1
|
Saylor LM, Cherukuri R, Kammala AK, Richardson L, Ferrer M, Antich C, Frebert S, Han A, Menon R. Exosomal Delivery of Interleukin-10 Reduces Infection-Associated Inflammation in a 3D-Printed Model of a Humanized Feto-Maternal Interface. FASEB J 2025; 39:e70634. [PMID: 40356417 PMCID: PMC12103302 DOI: 10.1096/fj.202500545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Spontaneous preterm birth (PTB) is associated with fetal inflammatory responses that are due to infections. Effective interventions to minimize these fetal responses are limited as drugs do not usually cross the feto-maternal interface (FMi) barrier, and reliable models to test drug efficacy and other pharmacologic parameters have not been available. We leveraged New Approach Methods (NAMs), including employing extracellular vesicles (exosomes of 30-200 nm) to deliver the anti-inflammatory cytokine interleukin (IL)-10 and using a high-throughput 3D-printed FMi model to test the efficacy of this delivery. IL-10 encapsulated exosomes were prepared by encapsulating recombinant IL-10 (rIL-10) using electroporation (eIL-10) or by transfecting RAW264.7 cells with an IL-10-expression plasmid (tIL-10) that enabled the expression of IL-10 in the cells during exosome biogenesis, which was then collected. Using a biocompatible polymer resin, we 3D printed a two-chambered FMi scaffold to mimic the amnion-decidual (feto-maternal) interface. Microchannels were integrated into the lower portions of the scaffold to facilitate intercellular communication. The device was composed of a mix of cells and gelatin methacrylate hydrogel material (lower part) and cell-specific culture medium (upper part). We showed that empty exosomes and IL-10-loaded exosomes delivered to the maternal side of the scaffold were able to cross to the fetal side of our FMi device. Furthermore, the effectiveness of eIL-10 and tIL-100 (500 ng) in reducing LPS-induced FMi inflammation on both the maternal and fetal sides was demonstrated by measuring pro-inflammatory IL-6 and IL-8 concentrations via multiplex assays at 6 h and 24 h timepoints. We determined that our 3D-printed two-chamber FMi model enabled the propagation of IL-10 encapsulated exosomes between the interconnected chambers. LPS treatment to the maternal decidua induced expression of pro-inflammatory IL-6 (p < 0.001) and IL-8 (p < 0.001) in both decidua and amnion compared with healthy (control) conditions. Co-treatment of LPS along with IL-10-loaded exosomes, regardless of its formulation, significantly reduced levels of the maternal and fetal inflammatory cytokines IL-6 and IL-8 at both 6 and 24 h after delivery. A high-throughput 3D-printed FMi model was used to show that IL-10 encapsulated exosomes can reduce infection-induced FMi inflammation. We describe two NAMs with the potential to significantly improve perinatal medicine: (1) an exosomal drug delivery method that protects the drug and can cross feto-maternal barriers and (2) a 3D-printed device that can be used for high-throughput drug screening.
Collapse
Affiliation(s)
- Leah M Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ananth K Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Shayne Frebert
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
2
|
Amabebe E, Ikumi N, Oosthuizen A, Soma-Pillay P, Matjila M, Anumba DOC. Gestation-dependent increase in cervicovaginal pro-inflammatory cytokines and cervical extracellular matrix proteins is associated with spontaneous preterm delivery within 2 weeks of index assessment in South African women. Front Immunol 2024; 15:1377500. [PMID: 39165357 PMCID: PMC11333255 DOI: 10.3389/fimmu.2024.1377500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Inflammation-induced remodelling of gestational tissues that underpins spontaneous preterm birth (sPTB, delivery < 37 weeks' gestation) may vary by race and context. To explore relationships between markers of these pathological processes, we (a) characterised the cervicovaginal fluid (CVF) cytokine profiles of pregnant South African women at risk of PTB; (b) determined CVF matrix-metalloproteinase-9 (MMP-9) and its regulator tissue inhibitor of metalloproteinase-1 (TIMP-1); and (c) explored the predictive potential of these markers for sPTB. Method of study The concentrations of 10 inflammatory cytokines and MMP-9 and TIMP-1 were determined by ELISA in CVF samples from 47 non-labouring women at high risk of PTB. We studied CVF sampled at three gestational time points (GTPs): GTP1 (20-22 weeks, n = 37), GTP2 (26-28 weeks, n = 40), and GTP3 (34-36 weeks, n = 29) and analysed for changes in protein concentrations and predictive capacities (area under the ROC curve (AUC) and 95% confidence interval (CI)) for sPTB. Results There were 11 (GTP1), 13 (GTP2), and 6 (GTP3) women who delivered preterm within 85.3 ± 25.9, 51.3 ± 15.3, and 11.8 ± 7.5 (mean ± SD) days after assessment, respectively. At GTP1, IL-8 was higher (4-fold, p = 0.02), whereas GM-CSF was lower (~1.4-fold, p = 0.03) in the preterm compared with term women with an average AUC = 0.73. At GTP2, IL-1β (18-fold, p < 0.0001), IL-8 (4-fold, p = 0.03), MMP-9 (17-fold, p = 0.0007), MMP-9/TIMP-1 ratio (9-fold, p = 0.004), and MMP-9/GM-CSF ratio (87-fold, p = 0.005) were higher in preterm compared with term women with an average AUC = 0.80. By contrast, IL-10 was associated with term delivery with an AUC (95% CI) = 0.75 (0.55-0.90). At GTP3, IL-1β (58-fold, p = 0.0003), IL-8 (12-fold, p = 0.002), MMP-9 (296-fold, p = 0.03), and TIMP-1 (35-fold, p = 0.01) were higher in preterm compared with term women with an average AUC = 0.85. Elevated IL-1β was associated with delivery within 14 days of assessment with AUC = 0.85 (0.67-0.96). Overall, elevated MMP-9 at GTP3 had the highest (13.3) positive likelihood ratio for distinguishing women at risk of sPTB. Lastly, a positive correlation between MMP-9 and TIMP-1 at all GTPs (ρ ≥ 0.61, p < 0.01) for women delivering at term was only observed at GTP1 for those who delivered preterm (ρ = 0.70, p < 0.03). Conclusions In this cohort, sPTB is associated with gestation-dependent increase in pro-inflammatory cytokines, decreased IL-10 and GM-CSF, and dysregulated MMP-9-TIMP-1 interaction. Levels of cytokine (especially IL-1β) and ECM remodelling proteins rise significantly in the final 2 weeks before the onset of labour when sPTB is imminent. The signalling mechanisms for these ECM remodelling observations remain to be elucidated.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Nadia Ikumi
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ally Oosthuizen
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Priya Soma-Pillay
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Dilly O. C. Anumba
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
4
|
Gallo DM, Romero R, Bosco M, Chaiworapongsa T, Gomez-Lopez N, Arenas-Hernandez M, Jung E, Suksai M, Gotsch F, Erez O, Tarca AL. Maternal plasma cytokines and the subsequent risk of uterine atony and postpartum hemorrhage. J Perinat Med 2023; 51:219-232. [PMID: 35724639 PMCID: PMC9768104 DOI: 10.1515/jpm-2022-0211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To determine whether the maternal plasma concentrations of cytokines are higher in pregnant women with postpartum hemorrhage (PPH) compared to pregnant women without PPH. METHODS A retrospective case-control study included 36 women with PPH and 72 matched controls. Cases and controls were matched for gestational age at delivery, labor status, delivery route, parity, and year of sample collection. Maternal plasma samples were collected up to 3 days prior to delivery. Comparison of the plasma concentrations of 29 cytokines was performed by using linear mixed-effects models and included adjustment for covariates and multiple testing. A false discovery rate adjusted p-value <0.1 was used to infer significance. Random forest models with evaluation by leave-one-out and 9-fold cross-validation were used to assess the combined value of the proteins in predicting PPH. RESULTS Concentrations of interleukin (IL)-16, IL-6, IL-12/IL-23p40, monocyte chemotactic protein 1 (MCP-1), and IL-1β were significantly higher in PPH than in the control group. This difference remained significant after adjustment for maternal age, clinical chorioamnionitis, and preeclampsia. Multi-protein random forest proteomics models had moderate cross-validated accuracy for prediction of PPH [area under the ROC curve, 0.69 (0.58-0.81) by leave-one-out cross validation and 0.73 (0.65-0.81) by 9-fold cross-validation], and the inclusion of clinical and demographic information did not increase the prediction performance. CONCLUSIONS Pregnant women with severe PPH had higher median maternal plasma concentrations of IL-16, IL-6, IL-12/IL-23p40, MCP-1, and IL-1β than patients without PPH. These cytokines could serve as biomarkers or their pathways may be therapeutic targets.
Collapse
Affiliation(s)
- Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| |
Collapse
|
5
|
Vélez C, Clauzure M, Williamson D, Koncurat MA, Barbeito C. IFN-γ and IL-10: seric and placental profile during pig gestation Seric and placental cytokines in pig gestation. AN ACAD BRAS CIENC 2023; 95:e20201160. [PMID: 37075349 DOI: 10.1590/0001-3765202320201160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/25/2020] [Indexed: 04/21/2023] Open
Abstract
Concentration of interferon-gamma and interleukin-10 in maternal serum and in maternal and fetal porcine placental extracts from different gestation periods was determined. Crossbred pigs' placental samples of 17, 30, 60, 70, and 114 days gestation and non-pregnant uteri were used. Interferon-gamma concentration was increased at the placental interface at 17 days, in maternal and fetal placenta, and decreased significantly in the remaining gestation periods. Interferon-gamma showed a peak in serum at 60 days. Regarding interleukin-10, placental tissue concentrations were unaltered, there were no significant differences with non-gestating uteri samples. In serum interleukin-10 increased at 17, 60, and 114 days gestation. At 17 days there are uterus structural and molecular changes that allow the embryos implantation and placenta development. The presence of interferon-gamma found at this moment in the interface would favor that placental growth. Moreover, its significant increase in serum at 60 days, would generate a proinflammatory cytokine pattern that facility the placental remodeling characteristic of this moment of porcine gestation. On the other hand, a significant interleukin-10 increase in serum at 17, 60 and 114 days could indicate its immunoregulatory role at a systemic level during pig gestation.
Collapse
Affiliation(s)
- Carolina Vélez
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Delia Williamson
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Mirta A Koncurat
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Claudio Barbeito
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
- Laboratory of Descriptive, Comparative and Experimental Histology and Embryology, School of Veterinary Science, National University of La Plata, Av. 60, 118, B1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022; 30:1408-1420. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Preterm birth is defined as the birth of a neonate before 37 weeks of gestation and is considered as a leading cause of the under five deaths of neonates. Neonates born preterm are known to have higher perinatal mortality and morbidity with associated risks of low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, cerebral palsy, and delayed development. India leads the list of countries with the greatest number of preterm births. The studies focusing on the molecular mechanisms related to the etiology of preterm birth have described the role of different transcription factors. With respect to this, transcription factors like peroxisome proliferator activated receptors (PPAR), nuclear factor kappa β (NF-kβ), nuclear erythroid 2-related factor 2 (Nrf2), and progesterone receptor (PR) are known to be associated with preterm labor. All these transcription factors are linked together with a common cascade involving inflammatory processes. Thus, the current review describes the possible cross-talk between these transcription factors and their therapeutic potential to prevent or manage preterm labor.
Collapse
Affiliation(s)
- Akshaya Meher
- Central Research Laboratory, Dr. Vasantrao Pawar Medical College, Hospital and Research Centre, Nashik, Maharashtra, India, 422003.
| |
Collapse
|
7
|
Toutounchi NS, Braber S, Land BV, Thijssen S, Garssen J, Folkerts G, Hogenkamp A. Deoxynivalenol exposure during pregnancy has adverse effects on placental structure and immunity in mice model. Reprod Toxicol 2022; 112:109-118. [PMID: 35840118 DOI: 10.1016/j.reprotox.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Deoxynivalenol (DON), a highly prevalent food contaminant, is known to induce reproductive and immunotoxicity in humans upon exposure. The present study focused on the consequences of exposure to DON during pregnancy for placental barrier and immune function, as well as fetal survival. Female mice received diets contaminated with DON (6.25 and 12.5 mg/kg of diet), starting immediately after mating until the end of the experiment. On day 17 of pregnancy the animals were killed, and maternal and fetal samples were collected for further analysis. Feeding on DON-contaminated diets decreased fetal survival, and DON was detected at significant levels in the fetus. Placentae from DON-exposed mice revealed a reduction in expression of junctional proteins, ZO-1, E-cadherin and claudins, upregulation of AHR mRNA expressions, and increase in IFN-ꝩ, IL-6 and IL-4 production. In conclusion, results of this study demonstrate harmful effects of DON on the course of pregnancy and fetal survival, which might be due to immunological changes in maternal immune organs and placenta. Altogether, these data underline the importance of the quality of maternal diet during pregnancy as they clearly demonstrate the potential harmful effects of a commonly present food-contaminant.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Belinda Van't Land
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands; Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Galaz J, Romero R, Arenas-Hernandez M, Farias-Jofre M, Motomura K, Liu Z, Kawahara N, Demery-Poulos C, Liu TN, Padron J, Panaitescu B, Gomez-Lopez N. Clarithromycin prevents preterm birth and neonatal mortality by dampening alarmin-induced maternal–fetal inflammation in mice. BMC Pregnancy Childbirth 2022; 22:503. [PMID: 35725425 PMCID: PMC9210693 DOI: 10.1186/s12884-022-04764-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background One of every four preterm neonates is born to a woman with sterile intra-amniotic inflammation (inflammatory process induced by alarmins); yet, this clinical condition still lacks treatment. Herein, we utilized an established murine model of sterile intra-amniotic inflammation induced by the alarmin high-mobility group box-1 (HMGB1) to evaluate whether treatment with clarithromycin prevents preterm birth and adverse neonatal outcomes by dampening maternal and fetal inflammatory responses. Methods Pregnant mice were intra-amniotically injected with HMGB1 under ultrasound guidance and treated with clarithromycin or vehicle control, and pregnancy and neonatal outcomes were recorded (n = 15 dams each). Additionally, amniotic fluid, placenta, uterine decidua, cervix, and fetal tissues were collected prior to preterm birth for determination of the inflammatory status (n = 7–8 dams each). Results Clarithromycin extended the gestational length, reduced the rate of preterm birth, and improved neonatal mortality induced by HMGB1. Clarithromycin prevented preterm birth by interfering with the common cascade of parturition as evidenced by dysregulated expression of contractility-associated proteins and inflammatory mediators in the intra-uterine tissues. Notably, clarithromycin improved neonatal survival by dampening inflammation in the placenta as well as in the fetal lung, intestine, liver, and spleen. Conclusions Clarithromycin prevents preterm birth and improves neonatal survival in an animal model of sterile intra-amniotic inflammation, demonstrating the potential utility of this macrolide for treating women with this clinical condition, which currently lacks a therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04764-2.
Collapse
|
9
|
Pisacreta E, Mannella P. Molecular and endocrine mechanisms involved in preterm birth. Gynecol Endocrinol 2022; 38:368-378. [PMID: 35319334 DOI: 10.1080/09513590.2022.2053519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Preterm birth is a worldwide social problem. Incidence rates may vary from 5 to 18% of all deliveries, with important differences observed between developed and developing countries. Preterm birth has a negative impact on newborns and neonatal mortality and morbidity are high. Despite improvements in modern neonatal care, we know little of the mechanisms that determine the onset and development of preterm birth. Infections seem to be one the most important triggers, determining the activation of protective mechanisms aimed at ending the pregnancy and safeguarding the health of the woman. However, threatened preterm birth often occurs even in women who do not have any ongoing infectious process. Of these, which are the majority, the causes and the activation mechanisms remain unknown or unclear; however, there are several molecular and endocrine mechanisms that finally lead to preterm birth. In this review, we seek to shed light and summarize the molecular and endocrine mechanisms underlying the development of preterm birth. Their understanding could help us to understand the dynamics of premature birth but, above all, to allow an early diagnosis and primary prevention of the problem.
Collapse
Affiliation(s)
- Elena Pisacreta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
11
|
Kim TS, Yoon JY, Kim CH, Choi EJ, Kim YH, Kim EJ. Dexmedetomidine and LPS co-treatment attenuates inflammatory response on WISH cells via inhibition of p38/NF-κB signaling pathway. J Dent Anesth Pain Med 2022; 22:277-287. [PMID: 35991362 PMCID: PMC9358267 DOI: 10.17245/jdapm.2022.22.4.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Inflammatory dental diseases that occur during pregnancy can cause preterm labor and/or intrauterine growth restriction. Therefore, proactive treatment of dental diseases is necessary during pregnancy. Dexmedetomidine (DEX) is a widely used sedative in the dental field, but research on the effect of DEX on pregnancy is currently insufficient. In this study, we investigated the effects of co-treatment with DEX and lipopolysaccharide (LPS) on inflammatory responses in human amnion-derived WISH cells. Methods Human amnion-derived WISH cells were treated with 0.001, 0.01, 0.1, and 1 µg/mL DEX with 1 µg/mL LPS for 24 h. Cytotoxicity of WISH cells was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), p38, and nuclear factor kappa B (NF-κB) was examined by western blot analysis. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α was analyzed by real-time quantitative polymerase chain reaction. Results Co-treatment with DEX and LPS showed no cytotoxicity in the WISH cells. The mRNA expression of IL-1β and TNF-α decreased after co-treatment with DEX and LPS. DEX and LPS co-treatment decreased the protein expression of COX-2, PGE2, phospho-p38, and phospho-NF-κB in WISH cells. Conclusion Co-treatment with DEX and LPS suppressed the expression of COX-2 and PGE2, as well as pro-inflammatory cytokines such as IL-1β and TNF-α in WISH cells. In addition, the anti-inflammatory effect of DEX and LPS co-treatment was mediated by the inhibition of p38/NF-κB activation.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Eun-Ji Choi
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Yeon Ha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| |
Collapse
|
12
|
Galaz J, Romero R, Arenas-Hernandez M, Panaitescu B, Para R, Gomez-Lopez N. Betamethasone as a potential treatment for preterm birth associated with sterile intra-amniotic inflammation: a murine study. J Perinat Med 2021; 49:897-906. [PMID: 33878254 PMCID: PMC8440410 DOI: 10.1515/jpm-2021-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Preterm birth remains the leading cause of perinatal morbidity and mortality worldwide. Preterm birth is preceded by spontaneous preterm labor, which is commonly associated with sterile intra-amniotic inflammation; yet, no approved treatment exists for this clinical condition. Corticosteroids are the standard of care to improve neonatal outcomes in women at risk of preterm birth. Herein, we first validated our model of alarmin-induced preterm birth. Next, we investigated whether treatment with betamethasone could prevent preterm birth resulting from sterile intra-amniotic inflammation in mice. METHODS Under ultrasound guidance, the first cohort of dams received an intra-amniotic injection of the alarmin high-mobility group box-1 (HMGB1, n=10) or phosphate-buffered saline (PBS, n=9) as controls. A second cohort of dams received HMGB1 intra-amniotically and were subcutaneously treated with betamethasone (n=15) or vehicle (n=15). Dams were observed until delivery, and perinatal outcomes were observed. RESULTS Intra-amniotic HMGB1 reduced gestational length (p=0.04), inducing preterm birth in 40% (4/10) of cases, of which 100% (4/4) were categorized as late preterm births. Importantly, treatment with betamethasone extended the gestational length (p=0.02), thereby reducing the rate of preterm birth by 26.6% (from 33.3% [5/15] to 6.7% [1/15]). Treatment with betamethasone did not worsen the rate of neonatal mortality induced by HMGB1 or alter weight gain in the first three weeks of life. CONCLUSIONS Treatment with betamethasone prevents preterm birth induced by the alarmin HMGB1. This study supports the potential utility of betamethasone for treating women with sterile intra-amniotic inflammation.
Collapse
Affiliation(s)
- Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Motomura K, Romero R, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Slutsky R, Levenson D, Gomez-Lopez N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol Hum Reprod 2021; 26:712-726. [PMID: 32647859 DOI: 10.1093/molehr/gaaa054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1β. Lastly, using Nlrp3-/- mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- K Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - V Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA
| | - D Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - N Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Brosius Lutz A, Al-Nasiry S, Kramer BW, Mueller M. Understanding Host-Pathogen Interactions in Acute Chorioamnionitis Through the Use of Animal Models. Front Cell Infect Microbiol 2021; 11:709309. [PMID: 34386434 PMCID: PMC8353249 DOI: 10.3389/fcimb.2021.709309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation of the chorion and/or amnion during pregnancy is called chorioamnionitis. Acute chorioamnionitis is implicated in approximately 40% of preterm births and has wide-ranging implications for the mother, fetus, and newborn. Large disease burden and lack of therapeutic approaches drive the discovery programs to define and test targets to tackle chorioamnionitis. Central to the advancement of these studies is the use of animal models. These models are necessary to deepen our understanding of basic mechanisms of host-pathogen interactions central to chorioamnionitis disease pathogenesis. Models of chorioamnionitis have been developed in numerous species, including mice, rabbits, sheep, and non-human primates. The various models present an array of strategies for initiating an inflammatory response and unique opportunities for studying its downstream consequences for mother, fetus, or newborn. In this review, we present a discussion of the key features of human chorioamnionitis followed by evaluation of currently available animal models in light of these features and consideration of how these models can be best applied to tackle outstanding questions in the field.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Martin Mueller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| |
Collapse
|
15
|
Sodium Hydrogen Exchanger Regulatory Factor-1 (NHERF1) Regulates Fetal Membrane Inflammation. Int J Mol Sci 2020; 21:ijms21207747. [PMID: 33092043 PMCID: PMC7589612 DOI: 10.3390/ijms21207747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
The fetal inflammatory response, a key contributor of infection-associated preterm birth (PTB), is mediated by nuclear factor kappa B (NF-kB) activation. Na+/H+ exchanger regulatory factor-1 (NHERF1) is an adapter protein that can regulate intracellular signal transduction and thus influence NF-kB activation. Accordingly, NHERF1 has been reported to enhance proinflammatory cytokine release and amplify inflammation in a NF-kB-dependent fashion in different cell types. The objective of this study was to examine the role of NHERF1 in regulating fetal membrane inflammation during PTB. We evaluated the levels of NHERF1 in human fetal membranes from term labor (TL), term not in labor (TNIL), and PTB and in a CD1 mouse model of PTB induced by lipopolysaccharide (LPS). Additionally, primary cultures of fetal membrane cells were treated with LPS, and NHERF1 expression and cytokine production were evaluated. Gene silencing methods using small interfering RNA targeting NHERF1 were used to determine the functional relevance of NHERF1 in primary cultures. NHERF1 expression was significantly (p < 0.001) higher in TL and PTB membranes compared to TNIL membranes, and this coincided with enhanced (p < 0.01) interleukin (IL)-6 and IL-8 expression levels. LPS-treated animals delivering PTB had increased levels of NHERF1, IL-6, and IL-8 compared to phosphate-buffered saline (PBS; control) animals. Silencing of NHERF1 expression resulted in a significant reduction in NF-kB activation and IL-6 and IL-8 production as well as increased IL-10 production. In conclusion, downregulation of NHERF1 increased anti-inflammatory IL-10, and reducing NHERF1 expression could be a potential therapeutic strategy to reduce the risk of infection/inflammation associated with PTB.
Collapse
|
16
|
Hantoushzadeh S, Anvari Aliabad R, Norooznezhad AH. Antibiotics, Inflammation, and Preterm Labor: A Missed Conclusion. J Inflamm Res 2020; 13:245-254. [PMID: 32547156 PMCID: PMC7261809 DOI: 10.2147/jir.s248382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Regarding the risk of antibiotic therapy during pregnancy, any medication given to the mother should be according to the indications due to the risk of possible side effects. Antibiotics are one of the most important groups of these medications to be considered. Along with direct antibiotic-induced side effects, indirect pathways also affect the fetus through the maternal changes. According to the data, different cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) are involved in both term and preterm parturition. These cytokines could trigger expression of different substances such as prostaglandins (PGs), their receptors, and PGs synthetizing molecules with already proven roles in parturition. Moreover, IL-1, IL-6, and TNF-α knocked-out mice have delayed parturition and lower levels of PGs compared to the wild types. The earlier-mentioned cytokines are able to induce matrix metalloproteinases and are also involved in parturition. Certain antibiotics have been shown capable of inducing inflammation cascade directly. Both in-vivo and in-vitro studies in human have also demonstrated this inflammation as elevated levels of inflammatory cytokines especially IL-1, IL-6, and TNF-α. This increase has been observed both in the presence and the absence of lipopolysaccharide (LPS). Moreover, antibiotics can induce endotoxemia in healthy cases which finally leads to the pro-inflammatory cytokine release. Regarding the role of mentioned pro-inflammatory cytokines in both term and preterm parturition, it seems that non-indicated use of antibiotics during pregnancy may increase the risk of preterm labor.
Collapse
Affiliation(s)
- Sedigheh Hantoushzadeh
- Maternal, Fetal and Neonatal Research Center, Vali-Asr Hospital, Imam Khomeini Hospital Complexes, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Anvari Aliabad
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Characterization of Endocannabinoid System and Interleukin Profiles in Ovine AEC: Cannabinoid Receptors Type-1 and Type-2 as Key Effectors of Pro-Inflammatory Response. Cells 2020; 9:cells9041008. [PMID: 32325674 PMCID: PMC7226065 DOI: 10.3390/cells9041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Amniotic epithelial cells (AEC) have been proposed as promising clinical candidates for regenerative medicine therapies due to their immunomodulatory capacity. In this context, the endocannabinoid system (ECS) has been identified as mediating the immune-stem cell dialogue, even if no information on AEC is available to date. Therefore, this study was designed to assess whether ECS is involved in tuning the constitutive and lipopolysaccharide (LPS)-induced ovine AEC anti-inflammatory and pro-inflammatory interleukin (IL-10, IL-4, and IL-12) profiles. Firstly, interleukins and ECS expressions were studied at different stages of gestation. Then, the role of cannabinoid receptors 1 and 2 (CB1 and CB2) on interleukin expression and release was investigated in middle stage AEC using selective agonists and antagonists. AEC displayed a degradative more than a synthetic endocannabinoid metabolism during the early and middle stages of gestation. At the middle stage, cannabinoid receptors mediated the balance between pro-inflammatory (IL-12) and anti-inflammatory (IL-4 and IL-10) interleukins. The activation of both receptors mediated an overall pro-inflammatory shift-CB1 reduced the anti-inflammatory and CB2 increased the pro-inflammatory interleukin release, particularly after LPS stimulation. Altogether, these data pave the way for the comprehension of AEC mechanisms tuning immune-modulation, crucial for the development of new AEC-based therapy protocols.
Collapse
|
18
|
Peiris HN, Romero R, Vaswani K, Reed S, Gomez-Lopez N, Tarca AL, Gudicha DW, Erez O, Maymon E, Mitchell MD. Preterm labor is characterized by a high abundance of amniotic fluid prostaglandins in patients with intra-amniotic infection or sterile intra-amniotic inflammation. J Matern Fetal Neonatal Med 2019; 34:4009-4024. [PMID: 31885290 DOI: 10.1080/14767058.2019.1702953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: To distinguish between prostaglandin and prostamide concentrations in the amniotic fluid of women who had an episode of preterm labor with intact membranes through the utilisation of liquid chromatography-tandem mass spectrometry.Study design: Liquid chromatography-tandem mass spectrometry analysis of amniotic fluid of women with preterm labor and (1) subsequent delivery at term (2) preterm delivery without intra-amniotic inflammation; (3) preterm delivery with sterile intra-amniotic inflammation (interleukin (IL)-6>2.6 ng/mL without detectable microorganisms); and (4) preterm delivery with intra-amniotic infection [IL-6>2.6 ng/mL with detectable microorganisms].Results: (1) amniotic fluid concentrations of PGE2, PGF2α, and PGFM were higher in patients with intra-amniotic infection than in those without intra-amniotic inflammation; (2) PGE2 and PGF2α concentrations were also greater in patients with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (3) patients with sterile intra-amniotic inflammation had higher amniotic fluid concentrations of PGE2 and PGFM than those without intra-amniotic inflammation who delivered at term; (4) PGFM concentrations were also greater in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation who delivered preterm; (5) amniotic fluid concentrations of prostamides (PGE2-EA and PGF2α-EA) were not different among patients with preterm labor; (6) amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in cases with intra-amniotic inflammation; and (7) the PGE2:PGE2-EA and PGF2α:PGF2α-EA ratios were higher in patients with intra-amniotic infection compared to those without inflammation.Conclusions: Mass spectrometric analysis of amniotic fluid indicated that amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in women with preterm labor and intra-amniotic infection than in other patients with an episode of preterm labor. Yet, women with intra-amniotic infection had greater amniotic fluid concentrations of PGE2 and PGF2α than those with sterile intra-amniotic inflammation, suggesting that these two clinical conditions may be differentiated by using mass spectrometric analysis of amniotic fluid.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Kanchan Vaswani
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sarah Reed
- UQ Centre for Clinical Research, University of Queensland, Australia
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Murray D Mitchell
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
19
|
Kim CH, Jeong SS, Park SJ, Choi EJ, Kim YH, Ahn JH. Anti-inflammatory effect of remifentanil in lipopolysaccharide-stimulated amniotic epithelial cells. J Dent Anesth Pain Med 2019; 19:253-260. [PMID: 31723665 PMCID: PMC6834717 DOI: 10.17245/jdapm.2019.19.5.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
Background Sometimes general anesthesia is required for dental surgery in pregnant women. Facial bone fractures or neck abscess should be treated immediately. Dental surgery, however, creates a stressful situation that can cause inflammation. Inflammatory responses are a well-known major cause of preterm labor and preterm birth. Here we demonstrate the effects of remifentanil on the factors related to preterm labor and its mechanism of action on amniotic-derived epithelial cells (WISH cells). Methods WISH cells were exposed to lipopolysaccharide (LPS) for 24 h and co-treated with various concentrations of remifentanil. MTT assays were performed to measure cell viability. To explain the effects of remifentanil on the factors related to inflammation in WISH cells, activation of nuclear factor kappa B (NF-κB) and p38 and the expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, cyclooxygenase (COX)2, and prostaglandin E (PGE)2 were quantified using western blotting and RT-PCR, respectively. Results Remifentanil did not affect WISH cell viability. In western blot analysis, co-treatment with remifentanil resulted in decreased phosphorylation of NF-κB, and expression of COX2 and PGE2 in LPS-induced inflammation, but the results were statistically significant only at low concentrations. Reduction of IL-1β and TNF-α expression was also observed with RT-PCR. Conclusion Co-treatment with remifentanil does not affect the viability of WISH cells, but reduces the expression of the factors related to inflammation, which can induce uterine contraction and preterm labor. These findings provide evidence that remifentanil may inhibit uterine contraction and preterm labor in clinical settings.
Collapse
Affiliation(s)
- Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Seong Soon Jeong
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Soon Ji Park
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Eun-Ji Choi
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yeon Ha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Ji-Hye Ahn
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| |
Collapse
|
20
|
Stinson LF, Payne MS. Infection-mediated preterm birth: Bacterial origins and avenues for intervention. Aust N Z J Obstet Gynaecol 2019; 59:781-790. [PMID: 31617207 DOI: 10.1111/ajo.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023]
Abstract
Preterm birth (PTB) is globally the leading cause of death and disability in children under five years of age. Intra-amniotic infection is well recognised as a major cause of PTB. Importantly, it is the most common cause of extreme PTB (birth prior to 28 weeks gestation), which is frequently associated with a wide range of serious neonatal morbidities. Recent developments in next generation sequencing technologies, combined with many years of culture-based microbiological data have allowed us to gain a deeper understanding of the pathogenesis of infection-mediated PTB. In particular, studies have revealed numerous potential routes to intra-amniotic infection beyond the classically described ascending vaginal route. Currently, antibiotic therapy is standard treatment for suspected or confirmed intra-amniotic infection, although its use in this context has had mixed success due to problems ranging from inappropriate antibiotic selection in relation to the target organism/s, to poor transplacental drug passage. In this review, we will draw together evidence from animal models and human studies to characterise pathways to intra-amniotic infection. We will then thoroughly outline current therapeutic protocols for cases of intra-amniotic infection and suggest potential new avenues for treatment.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, Faculty of Health & Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
21
|
Gomez-Lopez N, Romero R, Tarca AL, Miller D, Panaitescu B, Schwenkel G, Gudicha DW, Hassan SS, Pacora P, Jung E, Hsu CD. Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intra-amniotic inflammation or intra-amniotic infection. Am J Reprod Immunol 2019; 82:e13184. [PMID: 31461796 DOI: 10.1111/aji.13184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Pyroptosis, inflammatory programmed cell death, is initiated through the inflammasome and relies on the pore-forming actions of the effector molecule gasdermin D. Herein, we investigated whether gasdermin D is detectable in women with spontaneous preterm labor and sterile intra-amniotic inflammation or intra-amniotic infection. METHOD OF STUDY Amniotic fluid samples (n = 124) from women with spontaneous preterm labor were subdivided into the following groups: (a) those who delivered at term (n = 32); and those who delivered preterm (b) without intra-amniotic inflammation (n = 41), (c) with sterile intra-amniotic inflammation (n = 32), or (d) with intra-amniotic infection (n = 19), based on amniotic fluid IL-6 concentrations and the microbiological status of amniotic fluid (culture and PCR/ESI-MS). Gasdermin D concentrations were measured using an ELISA kit. Multiplex immunofluorescence staining was also performed to determine the expression of gasdermin D, caspase-1, and interleukin-1β in the chorioamniotic membranes. Flow cytometry was used to detect pyroptosis (active caspase-1) in decidual cells from women with preterm labor and birth. RESULTS (a) Gasdermin D was detected in the amniotic fluid and chorioamniotic membranes from women who underwent spontaneous preterm labor/birth with either sterile intra-amniotic inflammation or intra-amniotic infection, but was rarely detected in those without intra-amniotic inflammation. (b) Amniotic fluid concentrations of gasdermin D were higher in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation, and its expression in the chorioamniotic membranes was associated with caspase-1 and IL-1β (inflammasome mediators). (c) Decidual stromal cells and leukocytes isolated from women with preterm labor and birth are capable of undergoing pyroptosis given their expression of active caspase-1. CONCLUSION Pyroptosis can occur in the context of sterile intra-amniotic inflammation and intra-amniotic infection in patients with spontaneous preterm labor and birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
22
|
Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol 2019; 221:142.e1-142.e22. [PMID: 30928566 DOI: 10.1016/j.ajog.2019.03.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intra-amniotic infection is present in 10% of patients with an episode of preterm labor, and is a risk factor for impending preterm delivery and neonatal morbidity/mortality. Intra-amniotic inflammation is often associated with intra-amniotic infection, but is sometimes present in the absence of detectable microorganisms. Antibiotic treatment of intra-amniotic infection has traditionally been considered to be ineffective. Intra-amniotic inflammation without microorganisms has a prognosis similar to that of intra-amniotic infection. OBJECTIVE To determine whether antibiotics can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. MATERIALS AND METHODS The study population consisted of women who met the following criteria: 1) singleton gestation between 20 and 34 weeks; 2) preterm labor and intact membranes; 3) transabdominal amniocentesis performed for the evaluation of the microbiologic/inflammatory status of the amniotic cavity; 4) intra-amniotic infection and/or intra-amniotic inflammation; and 5) received antibiotic treatment that consisted of ceftriaxone, clarithromycin, and metronidazole. Follow-up amniocentesis was performed in a subset of patients. Amniotic fluid was cultured for aerobic and anaerobic bacteria and genital mycoplasmas, and polymerase chain reaction was performed for Ureaplasma spp. Intra-amniotic infection was defined as a positive amniotic fluid culture or positive polymerase chain reaction, and intra-amniotic inflammation was suspected when there was an elevated amniotic fluid white blood cell count or a positive result of a rapid test for matrix metalloproteinase-8. For this study, the final diagnosis of intra-amniotic inflammation was made by measuring the interleukin-6 concentration in stored amniotic fluid (>2.6 ng/mL). These results were not available to managing clinicians. Treatment success was defined as eradication of intra-amniotic infection and/or intra-amniotic inflammation or delivery ≥37 weeks. RESULTS Of 62 patients with intra-amniotic infection and/or intra-amniotic inflammation, 50 received the antibiotic regimen. Of those patients, 29 were undelivered for ≥7 days and 19 underwent a follow-up amniocentesis. Microorganisms were identified by culture or polymerase chain reaction of amniotic fluid obtained at admission in 21% of patients (4/19) who had a follow-up amniocentesis, and were eradicated in 3 of the 4 patients. Resolution of intra-amniotic infection/inflammation was confirmed in 79% of patients (15/19), and 1 other patient delivered at term, although resolution of intra-amniotic inflammation could not be confirmed after a follow-up amniocentesis. Thus, resolution of intra-amniotic inflammation/infection or term delivery (treatment success) occurred in 84% of patients (16/19) who had a follow-up amniocentesis. Treatment success occurred in 32% of patients (16/50) with intra-amniotic infection/inflammation who received antibiotics. The median amniocentesis-to-delivery interval was significantly longer among women who received the combination of antibiotics than among those who did not (11.4 days vs 3.1 days: P = .04). CONCLUSION Eradication of intra-amniotic infection/inflammation after treatment with antibiotics was confirmed in 79% of patients with preterm labor, intact membranes, and intra-amniotic infection/inflammation who had a follow-up amniocentesis. Treatment success occurred in 84% of patients who underwent a follow-up amniocentesis and in 32% of women who received the antibiotic regimen.
Collapse
|
23
|
Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, Racusin DA, Castro EC, Muldrew KL, Versalovic J, Aagaard KM. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol 2019; 221:146.e1-146.e23. [PMID: 31055031 DOI: 10.1016/j.ajog.2019.04.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Numerous reports have documented bacteria in the placental membranes and basal plate decidua in the absence of immunopathology using histologic techniques. Similarly, independent metagenomic characterizations have identified an altered taxonomic makeup in association with spontaneous preterm birth. Here we sought to corroborate these findings by localizing presumptive intact bacteria using molecular histology within the placental microanatomy. OBJECTIVE Here we examined for microbes in term and preterm gestations using a signal-amplified 16S universal in situ hybridization probe set for bacterial rRNA, alongside traditional histologic methods of Warthin-Starry and Gram stains, as well as clinical culture methodologies. We further sought to differentiate accompanying 16S gene sequencing taxonomic profiles from germ-free (gnotobiotic) mouse and extraction and amplicon contamination controls. STUDY DESIGN Placentas were collected from a total of 53 subjects, composed of term labored (n = 4) and unlabored cesarean deliveries (n = 22) and preterm vaginal (n = 18) and cesarean deliveries (n = 8); a placenta from a single subject with clinical and histologic evident choriomanionitis was employed as a positive control (n = 1). The preterm cohort included spontaneous preterm birth with (n = 6) and without (n = 10) preterm premature rupture of membranes, as well as medically indicated preterm births (n = 10). Placental microbes were visualized using an in situ hybridization probe set designed against highly conserved regions of the bacterial 16S ribosome, which produces an amplified stable signal using branched DNA probes. Extracted bacterial nucleic acids from these same samples were subjected to 16S rRNA metagenomic sequencing (Illumina, V4) for course taxonomic analysis, alongside environmental and kit contaminant controls. A subset of unlabored, cesarean-delivered term pregnancies were also assessed with clinical culture for readily cultivatable pathogenic microbes. RESULTS Molecular in situ hybridization of bacterial rRNA enabled visualization and localization of low-abundance microbes after systematic high-power scanning. Despite the absence of clinical or histologic chorioamnionitis in 52 of 53 subjects, instances of 16S rRNA signal were confidently observed in 13 of 16 spontaneous preterm birth placentas, which was not significantly different from term unlabored cesarean specimens (18 of 22; P > .05). 16S rRNA signal was largely localized to the villous parenchyma and/or syncytiotrophoblast, and less commonly the chorion and the maternal intervillous space. In all term and unlabored cesarean deliveries, visualization of evident placental microbes by in situ hybridization occurred in the absence of clinical or histologic detection using conventional clinical cultivation, hematoxylin-eosin, and Gram staining. In 1 subject, appreciable villous bacteria localized to an infarction, where 16S microbial detection was confirmed by Warthin-Starry stain. In all instances, parallel sample principle coordinate analysis using Bray-Cutis distances of 16S rRNA gene sequencing data demonstrated consistent taxonomic distinction from all negative or potential contamination controls (P = .024, PERMANOVA). Classification from contaminant filtered data identified a distinct taxonomic makeup among term and preterm cohorts when compared with contaminant controls (false discovery rate <0.05). CONCLUSION Presumptively intact placental microbes are visualized as low-abundance, low-biomass and sparse populations within the placenta regardless of gestational age and mode of delivery. Their taxonomic makeup is distinct from contamination controls. These findings further support several previously published findings, including our own, which have used metagenomics to characterize low-abundance and low-biomass microbial communities in the placenta.
Collapse
|
24
|
Garry DJ, Baker DA, Persad MD, Peresleni T, Kocis C, Demishev M. Progesterone effects on vaginal cytokines in women with a history of preterm birth. PLoS One 2018; 13:e0209346. [PMID: 30596707 PMCID: PMC6312274 DOI: 10.1371/journal.pone.0209346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/04/2018] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the effect of intramuscular progesterone on the vaginal immune response of pregnant women with a history of prior preterm birth. Methods A prospective, cohort study of women at 11–16 weeks gestation, ≥18 years of age, and carrying a singleton pregnancy was conducted from June 2016 to August 2017 after IRB approval. Women in the progesterone arm had a history of preterm birth and received weekly intramuscular 17-hydroxyprogesterone caproate. Controls comprised of women with healthy, uncomplicated pregnancies. Excluded were women with vaginitis, diabetes mellitus, hypertension, or other chronic diseases affecting the immune response. A vaginal wash was performed at enrollment, at 26–28 weeks, and at 35–36 weeks gestation. Samples underwent semi-quantitative detection of human inflammatory markers. Immunofluorescence pixel density data was analyzed and a P value <0.05 was considered significant. Results There were 39 women included, 10 with a prior preterm birth and 29 controls. The baseline demographics and pregnancy outcomes for both groups were similar in age, parity, race, BMI, gestational age at delivery, mode of delivery, and birth weight. Enrollment cytokines in women with a prior preterm birth, including IL-1 alpha (39.2±25.1% versus 26.1±13.2%; P = 0.04), IL-1 beta (47.9±26.4% versus 24.9±17%; P<0.01), IL-2 (16.7±9.3% versus 11.3±6.3%; P = 0.03), and IL-13 (16.9±12.4% versus 8.2±7.4%; P = 0.01) were significantly elevated compared to controls. In the third trimester the cytokine densities for IL-1 alpha (26.0±18.2% versus 22.3±12.0%; P = 0.49), IL-1 beta (31.8±15.9% versus 33.1±16.8%; P = 0.84), IL-2 (10.0±8.4% versus 10.9±5.9%; P = 0.71), and IL-13 (9.1±5.9% versus 10.0±6.5%; P = 0.71) were all statistically similar between the progesterone arm and controls, respectively. Conclusion There is an increased cytokine presence in vaginal washings of women at risk for preterm birth which appears to be modified following the administration of 17- hydroxyprogesterone caproate to levels similar to healthy controls.
Collapse
Affiliation(s)
- David J. Garry
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
- * E-mail:
| | - David A. Baker
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
| | - Malini D. Persad
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
| | - Tatyana Peresleni
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
| | - Christina Kocis
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
| | - Michael Demishev
- Department of Obstetrics & Gynecology and Reproductive Medicine, Stony Brook Medicine, Stony Brook, NY, United States of America
| |
Collapse
|
25
|
Konishi H, Urabe S, Miyoshi H, Teraoka Y, Maki T, Furusho H, Miyauchi M, Takata T, Kudo Y, Kajioka S. Fetal Membrane Inflammation Induces Preterm Birth Via Toll-Like Receptor 2 in Mice With Chronic Gingivitis. Reprod Sci 2018; 26:869-878. [PMID: 30223727 DOI: 10.1177/1933719118792097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is associated with preterm birth. We previously described a mouse model of chronic inflammation-induced preterm birth after dental Porphyromonas gingivalis infection. The aim of this study was to employ this model system to investigate the mechanisms through which enhanced uterine contractility induces preterm birth. Messenger RNA (mRNA) encoding contraction-associated proteins, such as oxytocin receptors, was measured at various gestational time points by real-time polymerase chain reaction (PCR). Spontaneous and oxytocin-induced uterine contractile activity at gestational day 18 was assessed using a tissue organ bath. The expression levels of Toll-like receptor 2 (TLR2), TLR4, cyclooxygenase (COX)-2, nuclear factor-kappa B (NF-κB) p65, and p38 mitogen-activated protein kinase (MAPK) on gestational day 18 were also determined by real-time PCR or Western blotting. Messenger RNA encoding contraction-associated proteins was increased at gestational day 18, and the spontaneous contractile activity (1.6-fold greater area under the contraction curve) and sensitivity to oxytocin (EC50: 8.8 nM vs 2.2 nM) were enhanced in the P gingivalis group compared to those in the control group. In the P gingivalis group, COX-2 mRNA expression was not elevated in the placenta or myometrium but was upregulated 2.3-fold in the fetal membrane. The TLR2 mRNA levels in the fetal membrane were 2.7-fold higher in the P gingivalis group, whereas TLR4 levels were not elevated. Activation of the NF-κB p65 and p38 MAPK pathways was enhanced in the fetal membrane of the P gingivalis group. Thus, in mice with chronic dental P gingivalis infection, TLR2-induced inflammation in the fetal membrane leads to upregulation of uterine contractility, leading to preterm birth.
Collapse
Affiliation(s)
- Haruhisa Konishi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Urabe
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Miyoshi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Obstetrics and Gynecology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Yuko Teraoka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Maki
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Applied Urology and Molecular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Applied Urology and Molecular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
26
|
Fávero JF, Da Silva AS, Bottari NB, Schetinger MRC, Morsch VMM, Baldissera MD, Stefani LM, Machado G. Physiological changes in the adenosine deaminase activity, antioxidant and inflammatory parameters in pregnant cows and at post-partum. J Anim Physiol Anim Nutr (Berl) 2018; 102:910-916. [DOI: 10.1111/jpn.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Juscivete Fátima Fávero
- Graduate Program of Animal Science; Universidade do Estado de Santa Catarina (UDESC); Chapecó SC Brazil
| | - Aleksandro S. Da Silva
- Graduate Program of Animal Science; Universidade do Estado de Santa Catarina (UDESC); Chapecó SC Brazil
- Department of Biochemistry and Molecular Biology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Nathieli B. Bottari
- Department of Biochemistry and Molecular Biology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Maria Rosa C. Schetinger
- Department of Biochemistry and Molecular Biology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Vera Maria M. Morsch
- Department of Biochemistry and Molecular Biology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Matheus D. Baldissera
- Department of Microbiology and Parasitology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Lenita M. Stefani
- Graduate Program of Animal Science; Universidade do Estado de Santa Catarina (UDESC); Chapecó SC Brazil
- Department of Biochemistry and Molecular Biology; Universidade Federal de Santa Maria (UFSM); Santa Maria RS Brazil
| | - Gustavo Machado
- Department of Population Health and Pathobiology; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| |
Collapse
|
27
|
Presicce P, Park CW, Senthamaraikannan P, Bhattacharyya S, Jackson C, Kong F, Rueda CM, DeFranco E, Miller LA, Hildeman DA, Salomonis N, Chougnet CA, Jobe AH, Kallapur SG. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight 2018; 3:98306. [PMID: 29563340 DOI: 10.1172/jci.insight.98306] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophil infiltration of the chorioamnion-decidua tissue at the maternal-fetal interface (chorioamnionitis) is a leading cause of prematurity, fetal inflammation, and perinatal mortality. We induced chorioamnionitis in preterm rhesus macaques by intraamniotic injection of LPS. Here, we show that, during chorioamnionitis, the amnion upregulated phospho-IRAK1-expressed neutrophil chemoattractants CXCL8 and CSF3 in an IL-1-dependent manner. IL-1R blockade decreased chorio-decidua neutrophil accumulation, neutrophil activation, and IL-6 and prostaglandin E2 concentrations in the amniotic fluid. Neutrophils accumulating in the chorio-decidua had increased survival mediated by BCL2A1, and IL-1R blockade also decreased BCL2A1+ chorio-decidua neutrophils. Readouts for inflammation in a cohort of women with preterm delivery and chorioamnionitis were similar to findings in the rhesus macaques. IL-1 is a potential therapeutic target for chorioamnionitis and associated morbidities.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily DeFranco
- Department of Obstetrics/Gynecology, Maternal-Fetal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Lisa A Miller
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UCD, Davis, California, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
28
|
Roomruangwong C, Anderson G, Berk M, Stoyanov D, Carvalho AF, Maes M. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:262-274. [PMID: 28941769 DOI: 10.1016/j.pnpbp.2017.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Michael Berk
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Orygen, the National Centre of Excellence in Youth Mental Health and Orygen Research, Australia
| | - Drozdstoy Stoyanov
- Medical University of Plovdiv, Department of Psychiatry and Medical Psychology, Technology Center for Emergency Medicine, Bulgaria
| | - André F Carvalho
- Department of Clinical Medicine, Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Strategic Research Center, Deakin University, Geelong, Australia; Medical University of Plovdiv, Department of Psychiatry and Medical Psychology, Technology Center for Emergency Medicine, Bulgaria.
| |
Collapse
|
29
|
Kelleher MA, Liu Z, Wang X, Kroenke CD, Houser LA, Dozier BL, Martin LD, Waites KB, McEvoy C, Schelonka RL, Grigsby PL. Beyond the uterine environment: a nonhuman primate model to investigate maternal-fetal and neonatal outcomes following chronic intrauterine infection. Pediatr Res 2017; 82:244-252. [PMID: 28422948 PMCID: PMC5552412 DOI: 10.1038/pr.2017.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022]
Abstract
BackgroundIntrauterine infection is a significant cause of early preterm birth. We have developed a fetal-neonatal model in the rhesus macaque to determine the impact of chronic intrauterine infection with Ureaplasma parvum on early neonatal reflexes and brain development.MethodsTime-mated, pregnant rhesus macaques were randomized to be inoculated with U. parvum (serovar 1; 105 c.f.u.) or control media at ~120 days' gestational age (dGA). Neonates were delivered by elective hysterotomy at 135-147 dGA (term=167d), stabilized, and cared for in our nonhuman primate neonatal intensive care unit. Neonatal reflex behaviors were assessed from birth, and fetal and postnatal brain magnetic resonance imaging (MRI) was performed.ResultsA total of 13 preterm and 5 term macaque infants were included in the study. Ten preterm infants survived to 6 months of age. U. parvum-infected preterm neonates required more intensive respiratory support than did control infants. MRI studies suggested a potential perturbation of brain growth and white matter maturation with exposure to intra-amniotic infection.ConclusionWe have demonstrated the feasibility of longitudinal fetal-neonatal studies in the preterm rhesus macaque after chronic intrauterine infection. Future studies will examine long-term neurobehavioral outcomes, cognitive development, neuropathology, and in vivo brain imaging to determine the safety of antenatal antibiotic treatment for intrauterine infection.
Collapse
Affiliation(s)
- Meredith A. Kelleher
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR,Corresponding Author: Meredith A. Kelleher, PhD, Division of Reproductive & Developmental Sciences. Oregon National Primate Research Center. 505 NW 185th Ave, Beaverton, OR 97006 USA. pH: 503-629-4011; Fax: 503-690-5563;
| | - Zheng Liu
- Advanced Imaging Center, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Xiaojie Wang
- Advanced Imaging Center, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Christopher D. Kroenke
- Advanced Imaging Center, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Lisa A. Houser
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR
| | - Brandy L. Dozier
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR
| | - Lauren D. Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR
| | - Ken B. Waites
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Cindy McEvoy
- Department of Pediatrics, Division of Neonatology, Oregon Health & Science University, Portland, OR
| | - Robert L. Schelonka
- Department of Pediatrics, Division of Neonatology, Oregon Health & Science University, Portland, OR
| | - Peta L. Grigsby
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
30
|
Bränn E, Papadopoulos F, Fransson E, White R, Edvinsson Å, Hellgren C, Kamali-Moghaddam M, Boström A, Schiöth HB, Sundström-Poromaa I, Skalkidou A. Inflammatory markers in late pregnancy in association with postpartum depression-A nested case-control study. Psychoneuroendocrinology 2017; 79:146-159. [PMID: 28285186 DOI: 10.1016/j.psyneuen.2017.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023]
Abstract
Recent studies indicate that the immune system adaptation during pregnancy could play a significant role in the pathophysiology of perinatal depression. The aim of this study was to investigate if inflammation markers in a late pregnancy plasma sample can predict the presence of depressive symptoms at eight weeks postpartum. Blood samples from 291 pregnant women (median and IQR for days to delivery, 13 and 7-23days respectively) comprising 63 individuals with postpartum depressive symptoms, as assessed by the Edinburgh postnatal depression scale (EPDS≥12) and/or the Mini International Neuropsychiatric Interview (M.I.N.I.) and 228 controls were analyzed with an inflammation protein panel using multiplex proximity extension assay technology, comprising of 92 inflammation-associated markers. A summary inflammation variable was also calculated. Logistic regression, LASSO and Elastic net analyses were implemented. Forty markers were lower in late pregnancy among women with depressive symptoms postpartum. The difference remained statistically significant for STAM-BP (or otherwise AMSH), AXIN-1, ADA, ST1A1 and IL-10, after Bonferroni correction. The summary inflammation variable was ranked as the second best variable, following personal history of depression, in predicting depressive symptoms postpartum. The protein-level findings for STAM-BP and ST1A1 were validated in relation to methylation status of loci in the respective genes in a different population, using openly available data. This explorative approach revealed differences in late pregnancy levels of inflammation markers between women presenting with depressive symptoms postpartum and controls, previously not described in the literature. Despite the fact that the results do not support the use of a single inflammation marker in late pregnancy for assessing risk of postpartum depression, the use of STAM-BP or the novel notion of a summary inflammation variable developed in this work might be used in combination with other biological markers in the future.
Collapse
Affiliation(s)
- Emma Bränn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Emma Fransson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Åsa Edvinsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Charlotte Hellgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Adrian Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Sweden
| | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol 2016; 231:R101-R119. [PMID: 27647860 DOI: 10.1530/joe-16-0157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Human labour is an inflammatory event, physiologically driven by an interaction between hormonal and mechanical factors and pathologically associated with infection, bleeding and excessive uterine stretch. The initiation and communicators of inflammation is still not completely understood; however, a key role for cytokines has been implicated. We summarise the current understanding of the nature and role of cytokines, chemokines and hormones and their involvement in signalling within the myometrium particularly during labour.
Collapse
Affiliation(s)
- S P Sivarajasingam
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of MedicineImperial College London, London, UK
| | - M R Johnson
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
32
|
Kerk J, Dördelmann M, Bartels DB, Brinkhaus MJ, Dammann CEL, Dörk T, Dammann O. MUltiplex Measurement of Cytokine/Receptor Gene Polymorphisms and interaction Between Interleukin-10 (-1082) Genotype and Chorioamnionitis in Extreme Preterm Delivery. ACTA ACUST UNITED AC 2016; 13:350-6. [PMID: 16814164 DOI: 10.1016/j.jsgi.2006.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To establish a multiplex amplification refractory mutation system (ARMS) in fluid and dried whole blood, and to perform a pilot study to examine the role for single-nucleotide polymorphisms (SNPs) of inflammation-associated genes (interleukin [IL]-1 and -10, tumor necrosis factor-alpha [TNFA], and toll-like receptor-4 [TLR4]) and their interaction with clinical chorioamnionitis (CAM) in prematurity. METHODS We established a quadruplex ARMS to detect the four above SNPs. Fifty-four women delivered at gestational age less than 32 weeks and 83 healthy female volunteers were genotyped. We compared (1) mothers of preterm infants with volunteers, and (2) women delivered before 29 weeks' gestation (n = 29) with those delivered at 29 to 31 completed weeks (n = 25). RESULTS Multiplex ARMS is feasible using both fluid and dried whole blood. We found no overall differences in genotype and allele frequencies between mothers of preterm infants and volunteers. Among women who had a preterm delivery, those with both CAM and IL10(-1082)*G allele, the risk for delivery before 29 weeks was markedly increased (odds ratio [OR] 22, 95% confidence interval [CI] 2.5 - 191). CONCLUSION The presence of both CAM and IL10(-1082)*G might play a role in extreme preterm delivery less than 29 weeks.
Collapse
Affiliation(s)
- Julia Kerk
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Chau A, Markley J, Juang J, Tsen L. Cytokines in the perinatal period – Part II. Int J Obstet Anesth 2016; 26:48-58. [DOI: 10.1016/j.ijoa.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/28/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
|
35
|
Kemp MW, Molloy TJ, Usuda H, Woodward E, Miura Y, Payne MS, Ireland DJ, Jobe AH, Kallapur SG, Stock SJ, Spiller OB, Newnham JP, Saito M. Outside-in? Acute fetal systemic inflammation in very preterm chronically catheterized sheep fetuses is not driven by cells in the fetal blood. Am J Obstet Gynecol 2016; 214:281.e1-281.e10. [PMID: 26408085 DOI: 10.1016/j.ajog.2015.09.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/25/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The preterm birth syndrome (delivery before 37 weeks gestation) is a major contributor to the global burden of perinatal morbidity and death. The cause of preterm birth is complex, multifactorial, and likely dependent, at least in part, on the gestational age of the fetus. Intrauterine infection is frequent in preterm deliveries that occur at <32 weeks gestation; understanding how the fetus responds to proinflammatory insult will be an important step towards early preterm birth prevention. However, animal studies of infection and inflammation in prematurity commonly use older fetuses that possess comparatively mature immune systems. OBJECTIVE Aiming to characterize acute fetal responses to microbial agonist at a clinically relevant gestation, we used 92-day-old fetuses (62% of term) to develop a chronically catheterized sheep model of very preterm pregnancy. We hypothesized that any acute fetal systemic inflammatory responses would be driven by signaling from the tissues exposed to Escherichia coli lipopolysaccharide that is introduced into the amniotic fluid. STUDY DESIGN Eighteen ewes that were carrying a single fetus at 92 days of gestation had recovery surgery to place fetal tracheal, jugular, and intraamniotic catheters. Animals were recovered for 24 hours before being administered either intraamniotic E coli lipopolysaccharide (n = 9) or sterile saline solution (n = 9). Samples were collected for 48 hours before euthanasia and necroscopy. Fetal inflammatory responses were characterized by microarray analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS Intraamniotic lipopolysaccharide reached the distal trachea within 2 hours. Lipopolysaccharide increased tracheal fluid interleukin-8 within 2 hours and generated a robust inflammatory response that was characterized by interleukin-6 signaling pathway activation and up-regulation of cell proliferation but no increases in inflammatory mediator expression in cord blood RNA. CONCLUSIONS In very preterm sheep fetuses, lipopolysaccharide stimulates inflammation in the fetal lung and fetal skin and stimulates a systemic inflammatory response that is not generated by fetal blood cells. These data argue for amniotic fluid-exposed tissues that play a key role in driving acute fetal and intrauterine inflammatory responses.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia.
| | - Timothy J Molloy
- Blood, Stem Cells and Cancer Research Programme, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Haruo Usuda
- Division of Perinatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Eleanor Woodward
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Yuichiro Miura
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew S Payne
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Demelza J Ireland
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan H Jobe
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, School of Medicine, Cincinnati, OH
| | - Suhas G Kallapur
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, School of Medicine, Cincinnati, OH
| | - Sarah J Stock
- MRC Centre for Reproductive Health, University of Edinburgh Queen's Medical Research Institute, Edinburgh, UK
| | - Owen B Spiller
- Cardiff University, School of Medicine, Institute of Molecular and Experimental Medicine, University Hospital of Wales, Cardiff, UK
| | - John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia; Division of Perinatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
36
|
Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 2015; 213:S29-52. [PMID: 26428501 PMCID: PMC4774647 DOI: 10.1016/j.ajog.2015.08.040] [Citation(s) in RCA: 634] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 12/25/2022]
Abstract
Acute inflammatory lesions of the placenta consist of diffuse infiltration of neutrophils at different sites in the organ. These lesions include acute chorioamnionitis, funisitis, and chorionic vasculitis and represent a host response (maternal or fetal) to a chemotactic gradient in the amniotic cavity. While acute chorioamnionitis is evidence of a maternal host response, funisitis and chorionic vasculitis represent fetal inflammatory responses. Intraamniotic infection generally has been considered to be the cause of acute chorioamnionitis and funisitis; however, recent evidence indicates that "sterile" intraamniotic inflammation, which occurs in the absence of demonstrable microorganisms induced by "danger signals," is frequently associated with these lesions. In the context of intraamniotic infection, chemokines (such as interleukin-8 and granulocyte chemotactic protein) establish a gradient that favors the migration of neutrophils from the maternal or fetal circulation into the chorioamniotic membranes or umbilical cord, respectively. Danger signals that are released during the course of cellular stress or cell death can also induce the release of neutrophil chemokines. The prevalence of chorioamnionitis is a function of gestational age at birth, and present in 3-5% of term placentas and in 94% of placentas delivered at 21-24 weeks of gestation. The frequency is higher in patients with spontaneous labor, preterm labor, clinical chorioamnionitis (preterm or term), or ruptured membranes. Funisitis and chorionic vasculitis are the hallmarks of the fetal inflammatory response syndrome, a condition characterized by an elevation in the fetal plasma concentration of interleukin-6, and associated with the impending onset of preterm labor, a higher rate of neonatal morbidity (after adjustment for gestational age), and multiorgan fetal involvement. This syndrome is the counterpart of the systemic inflammatory response syndrome in adults: a risk factor for short- and long-term complications (ie, sterile inflammation in fetuses, neonatal sepsis, bronchopulmonary dysplasia, periventricular leukomalacia, and cerebral palsy). This article reviews the definition, pathogenesis, grading and staging, and clinical significance of the most common lesions in placental disease. Illustrations of the lesions and diagrams of the mechanisms of disease are provided.
Collapse
Affiliation(s)
- Chong Jai Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI; Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
37
|
Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ, Saade GR, Menon R. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol 2015; 213:359.e1-16. [PMID: 26025293 DOI: 10.1016/j.ajog.2015.05.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Senescence is an important biological phenomenon involved in both physiologic and pathologic processes. We propose that chorioamniotic membrane senescence is a mechanism associated with human parturition. The present study was conducted to explore the association between senescence and normal term parturition by examining the morphologic and biochemical evidences in chorioamniotic membranes. STUDY DESIGN Chorioamniotic membranes were collected from normal term deliveries; group 1: term labor and group 2: term, not in labor. Senescence-related morphologic changes were determined by transmission electron microscopy and biochemical changes were studied by senescence-associated (SA) β-galactosidase staining. Amniotic fluid samples collected from both term labor and term not in labor were analyzed for 14 SA secretory phenotype (SASP) markers. RESULTS Morphologic evidence of cellular senescence (enlarged cells and organelles) and a higher number of SA β-galactosidase-stained amnion and chorion cells were observed in chorioamniotic membranes obtained from women in labor at term, when compared to term not in labor. The concentration of proinflammatory SASP markers (granulocyte macrophage colony-stimulating factor, interleukin-6 and -8) was significantly higher in the amniotic fluid of women in labor at term than women not in labor. In contrast, SASP factors that protect against cell death (eotaxin-1, soluble Fas ligand, osteoprotegerin, and intercellular adhesion molecule-1) were significantly lower in the amniotic fluid samples from term labor. CONCLUSION Morphologic and biochemical features of senescence were more frequent in chorioamniotic membranes from women who experienced term labor. Senescence of chorioamniotic membranes were also associated with amniotic fluid SASP markers.
Collapse
Affiliation(s)
- Faranak Behnia
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University Health Science Center, College Station, TX
| | - Michael Woodson
- Electron Microscopy Core Laboratory, University of Texas Medical Branch, Galveston, TX
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University, Hradec Kralove, Czech Republic
| | - Hal Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | | | - George R Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
38
|
Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod 2015; 21:672-86. [PMID: 26002969 PMCID: PMC4518137 DOI: 10.1093/molehr/gav027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/14/2022] Open
Abstract
Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone.
Collapse
Affiliation(s)
- S P Rajagopal
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J L Hutchinson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J E Norman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
39
|
Inflammatory Signalling in Fetal Membranes: Increased Expression Levels of TLR 1 in the Presence of Preterm Histological Chorioamnionitis. PLoS One 2015; 10:e0124298. [PMID: 25965269 PMCID: PMC4429010 DOI: 10.1371/journal.pone.0124298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/12/2015] [Indexed: 01/11/2023] Open
Abstract
Histological chorioamnionitis (HCA) is an established marker of ascending infection, a major cause of preterm birth. No studies have characterised the global change in expression of genes involved in the toll-like receptor (TLR) signalling pathways in the presence of HCA in the setting of preterm birth (pHCA). Fetal membranes were collected immediately after delivery and underwent histological staging for inflammation to derive 3 groups; term spontaneous labour without HCA (n = 9), preterm birth <34 weeks gestation without HCA (n = 8) and pHCA <34 weeks (n = 12). Profiling arrays ran in triplicate for each group were used to determine the expression of 84 genes associated with TLR signalling and screen for genes of interest (fold change >2; p<0.1). Expression of identified genes was validated individually for all samples, relative to GAPDH, using RT-PCR. Expression of TLR 1, TLR 2, lymphocyte antigen 96, interleukin 8 and Interleukin-1 receptor-associated kinase-like 2 was increased in pHCA (p<0.05). Degree of expression was positively associated with histological staging of both maternal and fetal inflammation (p<0.05). The inflammatory expression profile at the maternal/fetal interface associated with pHCA, a reflection of ascending infection, is extremely heterogeneous suggesting polymicrobial involvement with activation of a common pathway. Antagonism of TLR 1 and TLR 2 signalling in this setting warrants further assessment.
Collapse
|
40
|
Kim SH, MacIntyre DA, Firmino Da Silva M, Blanks AM, Lee YS, Thornton S, Bennett PR, Terzidou V. Oxytocin activates NF-κB-mediated inflammatory pathways in human gestational tissues. Mol Cell Endocrinol 2015; 403:64-77. [PMID: 25451977 DOI: 10.1016/j.mce.2014.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022]
Abstract
Human labour, both at term and preterm, is preceded by NF-κB-mediated inflammatory activation within the uterus, leading to myometrial activation, fetal membrane remodelling and cervical ripening. The stimuli triggering inflammatory activation in normal human parturition are not fully understood. We show that the neurohypophyseal peptide, oxytocin (OT), activates NF-κB and stimulates downstream inflammatory pathways in human gestational tissues. OT stimulation (1 pM-100 nM) specifically via its receptor (OTR) in human myometrial and amnion primary cells led to MAPK and NF-κB activation within 15 min and maximal p65-subunit nuclear translocation within 30 min. Both in human myometrium and amnion, OT-induced activation of the canonical NF-κB pathway upregulated key inflammatory labour-associated genes including IL-8, CCL5, IL-6 and COX-2. IKKβ inhibition (TPCA1; 10 µM) suppressed OT-induced NF-κB-p65 phosphorylation, whereas p65-siRNA knockdown reduced basal and OT-induced COX-2 levels in myometrium and amnion. In both gestational tissues, MEK1/2 (U0126; 10 µM) or p38 inhibition (SB203580; 10 µM) suppressed OT-induced COX-2 expression, but OT-induced p65-phosphorylation was only inhibited in amnion, suggesting OT activation of NF-κB in amnion is MAPK-dependent. Our data provide new insight into the OT/OTR system in human parturition and suggest that its therapeutic modulation could be a strategy for regulating both contractile and inflammatory pathways in the clinical context of term/preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - David A MacIntyre
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Maria Firmino Da Silva
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Andrew M Blanks
- University of Warwick, Clinical Sciences Research Institute, Warwick Medical School, UHCW, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | - Yun S Lee
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Steven Thornton
- University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, United Kingdom
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, United Kingdom; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| |
Collapse
|
41
|
Presicce P, Senthamaraikannan P, Alvarez M, Rueda CM, Cappelletti M, Miller LA, Jobe AH, Chougnet CA, Kallapur SG. Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque. Biol Reprod 2015; 92:56. [PMID: 25537373 PMCID: PMC4342792 DOI: 10.1095/biolreprod.114.124420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 12/22/2014] [Indexed: 11/01/2022] Open
Abstract
Chorioamnionitis, an infection/inflammation of the fetomaternal membranes, is frequently associated with preterm delivery. The mechanisms of inflammation in chorioamnionitis are poorly understood. We hypothesized that neutrophils recruited to the decidua would be the major producers of proinflammatory cytokines. We injected intra-amniotic (IA) interleukin 1beta (IL-1beta) at ∼80% gestation in rhesus macaque monkeys, Macaca mulatta, delivered the fetuses surgically 24 h or 72 h after IA injections, and investigated the role of immune cells in the chorion-amnion decidua. IA IL-1beta induced a robust infiltration of neutrophils and significant increases of proinflammatory cytokines in the chorioamnion decidua at 24 h after exposure, with a subsequent decrease at 72 h. Neutrophils in the decidua were the major source of tumor necrosis factor alpha (TNFalpha) and IL-8. Interestingly, IA IL-1beta also induced a significant increase in anti-inflammatory indoleamine 2,3-dioxygenase (IDO) expression in the decidua neutrophils. The frequency of regulatory T cells (Tregs) and FOXP3 mRNA expression in the decidua did not change after IA IL-1beta injection. Collectively, our data demonstrate that in this model of sterile chorioamnionitis, the decidua neutrophils cause the inflammation in the gestational tissues but may also act as regulators to dampen the inflammation. These results help to understand the contribution of neutrophils to the pathogenesis of chorioamnionitis-induced preterm labor.
Collapse
Affiliation(s)
- Pietro Presicce
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | | | - Manuel Alvarez
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Cesar M Rueda
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa A Miller
- California National Primate Research Center, University of California Davis, Davis, California Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Alan H Jobe
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Claire A Chougnet
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Suhas G Kallapur
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
42
|
The immunomodulatory and anti-apoptotic effect of dexamethasone in imminent preterm labor: An experimental study. Eur J Pharmacol 2014; 730:31-5. [DOI: 10.1016/j.ejphar.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/20/2022]
|
43
|
Prince AL, Antony KM, Chu DM, Aagaard KM. The microbiome, parturition, and timing of birth: more questions than answers. J Reprod Immunol 2014; 104-105:12-9. [PMID: 24793619 DOI: 10.1016/j.jri.2014.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/12/2023]
Abstract
The causes of preterm birth are multifactorial, but its association with infection has been well-established. The predominant paradigm describes an ascending infection from the lower genital tract through the cervix and into the presumably sterile fetal membranes and placenta. Thus, an evaluation of the role of the vaginal microbiome in preterm birth is implicated. However, emerging fields of data described in this review suggest that the placenta might not be sterile, even in the absence of clinical infection. We thus propose an additional mechanism for placental colonization and infection: hematogenous spread. When considered in the context of decades of evidence demonstrating a strong risk of recurrence for preterm birth, studies on parturition are ideal for applying the rapidly expanding field of metagenomics and analytic pipelines. The translational implications toward identification of innovative treatments for the prevention of preterm birth are further discussed. In sum, exciting advances in understanding the role of both host and microbiota in parturition and preterm birth are on the horizon.
Collapse
Affiliation(s)
- Amanda L Prince
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen M Antony
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Derrick M Chu
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kjersti M Aagaard
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA; Bioinformatics Research Lab, Baylor College of Medicine, Houston, TX, USA; Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
44
|
Rinaldi SF, Hutchinson JL, Rossi AG, Norman JE. Anti-inflammatory mediators as physiological and pharmacological regulators of parturition. Expert Rev Clin Immunol 2014; 7:675-96. [DOI: 10.1586/eci.11.58] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Seelbach-Goebel B. Antibiotic Therapy for Premature Rupture of Membranes and Preterm Labor and Effect on Fetal Outcome. Geburtshilfe Frauenheilkd 2013; 73:1218-1227. [PMID: 24771902 PMCID: PMC3964356 DOI: 10.1055/s-0033-1360195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022] Open
Abstract
In Germany almost 10 % of children are born before the end of 37th week of gestation. In at least one quarter of these cases, ascending infection of the vagina plays a causative role, particularly during the early weeks of gestation. If, in addition to the decidua, the amniotic membrane, amniotic fluid and the umbilical cord are also affected, infection not only triggers uterine contractions and premature rupture of membranes but also initiates a systemic inflammatory reaction on the part of the fetus, which can increase neonatal morbidity. Numerous studies and meta-analyses have found that antibiotic therapy prolongs pregnancy and reduces neonatal morbidity. No general benefit of antibiotic treatment was found for premature uterine contractions. But it is conceivable that a subgroup of pregnant women would benefit from antibiotic treatment. It is important to identify this subgroup of women and offer them targeted treatment. This overview summarizes the current body of evidence on antibiotic treatment for impending preterm birth and the effect on neonatal outcomes.
Collapse
Affiliation(s)
- B. Seelbach-Goebel
- Krankenhaus der Barmherzigen Brüder – Klinik St. Hedwig, Lehrstuhl für
Frauenheilkunde und Geburtshilfe der Universität Regensburg,
Regensburg
| |
Collapse
|
46
|
Lee J, Romero R, Chaiworapongsa T, Dong Z, Tarca AL, Xu Y, Chiang PJ, Kusanovic JP, Hassan SS, Yeo L, Yoon BH, Than NG, Kim CJ. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol 2013; 70:265-84. [PMID: 23905683 DOI: 10.1111/aji.12142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human fetus is able to mount a systemic inflammatory response when exposed to microorganisms. This stereotypic response has been termed the 'fetal inflammatory response syndrome' (FIRS), defined as an elevation of fetal plasma interleukin-6 (IL-6). FIRS is frequently observed in patients whose preterm deliveries are associated with intra-amniotic infection, acute inflammatory lesions of the placenta, and a high rate of neonatal morbidity. Recently, a novel form of fetal systemic inflammation, characterized by an elevation of fetal plasma CXCL10, has been identified in patients with placental lesions consistent with 'maternal anti-fetal rejection'. These lesions include chronic chorioamnionitis, plasma cell deciduitis, and villitis of unknown etiology. In addition, positivity for human leukocyte antigen (HLA) panel-reactive antibodies (PRA) in maternal sera can also be used to increase the index of suspicion for maternal anti-fetal rejection. The purpose of this study was to determine (i) the frequency of pathologic lesions consistent with maternal anti-fetal rejection in term and spontaneous preterm births; (ii) the fetal serum concentration of CXCL10 in patients with and without evidence of maternal anti-fetal rejection; and (iii) the fetal blood transcriptome and proteome in cases with a fetal inflammatory response associated with maternal anti-fetal rejection. METHOD OF STUDY Maternal and fetal sera were obtained from normal term (n = 150) and spontaneous preterm births (n = 150). A fetal inflammatory response associated with maternal anti-fetal rejection was diagnosed when the patients met two or more of the following criteria: (i) presence of chronic placental inflammation; (ii) ≥80% of maternal HLA class I PRA positivity; and (iii) fetal serum CXCL10 concentration >75th percentile. Maternal HLA PRA was analyzed by flow cytometry. The concentrations of fetal CXCL10 and IL-6 were determined by ELISA. Transcriptome analysis was undertaken after the extraction of total RNA from white blood cells with a whole-genome DASL assay. Proteomic analysis of fetal serum was conducted by two-dimensional difference gel electrophoresis. Differential gene expression was considered significant when there was a P < 0.01 and a fold-change >1.5. RESULTS (i) The frequency of placental lesions consistent with maternal anti-fetal rejection was higher in patients with preterm deliveries than in those with term deliveries (56% versus 32%; P < 0.001); (ii) patients with spontaneous preterm births had a higher rate of maternal HLA PRA class I positivity than those who delivered at term (50% versus 32%; P = 0.002); (iii) fetuses born to mothers with positive maternal HLA PRA results had a higher median serum CXCL10 concentration than those with negative HLA PRA results (P < 0.001); (iv) the median serum CXCL10 concentration (but not IL-6) was higher in fetuses with placental lesions associated with maternal anti-fetal rejection than those without such lesions (P < 0.001); (v) a whole-genome DASL assay of fetal blood RNA demonstrated differential expression of 128 genes between fetuses with and without lesions associated with maternal anti-fetal rejection; and (vi) comparison of the fetal serum proteome demonstrated 20 proteins whose abundance differed between fetuses with and without lesions associated with maternal anti-fetal rejection. CONCLUSION We describe a systemic inflammatory response in human fetuses born to mothers with evidence of maternal anti-fetal rejection. The transcriptome and proteome of this novel type of fetal inflammatory response were different from that of FIRS type I (which is associated with acute infection/inflammation).
Collapse
Affiliation(s)
- Joonho Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kallapur SG, Presicce P, Senthamaraikannan P, Alvarez M, Tarantal AF, Miller LM, Jobe AH, Chougnet CA. Intra-amniotic IL-1β induces fetal inflammation in rhesus monkeys and alters the regulatory T cell/IL-17 balance. THE JOURNAL OF IMMUNOLOGY 2013; 191:1102-9. [PMID: 23794628 DOI: 10.4049/jimmunol.1300270] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Very low birth weight preterm newborns are susceptible to the development of debilitating inflammatory diseases, many of which are associated with chorioamnionitis. To define the effects of chorioamnionitis on the fetal immune system, IL-1β was administered intra-amniotically at ~80% gestation in rhesus monkeys. IL-1β caused histological chorioamnionitis, as well as lung inflammation (infiltration of neutrophils or monocytes in the fetal airways). There were large increases in multiple proinflammatory cytokine mRNAs in the lungs at 24 h postadministration, which remained elevated relative to controls at 72 h. Intra-amniotic IL-1β also induced the sustained expression of the surfactant proteins in the lungs. Importantly, IL-1β significantly altered the balance between inflammatory and regulatory T cells. Twenty-four hours after IL-1β injection, the frequency of CD3(+)CD4(+)FOXP3(+) T cells was decreased in lymphoid organs. In contrast, IL-17A-producing cells (CD3(+)CD4(+), CD3(+)CD4(-), and CD3(-)CD4(-) subsets) were increased in lymphoid organs. The frequency of IFN-γ-expressing cells did not change. In this model of a single exposure to an inflammatory trigger, CD3(+)CD4(+)FOXP3(+) cells rebounded quickly, and their frequency was increased at 72 h compared with controls. IL-17 expression was also transient. Interestingly, the T cell profile alteration was confined to the lymphoid organs and not to circulating fetal T cells. Together, these results suggest that the chorioamnionitis-induced IL-1/IL-17 axis is involved in the severe inflammation that can develop in preterm newborns. Boosting regulatory T cells and/or controlling IL-17 may provide a means to ameliorate these abnormalities.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Harper M, Li L, Zhao Y, Klebanoff MA, Thorp JM, Sorokin Y, Varner MW, Wapner RJ, Caritis SN, Iams JD, Carpenter MW, Peaceman AM, Mercer BM, Sciscione A, Rouse DJ, Ramin SM, Anderson GD. Change in mononuclear leukocyte responsiveness in midpregnancy and subsequent preterm birth. Obstet Gynecol 2013; 121:805-811. [PMID: 23635681 PMCID: PMC3830536 DOI: 10.1097/aog.0b013e3182878a80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To estimate the associations of change in immune response with preterm delivery, omega-3 supplementation, and fish diet. METHODS This was an ancillary study to a randomized trial of omega-3 fatty acid supplementation for the prevention of recurrent preterm birth. In vitro maternal peripheral blood mononuclear leukocyte production of the anti-inflammatory cytokine, interleukin-10, and the proinflammatory cytokine, tumor necrosis factor-α, in response to stimulation with lipopolysaccharide, was measured at 16-22 weeks of gestation (baseline) and again at 25-28 weeks of gestation (follow-up) among women with prior spontaneous preterm birth. Changes in concentrations from baseline to follow-up ([INCREMENT]) were compared separately among groups defined by gestational age category at delivery, fish diet history, and omega-3 compared with placebo treatment assignment with Kruskal-Wallis tests. RESULTS Interleukin-10 [INCREMENT] differed by gestational age category among 292 women with paired assays. Concentrations increased less in women delivering between 35 and 36 6/7 weeks of gestation (48.9 pg/mL) compared with women delivering at term (159.3 pg/mL) and decreased by 65.2 pg/mL in women delivering before 35 weeks of gestation (P=.01). Tumor necrosis factor-α Δ also differed by gestational age category among 319 women, but the pattern was inconsistent. Those delivering between 35 and 36 6/7 weeks of gestation exhibited decreased concentrations of tumor necrosis factor-α at follow-up compared with baseline (-356.0 pg/mL); concentrations increased among women delivering before 35 weeks of gestation and those delivering at term, 132.1 and 86.9 pg/mL (P=.03). Interleukin-10 Δ and tumor necrosis factor-α Δ were unaffected by either omega-3 supplementation or fish diet. CONCLUSION Recurrent preterm birth was associated with decreased peripheral blood mononuclear leukocyte production of interleukin-10 in response to a stimulus during the second trimester. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, www.clinicaltrials.gov, NCT00135902. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Margaret Harper
- Department of Obstetrics and Gynecology, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Liwu Li
- Division of Inflammation Biology and Immunology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yuan Zhao
- The George Washington University Biostatistics Center, Washington DC
| | - Mark A. Klebanoff
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - John M. Thorp
- Departments of Obstetrics and Gynecology at University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | | | | | | | | - Brian M. Mercer
- Case Western Reserve University-MetroHealth Medical Center, Cleveland, OH
| | | | | | - Susan M. Ramin
- University of Texas Health Science Center at Houston, Houston, TX
| | | |
Collapse
|
49
|
The role and challenges of biomarkers in spontaneous preterm birth and preeclampsia. Fertil Steril 2013; 99:1117-23. [DOI: 10.1016/j.fertnstert.2013.01.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/20/2022]
|
50
|
Grigsby PL, Novy MJ, Sadowsky DW, Morgan TK, Long M, Acosta E, Duffy LB, Waites KB. Maternal azithromycin therapy for Ureaplasma intraamniotic infection delays preterm delivery and reduces fetal lung injury in a primate model. Am J Obstet Gynecol 2012; 207:475.e1-475.e14. [PMID: 23111115 DOI: 10.1016/j.ajog.2012.10.871] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/27/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We assessed the efficacy of a maternal multidose azithromycin (AZI) regimen, with and without antiinflammatory agents to delay preterm birth and to mitigate fetal lung injury associated with Ureaplasma parvum intraamniotic infection. STUDY DESIGN Long-term catheterized rhesus monkeys (n = 16) received intraamniotic inoculation of U parvum (10(7) colony-forming U/mL, serovar 1). After contraction onset, rhesus monkeys received no treatment (n = 6); AZI (12.5 mg/kg, every 12 h, intravenous for 10 days; n = 5); or AZI plus dexamethasone and indomethacin (n = 5). Outcomes included amniotic fluid proinflammatory mediators, U parvum cultures and polymerase chain reaction, AZI pharmacokinetics, and the extent of fetal lung inflammation. RESULTS Maternal AZI therapy eradicated U parvum intraamniotic infection from the amniotic fluid within 4 days. Placenta and fetal tissues were 90% culture negative at delivery. AZI therapy significantly delayed preterm delivery and prevented advanced fetal lung injury, although residual acute chorioamnionitis persisted. CONCLUSION Specific maternal antibiotic therapy can eradicate U parvum from the amniotic fluid and key fetal organs, with subsequent prolongation of pregnancy, which provides a therapeutic window of opportunity to effectively reduce the severity of fetal lung injury.
Collapse
Affiliation(s)
- Peta L Grigsby
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|