain
| | - Ezequiel Álvarez
- Departamento de Medicina, Universidad de Santiago de Compostela; Servicio de Cardiología, Complejo Hospitalario Universitario de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 A Coruña, Spain.
| |
Collapse
|
30
|
Roux-en-Y Esophagojejunostomy Ameliorates Renal Function Through Reduction of Renal Inflammatory and Fibrotic Markers in Diabetic Nephropathy. Obes Surg 2015; 26:1402-13. [DOI: 10.1007/s11695-015-1947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Li M, Hagerman AE. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation. Free Radic Res 2015; 49:946-53. [PMID: 25794449 DOI: 10.3109/10715762.2015.1016429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation.
Collapse
Affiliation(s)
- M Li
- Department of Chemistry and Biochemistry, Miami University , Oxford, OH , USA
| | | |
Collapse
|
32
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
33
|
Kilari EK, Putta S, Koratana R, Nagireddy NR, Qureshi AA. Inhibitory Effects of Methonolic Pericarp Extract of Feronia limonia on in vitro Protein Glycoxidation. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2015.35.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Raghav A, Ahmad J. Glycated serum albumin: a potential disease marker and an intermediate index of diabetes control. Diabetes Metab Syndr 2014; 8:245-251. [PMID: 25311816 DOI: 10.1016/j.dsx.2014.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycation is a non-enzymatic spontaneous process in proteins which has remarkable impact on its physical and functional aspect. This alteration with addition of carbohydrate residue to human serum albumin leads to several pathological events such as diabetic nephropathy, neuropathy, retinopathy and cardiovascular complications. Human serum albumin is the major protein and is most susceptible to non-enzymatic glycation. Structural and biological properties of functional albumin alter due to the addition of reducing carbohydrate to free amino terminal residues vivo. These irreversible changes in functional albumin are stable which makes this modified albumin as new gold standard future diagnostic marker in diabetes associated complications. Glycated albumin can be used to determine the glycemic control due to short half life than erythrocytes which makes it an alternate reliable disease marker in diabetes. In this review, Human serum albumin glycation has been overviewed, stating concept of glycation and sites that are prone to this modifications. Impact of non-enzymatic addition of carbohydrate to albumin's structural and biological properties has also been elaborated. Accurate measurements of glycated albumin with implications of new highly sensitive techniques have also been described briefly. Interestingly human serum albumin imposed glycation can serve as future tool not for diagnosing diabetes but also its potential in assessment of diabetes associated complications.
Collapse
Affiliation(s)
- Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
35
|
Girard D, Rondeau P, Catan A, Planesse C, Giraud P, Bourdon E. Oxidative damage in diabetics: insights from a graduate study in La Reunion University. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:435-442. [PMID: 25132514 DOI: 10.1002/bmb.20818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/02/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Due to the growing incidence of diabetes in developed nations, there is a compelling case to be made for teaching graduate students more deeply about mechanisms underlying this disease. Diabetes is associated with enhanced oxidative stress and protein glycation via the covalent binding of glucose molecules. Albumin represents the major plasmatic protein and undergoes enhanced glycoxidative modifications in diabetic condition. La Réunion Island, a French department located in the Indian Ocean exhibit a growing incidence of diabetes. At the University of La Réunion, our research group named GEICO (Groupe d'Etude sur l'Inflammation Chronique et l'Obésité) participated to foster research and training in diabetes context and focuses on the impact of glycated albumin mediated oxidative stress on cell physiopathology. A laboratory course was designed by our group to introduce graduate students to cutting edge techniques in redox biology while providing insights into scientific processes and methods. This two weeks research laboratory training took place at CYROI, a local biotechnology center that provides advanced facilities for research, business, and education. Using histochemistry, molecular biology, biochemical techniques, student investigated oxidative damages in liver from leptin receptor deficient diabetic mice compared to control littermates. In addition, they used an in vitro model by assaying oxidative impact of glycated albumin on hepatoma carcinoma HepG2 cells. This article gives an overview of the organization and protocol used by the students during their two weeks training in the laboratory. Therefore, it may be helpful for teaching graduate students techniques used in research laboratory working on redox biology.
Collapse
Affiliation(s)
- Dorothée Girard
- Groupe d'étude sur l'inflammation chronique et l'obésité (GEICO), Plateforme CYROI, Université de La Réunion, Saint Denis de La Réunion, France
| | | | | | | | | | | |
Collapse
|
36
|
Bhat S, Mary S, Banarjee R, Giri AP, Kulkarni MJ. Immune response to chemically modified proteome. Proteomics Clin Appl 2014; 8:19-34. [PMID: 24375944 DOI: 10.1002/prca.201300068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
Both enzymatic and nonenzymatic PTMs of proteins involve chemical modifications. Some of these modifications are prerequisite for the normal functioning of cell, while other chemical modifications render the proteins as "neo-self" antigens, which are recognized as "non-self" leading to aberrant cellular and humoral immune responses. However, these modifications could be a secondary effect of autoimmune diseases, as in the case of type I diabetes, hyperglycemia leads to protein glycation. The enigma of chemical modifications and immune response is akin to the "chick-and-egg" paradox. Nevertheless, chemical modifications regulate immune response. In some of the well-known autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, chemically modified proteins act as autoantigens forming immune complexes. In some instances, chemical modifications are also involved in regulating immune response during pathogen infection. Further, the usefulness of proteomic analysis of immune complexes is briefly discussed.
Collapse
Affiliation(s)
- Shweta Bhat
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
37
|
Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P. Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta Gen Subj 2014; 1840:1712-24. [PMID: 24380878 DOI: 10.1016/j.bbagen.2013.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
|
38
|
Pielesz A, Paluch J. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis. Electrophoresis 2014; 35:2237-44. [PMID: 24853731 DOI: 10.1002/elps.201400178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Abstract
Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen.
Collapse
Affiliation(s)
- Anna Pielesz
- Faculty of Materials and Environment Sciences, University of Bielsko-Biała, Bielsko-Biała, Poland
| | | |
Collapse
|
39
|
Zdarska DJ, Kvapil M, Rusavy Z, Krcma M, Broz J, Krivska B, Kadlecova P. Comparison of glucose variability assessed by a continuous glucose-monitoring system in patients with type 2 diabetes mellitus switched from NPH insulin to insulin glargine: The COBIN2 study. Wien Klin Wochenschr 2014; 126:228-37. [DOI: 10.1007/s00508-014-0508-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 01/22/2014] [Indexed: 02/01/2023]
|
40
|
Rojas A, Pérez-Castro R, González I, Delgado F, Romero J, Rojas I. The emerging role of the receptor for advanced glycation end products on innate immunity. Int Rev Immunol 2014; 33:67-80. [PMID: 24266871 DOI: 10.3109/08830185.2013.849702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 02/05/2023]
Abstract
Cells from innate immune system are activated by the engagement of germ-line encoded pattern-recognition receptors (PRRs) in response to the microbial insult. These receptors are able to recognize either the presence of highly conserved microbial components called pathogen-associated molecular patterns or endogenous danger-associated molecular patterns. These danger signals are recognized by different types of (PRRs), including the receptor for advanced glycation end products. This new PRR share both ligands and intracellular signaling with Toll-like receptors and thus may cooperate with each other as essential partners to strength inflammatory response. This review summarizes recent advances in understanding the promiscuity of this receptor as well as its role in the context of innate immunity by triggering an inflammatory response when innate immune cells detect infection or tissue injury.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | | | | | | | | |
Collapse
|
41
|
Rahim M, Iram S, Khan MS, Khan MS, Shukla AR, Srivastava AK, Ahmad S. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Colloids Surf B Biointerfaces 2013; 117:473-9. [PMID: 24368207 DOI: 10.1016/j.colsurfb.2013.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
Abstract
This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Moniba Rahim
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India.
| | - M Salman Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Ankur R Shukla
- Department of Environmental Sciences, EIILM University, 8th Mile Budang, Sikkim West, India
| | - A K Srivastava
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Saheem Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
42
|
Shen Y, Lu L, Ding FH, Sun Z, Zhang RY, Zhang Q, Yang ZK, Hu J, Chen QJ, Shen WF. Association of increased serum glycated albumin levels with low coronary collateralization in type 2 diabetic patients with stable angina and chronic total occlusion. Cardiovasc Diabetol 2013; 12:165. [PMID: 24209601 PMCID: PMC4225762 DOI: 10.1186/1475-2840-12-165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/05/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We investigated whether serum glycated albumin (GA) levels are related to coronary collateralization in type 2 diabetic patients with chronic total occlusion. METHODS Blood levels of GA and glycosylated hemoglobin (HbA1c) were determined in 317 diabetic and 117 non-diabetic patients with stable angina and angiographic total occlusion of at least one major coronary artery. The degree of collaterals supplying the distal aspect of a total occlusion from the contra-lateral vessel was graded as low (Rentrop score of 0 or 1) or high collateralization (Rentrop score of 2 or 3). RESULTS For diabetic patients, GA (21.2 ± 6.5% vs. 18.7 ± 5.6%, P < 0.001) but not HbA1c levels (7.0 ± 1.1% vs. 6.8 ± 1.3%, P = 0.27) was significantly elevated in low collateralization than in high collateralization group, and correlated inversely with Rentrop score (Spearmen's r = -0.28, P < 0.001; Spearmen's r = -0.10, P = 0.09, respectively). There was a trend towards a larger area under the curve of GA compared with that of HbA1c for detecting the presence of low collateralization (0.64 vs. 0.58, P = 0.15). In non-diabetic patients, both GA and HbA1c levels did not significantly differ regardless the status of coronary collateralization. In multivariable analysis, female gender, age > 65 years, smoke, non-hypertension, duration of diabetes > 10 years, metabolic syndrome, eGFR < 90 ml/min/1.73 m2, and GA > 18.3% were independently determinants for low collateralization in diabetic patients. CONCLUSIONS Increased GA levels in serum are associated with impaired collateral growth in type 2 diabetic patients with stable angina and chronic total occlusion.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Lin Lu
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Feng Hua Ding
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Rui Yan Zhang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Qi Zhang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zheng Kun Yang
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Jian Hu
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Qiu Jing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Wei Feng Shen
- Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
43
|
Cohen MP. Clinical, pathophysiological and structure/function consequences of modification of albumin by Amadori-glucose adducts. Biochim Biophys Acta Gen Subj 2013; 1830:5480-5. [PMID: 23624335 DOI: 10.1016/j.bbagen.2013.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The nonenzymatic condensation of glucose with albumin results in the formation of albumin modified by Amadori glucose adducts, the principal form in which glycated albumin exists in vivo. SCOPE OF REVIEW This review focuses on (a) the utility of measurement of Amadori-modified glycated albumin (AGA) as a biomarker in diabetes, where elevated levels attend the hyperglycemic state; (b) the role of AGA as a causal factor in the pathogenesis of complications of diabetes; (c) effects on transport properties; and (d) structural and functional consequences of the modification of albumin by Amadori glucose adducts. It does not discuss counterparts with respect to Advanced Glycation Endproducts (AGE), which may be found in other publications. MAJOR CONCLUSIONS Nonenzymatic glycation of albumin, which is increased in diabetes, has clinical relevance and pathophysiologic importance, with ramifications for the management of this disease, the development of its complications, and the transport of endogenous and exogenous ligands. GENERAL SIGNIFICANCE Appreciation of the manifold consequences of AGA has afforded new avenues for assessing clinical management of diabetes, awareness of the impact of nonenzymatic glycation on albumin biology, insights into the pathogenesis of vascular complications of diabetes, and avenues of investigation of and intervention strategies for these complications. This article is part of a Special Issue on albumin. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- Margo P Cohen
- Glycadia, Inc., 1880 JFK Boulevard, Suite 200, Philadelphia, PA 19103, United States.
| |
Collapse
|
44
|
Zhang Z, Li BY, Li XL, Cheng M, Yu F, Lu WD, Cai Q, Wang JF, Zhou RH, Gao HQ, Shen L. Proteomic analysis of kidney and protective effects of grape seed procyanidin B2 in db/db mice indicate MFG-E8 as a key molecule in the development of diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:805-16. [PMID: 23474305 DOI: 10.1016/j.bbadis.2013.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 02/04/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy, as a severe microvascular complication of diabetic mellitus, has become the leading cause of end-stage renal diseases. However, no effective therapeutic strategy has been developed to prevent renal damage progression to end stage renal disease. Hence, the present study evaluated the protective effects of grape seed procyanidin B2 (GSPB2) and explored its molecular targets underlying diabetic nephropathy by a comprehensive quantitative proteomic analysis in db/db mice. Here, we found that oral administration of GSPB2 significantly attenuated the renal dysfunction and pathological changes in db/db mice. Proteome analysis by isobaric tags for relative and absolute quantification (iTRAQ) identified 53 down-regulated and 60 up-regulated proteins after treatment with GSPB2 in db/db mice. Western blot analysis confirmed that milk fat globule EGF-8 (MFG-E8) was significantly up-regulated in diabetic kidney. MFG-E8 silencing by transfection of MFG-E8 shRNA improved renal histological lesions by inhibiting phosphorylation of extracellular signal-regulated kinase1/2 (ERK1⁄2), Akt and glycogen synthase kinase-3beta (GSK-3β) in kidneys of db/db mice. In contrast, over-expression of MFG-E8 by injection of recombinant MFG-E8 resulted in the opposite effects. GSPB2 treatment significantly decreased protein levels of MFG-E8, phospho-ERK1/2, phospho-Akt, and phospho-GSK-3β in the kidneys of db/db mice. These findings yield insights into the pathogenesis of diabetic nephropathy, revealing MFG-E8 as a new therapeutic target and indicating GSPB2 as a prospective therapy by down-regulation of MFG-E8, along with ERK1/2, Akt and GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baraka-Vidot J, Guerin-Dubourg A, Dubois F, Payet B, Bourdon E, Rondeau P. New insights into deleterious impacts of in vivo glycation on albumin antioxidant activities. Biochim Biophys Acta Gen Subj 2013; 1830:3532-41. [PMID: 23376313 DOI: 10.1016/j.bbagen.2013.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Albumin constitutes the most abundant circulating antioxidant and prevents oxidative damages. However, in diabetes, this plasmatic protein is exposed to several oxidative modifications, which impact on albumin antioxidant properties. METHODS Most studies dealing on albumin antioxidant activities were conducted on in vitro modified protein. Here we tried to decipher whether reduced antioxidant properties of albumin could be evidenced in vivo. For this, we compared the antioxidant properties of albumin purified from diabetic patients to in vitro models of glycated albumin. RESULTS Both in vivo and in vitro glycated albumins displayed impaired antioxidant activities in the free radical-induced hemolysis test. Surprisingly, the ORAC method (Oxygen Radical Antioxidant Capacity) showed an enhanced antioxidant activity for glycated albumin. Faced with this paradox, we investigated antioxidant and anti-inflammatory activities of our albumin preparations on cultured cells (macrophages and adipocytes). Reduced cellular metabolism and enhanced intracellular oxidative stress were measured in cells treated with albumin from diabetics. NF-kB -mediated gene induction was higher in macrophages treated with both type of glycated albumin compared with cells treated with native albumin. Anti inflammatory activity of native albumin is significantly impaired after in vitro glycation and albumin purified from diabetics significantly enhanced IL6 secretion by adipocytes. Expression of receptor for advanced glycation products is significantly enhanced in glycated albumin-treated cells. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results bring new evidences on the deleterious impairments of albumin important functions after glycation and emphasize the importance of in vivo model of glycation in studies relied to diabetes pathology.
Collapse
|
46
|
Wang HJ, Lo WY, Lin LJ. Angiotensin-(1-7) decreases glycated albumin-induced endothelial interleukin-6 expression via modulation of miR-146a. Biochem Biophys Res Commun 2012; 430:1157-63. [PMID: 23246834 DOI: 10.1016/j.bbrc.2012.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022]
Abstract
The presence of glycated albumin (GA) is associated with increased diabetic complications. This study investigated the effect of angiotensin-(1-7) on the expression of GA-induced endothelial interleukin-6 (IL-6) in human aortic endothelial cells (HAECs). We also evaluated whether miR-146a is involved in the post-transcriptional regulation of angiotensin-(1-7). HAECs were stimulated with GA with or without angiotensin-(1-7) pretreatment. Inflammatory cytokine screening approach identified that angiotensin-(1-7) (10(-7) M) potently inhibited GA (200 μg/mL)-stimulated endothelial IL-6 expression in conditioned medium. ELISA confirmed this finding. Real-time PCR showed that angiotensin-(1-7) decreased GA-induced intracellular IL-6 mRNA expression and western blotting showed that angiotensin-(1-7) decreased GA-induced intracellular IL-6 protein expression. Bioinformatics' miR target analysis identified homology between miR-146a and the 3'-UTR of the human IL-6 mRNA, suggesting a potential regulation of IL-6 by miR-146a. Treatment with GA decreased endothelial miR-146a expression to 37.2% of the albumin control, while angiotensin-(1-7) increased endothelial miR-146a expression to 1.9-times that of the medium control. Pretreatment with angiotensin-(1-7) inhibited the GA-mediated downregulation of miR-146a to 78.9% of the albumin control levels. Furthermore, the inhibitory effect of angiotensin-(1-7) on IL-6 expression was abolished in GA-treated, miR-146a inhibitor-transfected HAECs. In conclusion, these results suggest that angiotensin-(1-7) exerted an endothelial protective effect through IL-6 downregulation, and miR-146a modulation is involved in this protective effect.
Collapse
Affiliation(s)
- Huang-Joe Wang
- School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | | | | |
Collapse
|
47
|
Song SO, Kim KJ, Lee BW, Kang ES, Cha BS, Lee HC. Serum glycated albumin predicts the progression of carotid arterial atherosclerosis. Atherosclerosis 2012; 225:450-5. [DOI: 10.1016/j.atherosclerosis.2012.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/06/2012] [Indexed: 01/14/2023]
|
48
|
Shen Y, Pu LJ, Lu L, Zhang Q, Zhang RY, Shen WF. Serum advanced glycation end-products and receptors as prognostic biomarkers in diabetics undergoing coronary artery stent implantation. Can J Cardiol 2012; 28:737-43. [PMID: 23073352 DOI: 10.1016/j.cjca.2012.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study investigated the impact of elevated glycated albumin (GA) and reduced soluble receptor for advanced glycation end-products (sRAGE) and endogenous secretory receptor for advanced glycation end-products (esRAGE) levels in serum on the severity of albuminuria, occurrence of contrast-induced acute kidney injury (CI-AKI) and 1-year clinical outcome in type 2 diabetic patients undergoing sirolimus-eluting stent-based percutaneous coronary intervention. METHODS We compared serum levels of GA, sRAGE, esRAGE, and glycosylated hemoglobin (HbA1c), occurrence of CI-AKI, and major adverse cardiac events at 1-year clinical follow-up in 3 groups of type 2 diabetes based on 24-hour urinary albumin excretion: I = normoalbuminuria (< 30 mg; n = 190); II = microalbuminuria (30-300 mg; n = 102); and III = macroalbuminuria (≥ 300 mg; n = 86). RESULTS Serum levels of GA and HbA1c increased step-wise from group I to III, and serum levels of sRAGE and esRAGE were decreased in the groups with albuminuria, with the lowest values in those with microalbuminuria. GA (Pearson's r = 0.264; P < 0.001), sRAGE (Pearson's r = -0.210; P < 0.001), esRAGE (Pearson's r = -0.145; P = 0.04), and HbA1c (Pearson's r = 0.214; P < 0.001) correlated significantly with urinary albumin excretion. After adjusting for confounding factors, GA, sRAGE, esRAGE, and albuminuria status remained independently associated with both CI-AKI and 1-year major adverse cardiac events. CONCLUSIONS Elevated GA and reduced sRAGE and esRAGE levels in serum are associated with severity of albuminuria and postprocedural CI-AKI, and exert a negative impact on 1-year clinical outcome in patients with type 2 diabetes undergoing percutaneous coronary intervention with sirolimus-eluting stent implantation.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Medical School of Jiaotong University, RuiJin Hospital, 197 Rui Jin Road II, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Shen Y, Pu LJ, Lu L, Zhang Q, Zhang RY, Shen WF. Glycated albumin is superior to hemoglobin A1c for evaluating the presence and severity of coronary artery disease in type 2 diabetic patients. Cardiology 2012; 123:84-90. [PMID: 23018602 DOI: 10.1159/000342055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to compare the value of serum glycated albumin (GA) level versus glycated hemoglobin A(1c) (HbA(1c)) for evaluating the presence and severity of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM). METHODS Serum GA and blood HbA(1c) levels were measured in 829 consecutive T2DM patients with or without angiographically documented significant CAD (≥70% diameter stenosis). RESULTS Serum GA levels were higher in diabetic patients with significant CAD than in those without (20.57 ± 4.23 vs. 19.00 ± 4.48%; p < 0.001), but HbA(1c) was similar in the two groups (7.74 ± 1.34 vs. 7.51 ± 1.37% p > 0.05). Compared to HbA(1c), GA correlated more closely with the sum of significant stenotic lesions (r = 0.275, p < 0.001 and r = 0.092, p = 0.019) and the extent index (r = 0.375, p < 0.001 and r = 0.091, p = 0.019). The area under the curve of GA was larger than that of HbA(1c) for detecting the presence of significant CAD (0.637 vs. 0.568; p = 0.046) and 3-vessel disease (0.620 vs. 0.536; p = 0.039). GA, but not HbA(1c), was independently associated with significant CAD. CONCLUSIONS Serum GA level is a better indicator than HbA(1c) for evaluating the presence and severity of CAD and predicting major adverse cardiac events in patients with T2DM.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiology, Rui Jin Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | | | |
Collapse
|