1
|
Berckx F, Nguyen TV, Hilker R, Wibberg D, Battenberg K, Kalinowski J, Berry A, Pawlowski K. Host-dependent specialized metabolism of nitrogen export in actinorhizal nodules induced by diazotrophic Actinomycetota Frankia cluster-2. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1164-1178. [PMID: 39487991 PMCID: PMC11850969 DOI: 10.1093/jxb/erae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Frankia cluster-2 strains are diazotrophs that engage in root nodule symbiosis with actinorhizal plants of the Cucurbitales and the Rosales. Previous studies have shown that an assimilated nitrogen source, presumably arginine, is exported to the host in nodules of Datisca glomerata (Cucurbitales), while a different metabolite is exported in the nodules of Ceanothus thyrsiflorus (Rosales). To investigate if an assimilated nitrogen form is commonly exported to the host by cluster-2 strains, and which metabolite would be exported in Ceanothus, we analysed gene expression levels, metabolite profiles, and enzyme activities in nodules. We conclude that the export of assimilated nitrogen in symbiosis seems to be a common feature for Frankia cluster-2 strains, but the source of nitrogen is host dependent. The export of assimilated ammonium to the host suggests that 2-oxoglutarate is drawn from the tricarboxylic acid (TCA) cycle at a high rate. This specialized metabolism obviates the need for the reductive branch of the TCA cycle. We found that several genes encoding enzymes of central carbon and nitrogen metabolism were lacking in Frankia cluster-2 genomes: the glyoxylate shunt and succinate semialdehyde dehydrogenase. This led to a linearization of the TCA cycle, and we hypothesized that this could explain the low saprotrophic potential of Frankia cluster-2.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Rolf Hilker
- German Center for Infection Research, Institute for Medical Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615 Bielefeld, Germany
- Institute of Bio- and Geosciences IBG-5, Computational Metagenomics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, D-33615 Bielefeld, Germany
| | - Alison Berry
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Sá AGA, House JD. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods. Compr Rev Food Sci Food Saf 2024; 23:e13260. [PMID: 38284574 DOI: 10.1111/1541-4337.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.
Collapse
Affiliation(s)
- Amanda G A Sá
- Richardson Centre for Food Technology and Research, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James D House
- Richardson Centre for Food Technology and Research, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Gasser M, Keller J, Fournier P, Pujic P, Normand P, Boubakri H. Identification and evolution of nsLTPs in the root nodule nitrogen fixation clade and molecular response of Frankia to AgLTP24. Sci Rep 2023; 13:16020. [PMID: 37749152 PMCID: PMC10520049 DOI: 10.1038/s41598-023-41117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules compared to non-infected roots in different lineages within the RNF clade. Here, results highlight that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, which opens perspectives to investigate nsLTPs functions in RNF.
Collapse
Affiliation(s)
- Mélanie Gasser
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pascale Fournier
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Petar Pujic
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Philippe Normand
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Hasna Boubakri
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France.
| |
Collapse
|
4
|
Hu B, Flemetakis E, Liu Z, Hänsch R, Rennenberg H. Significance of nitrogen-fixing actinorhizal symbioses for restoration of depleted, degraded, and contaminated soil. TRENDS IN PLANT SCIENCE 2023; 28:752-764. [PMID: 37002002 DOI: 10.1016/j.tplants.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Atmospheric nitrogen (N2)-fixing legume trees are frequently used for the restoration of depleted, degraded, and contaminated soils. However, biological N2 fixation (BNF) can also be performed by so-called actinorhizal plants. Actinorhizal plants include a high diversity of woody species and therefore can be applied in a broad spectrum of environments. In contrast to N2-fixing legumes, the potential of actinorhizal plants for soil restoration remains largely unexplored. In this Opinion, we propose related basic research requirements for the characterization of environmental stress responses that determine the restoration potential of actinorhizal plants for depleted, degraded, and contaminated soils. We identify advantages and unexplored processes of actinorhizal plants and describe a mainly uncharted avenue of future research for this important group of plant species.
Collapse
Affiliation(s)
- Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China; Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China; Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| |
Collapse
|
5
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
6
|
Sarkar I, Sen G, Bhattacharyya S, Gtari M, Sen A. Inter-cluster competition and resource partitioning may govern the ecology of Frankia. Arch Microbiol 2022; 204:326. [PMID: 35576077 DOI: 10.1007/s00203-022-02910-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
Microbes live in a complex communal ecosystem. The structural complexity of microbial community reflects diversity, functionality, as well as habitat type. Delineation of ecologically important microbial populations along with exploration of their roles in environmental adaptation or host-microbe interaction has a crucial role in modern microbiology. In this scenario, reverse ecology (the use of genomics to study ecology) plays a pivotal role. Since the co-existence of two different genera in one small niche should maintain a strict direct interaction, it will be interesting to utilize the concept of reverse ecology in this scenario. Here, we exploited an 'R' package, the RevEcoR, to resolve the issue of co-existing microbes which are proven to be a crucial tool for identifying the nature of their relationship (competition or complementation) persisting among them. Our target organism here is Frankia, a nitrogen-fixing actinobacterium popular for its genetic and host-specific nature. According to their plant host, Frankia has already been sub-divided into four clusters C-I, C-II, C-III, and C-IV. Our results revealed a strong competing nature of CI Frankia. Among the clusters of Frankia studied, the competition index between C-I and C-III was the largest. The other interesting result was the co-occurrence of C-II and C-IV groups. It was revealed that these two groups follow the theory of resource partitioning in their lifestyle. Metabolic analysis along with their differential transporter machinery validated our hypothesis of resource partitioning among C-II and C-IV groups.
Collapse
Affiliation(s)
- I Sarkar
- Bioinformatics Facility, University of North Bengal, Siliguri, West Bengal, India
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - G Sen
- Bioinformatics Facility, University of North Bengal, Siliguri, West Bengal, India
| | - S Bhattacharyya
- Biswa Bangla Genome Centre, Univ. of North Bengal, Siliguri, West Bengal, India
| | - M Gtari
- Unité de Bactériologie Moléculaire and Génomique, Département de Génie Biologique and Chimique, Institut National Des Sciences Appliquéeset de Technologie, Université de Carthage, Carthage, Tunisia
| | - A Sen
- Bioinformatics Facility, University of North Bengal, Siliguri, West Bengal, India.
- Biswa Bangla Genome Centre, Univ. of North Bengal, Siliguri, West Bengal, India.
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India.
| |
Collapse
|
7
|
Kong Y, Han L, Liu X, Wang H, Wen L, Yu X, Xu X, Kong F, Fu C, Mysore KS, Wen J, Zhou C. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1880-1895. [PMID: 33405366 DOI: 10.1111/jipb.12999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen-fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24-h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lizhu Wen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Hay AE, Herrera-Belaroussi A, Rey M, Fournier P, Normand P, Boubakri H. Feedback Regulation of N Fixation in Frankia-Alnus Symbiosis Through Amino Acids Profiling in Field and Greenhouse Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:499-508. [PMID: 31916486 DOI: 10.1094/mpmi-10-19-0289-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symbiosis established between actinorhizal plants and Frankia spp., which are nitrogen-fixing actinobacteria, promotes nodule organogenesis, the site of metabolic exchange. The present study aimed to identify amino acid markers involved in Frankia-Alnus interactions by comparing nodules and associated roots from field and greenhouse samples. Our results revealed a high level of citrulline in all samples, followed by arginine (Arg), aspartate (Asp), glutamate (Glu), γ-amino-n-butyric acid (GABA), and alanine (Ala). Interestingly, the field metabolome approach highlighted more contrasted amino acid patterns between nodules and roots compared with greenhouse samples. Indeed, 12 amino acids had a mean relative abundance significantly different between field nodule and root samples, against only four amino acids in greenhouse samples, underlining the importance of developing "ecometabolome" approaches. In order to monitor the effects on Frankia cells (respiration and nitrogen fixation activities) of amino acid with an abundance pattern evocative of a role in symbiosis, in-vitro assays were performed by supplementing them in nitrogen-free cultures. Amino acids had three types of effects: i) those used by Frankia as nitrogen source (Glu, Gln, Asp), ii) amino acids stimulating both nitrogen fixation and respiration (e.g., Cit, GABA, Ala, valine, Asn), and iii) amino acids triggering a toxic effect (Arg, histidine). In this paper, a N-metabolic model was proposed to discuss how the host plant and bacteria modulate amino acids contents in nodules, leading to a fine regulation sustaining high bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Anne-Emmanuelle Hay
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
9
|
Gifford I, Vance S, Nguyen G, Berry AM. A Stable Genetic Transformation System and Implications of the Type IV Restriction System in the Nitrogen-Fixing Plant Endosymbiont Frankia alni ACN14a. Front Microbiol 2019; 10:2230. [PMID: 31608043 PMCID: PMC6769113 DOI: 10.3389/fmicb.2019.02230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Genus Frankia is comprised primarily of nitrogen-fixing actinobacteria that form root nodule symbioses with a group of hosts known as the actinorhizal plants. These plants are evolutionarily closely related to the legumes that are nodulated by the rhizobia. Both host groups utilize homologs of nodulation genes for root-nodule symbiosis, derived from common plant ancestors. The corresponding endosymbionts, Frankia and the rhizobia, however, are distantly related groups of bacteria, leading to questions about their symbiotic mechanisms and evolutionary history. To date, a stable system of electrotransformation has been lacking in Frankia despite numerous attempts by research groups worldwide. We have identified type IV methyl-directed restriction systems, highly-expressed in a range of actinobacteria, as a likely barrier to Frankia transformation. Here we report the successful electrotransformation of the model strain F. alni ACN14a with an unmethylated, broad host-range replicating plasmid, expressing chloramphenicol-resistance for selection and GFP as a marker of gene expression. This system circumvented the type IV restriction barrier and allowed the stable maintenance of the plasmid. During nitrogen limitation, Frankia differentiates into two cell types: the vegetative hyphae and nitrogen-fixing vesicles. When the expression of egfp under the control of the nif gene cluster promoter was localized using fluorescence imaging, the expression of nitrogen fixation in nitrogen-limited culture was localized in Frankia vesicles but not in hyphae. The ability to separate gene expression patterns between Frankia hyphae and vesicles will enable deeper comparisons of molecular signaling and metabolic exchange between Frankia-actinorhizal and rhizobia-legume symbioses to be made, and may broaden potential applications in agriculture. Further downstream applications are possible, including gene knock-outs and complementation, to open up a range of experiments in Frankia and its symbioses. Additionally, in the transcriptome of F. alni ACN14a, type IV restriction enzymes were highly expressed in nitrogen-replete culture but their expression strongly decreased during symbiosis. The down-regulation of type IV restriction enzymes in symbiosis suggests that horizontal gene transfer may occur more frequently inside the nodule, with possible new implications for the evolution of Frankia.
Collapse
Affiliation(s)
- Isaac Gifford
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
10
|
Salgado MG, van Velzen R, Nguyen TV, Battenberg K, Berry AM, Lundin D, Pawlowski K. Comparative Analysis of the Nodule Transcriptomes of Ceanothus thyrsiflorus (Rhamnaceae, Rosales) and Datisca glomerata (Datiscaceae, Cucurbitales). FRONTIERS IN PLANT SCIENCE 2018; 9:1629. [PMID: 30487804 PMCID: PMC6246699 DOI: 10.3389/fpls.2018.01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Two types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of Datisca glomerata (Datiscaceae, Cucurbitales) and Ceanothus thyrsiflorus (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured Frankia clade, cluster II. The analysis focused on various features. In both species, the expression of orthologs of legume Nod factor receptor genes was elevated in nodules compared to roots. Since arginine has been postulated as export form of fixed nitrogen from symbiotic Frankia in nodules of D. glomerata, the question was whether the nitrogen metabolism was similar in nodules of C. thyrsiflorus. Analysis of the expression levels of key genes encoding enzymes involved in arginine metabolism revealed up-regulation of arginine catabolism, but no up-regulation of arginine biosynthesis, in nodules compared to roots of D. glomerata, while arginine degradation was not upregulated in nodules of C. thyrsiflorus. This new information corroborated an arginine-based metabolic exchange between host and microsymbiont for D. glomerata, but not for C. thyrsiflorus. Oxygen protection systems for nitrogenase differ dramatically between both species. Analysis of the antioxidant system suggested that the system in the nodules of D. glomerata leads to greater oxidative stress than the one in the nodules of C. thyrsiflorus, while no differences were found for the defense against nitrosative stress. However, induction of nitrite reductase in nodules of C. thyrsiflorus indicated that here, nitrite produced from nitric oxide had to be detoxified. Additional shared features were identified: genes encoding enzymes involved in thiamine biosynthesis were found to be upregulated in the nodules of both species. Orthologous nodule-specific subtilisin-like proteases that have been linked to the infection process in actinorhizal Fagales, were also upregulated in the nodules of D. glomerata and C. thyrsiflorus. Nodule-specific defensin genes known from actinorhizal Fagales and Cucurbitales, were also found in C. thyrsiflorus. In summary, the results underline the variability of nodule metabolism in different groups of symbiotic plants while pointing at conserved features involved in the infection process.
Collapse
Affiliation(s)
- Marco G. Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Anne-Emmanuelle H, Hasna B, Antoine B, Marjolaine R, Guillaume M, Laetitia CG, Gilles C, Aude HB. Control of Endophytic Frankia Sporulation by Alnus Nodule Metabolites. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:205-214. [PMID: 28072559 DOI: 10.1094/mpmi-11-16-0235-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A unique case of microbial symbiont capable of dormancy within its living host cells has been reported in actinorhizal symbioses. Some Frankia strains, named Sp+, are able to sporulate inside plant cells, contrarily to Sp- strains. The presence of metabolically slowed-down bacterial structures in host cells alters our understanding of symbiosis based on reciprocal benefits between both partners, and its impact on the symbiotic processes remains unknown. The present work reports a metabolomic study of Sp+ and Sp- nodules (from Alnus glutinosa), in order to highlight variabilities associated with in-planta sporulation. A total of 21 amino acids, 44 sugars and organic acids, and 213 secondary metabolites were detected using UV and mass spectrometric-based profiling. Little change was observed in primary metabolites, suggesting that in-planta sporulation would not strongly affect the primary functionalities of the symbiosis. One secondary metabolite (M27) was detected only in Sp+ nodules. It was identified as gentisic acid 5-O-β-d-xylopyranoside, previously reported as involved in plant defenses against microbial pathogens. This metabolite significantly increased Frankia in-vitro sporulation, unlike another metabolite significantly more abundant in Sp- nodules [M168 = (5R)-1,7-bis-(3,4-dihydroxyphenyl)-heptane-5-O-β-d-glucopyranoside]. All these results suggest that the plant could play an important role in the Frankia ability to sporulate in planta and allow us to discuss a possible sanction emitted by the host against less cooperative Sp+ symbionts.
Collapse
Affiliation(s)
- Hay Anne-Emmanuelle
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Boubakri Hasna
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Buonomo Antoine
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Rey Marjolaine
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Meiffren Guillaume
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Cotin-Galvan Laetitia
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Comte Gilles
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Herrera-Belaroussi Aude
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| |
Collapse
|
12
|
Persson T, Van Nguyen T, Alloisio N, Pujic P, Berry AM, Normand P, Pawlowski K. The N-metabolites of roots and actinorhizal nodules from Alnus glutinosa and Datisca glomerata: can D. glomerata change N-transport forms when nodulated? Symbiosis 2016. [DOI: 10.1007/s13199-016-0407-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O'Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant. PLoS One 2015; 10:e0127630. [PMID: 26020781 PMCID: PMC4447401 DOI: 10.1371/journal.pone.0127630] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.
Collapse
Affiliation(s)
- Tomas Persson
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| | - Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Theoden Vigil-Stenman
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Brian Vanden Heuvel
- Department of Biology, Colorado State University, Pueblo, Colorado, 81001, United States of America
| | - Petar Pujic
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Marc T. Facciotti
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Elizabeth G. Wilbanks
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Anna O'Brien
- UC Davis Genome Center, University of California Davis, Davis, California, 95616, United States of America
| | - Pascale Fournier
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | | | - Alberto Mendoza Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Tamaulipas, Mexico
| | | | - Philippe Normand
- Université Lyon 1, Université Lyon, CNRS, Ecologie Microbienne UMR5557, 69622, Villeurbanne Cedex, France
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Lilla Frescati, Stockholm University, 106 91, Stockholm, Sweden
| | - Alison M. Berry
- Department of Plant Sciences, University of California Davis, Davis, California, 95616, United States of America
| |
Collapse
|
14
|
Richau KH, Kudahettige RL, Pujic P, Kudahettige NP, Sellstedt A. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J Biosci 2013; 38:703-12. [DOI: 10.1007/s12038-013-9372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K H Richau
- Department of Plant Physiology, UPSC, Umea University, S-90187 Umea, Sweden
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Sellstedt A, Richau KH. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 2013; 342:179-86. [PMID: 23461635 DOI: 10.1111/1574-6968.12116] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 01/31/2023] Open
Abstract
Studies of nitrogen-fixing properties among the Gram-positive Actinobacteria revealed that some species of Arthrobacter, Agromyces, Corynebacterium, Mycobacterium, Micromonospora, Propionibacteria and Streptomyces have nitrogen-fixing capacity. This is also valid for Frankia that fix nitrogen both in free-living and in symbiotic conditions. Frankia symbiosis results from interaction between the Frankia bacteria and dicotyledonous plants, that is, actinorhiza. These plants, which are important in forestry and agroforestry, form, together with the legumes (Fabales), a single nitrogen-fixing clade. It has been shown that a receptor-like kinase gene, SymRK, is necessary for nodulation in actinorhizal plants as well as in legumes and arbuscular mycorrhizal fungi. Recently, the involvement of isoflavonoids as signal molecules during nodulation of an actinorhizal plant was shown. The genome sizes of three Frankia species, Frankia EANpec, ACN14a and CcI3, are different, revealing a relationship between genome size and geographical distribution. Recent genomic sequencing data of Frankia represent genomes from cluster I to IV, indicating that the genome of DgI is one of the smallest genomes in Frankia. In addition, nonsymbiotic Frankiales such as Acidothermus cellulolyticus, Blastococcus saxoobsidens, Geodermatophilus obscurus and Modestobacter marinus have a variety of genome sizes ranging from 2.4 to 5.57 Mb.
Collapse
Affiliation(s)
- Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, S-90187 Umeå, Sweden.
| | | |
Collapse
|
17
|
Pawlowski K, Demchenko KN. The diversity of actinorhizal symbiosis. PROTOPLASMA 2012; 249:967-79. [PMID: 22398987 DOI: 10.1007/s00709-012-0388-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/14/2012] [Indexed: 05/23/2023]
Abstract
Filamentous aerobic soil actinobacteria of the genus Frankia can induce the formation of nitrogen-fixing nodules on the roots of a diverse group of plants from eight dicotyledonous families, collectively called actinorhizal plants. Within nodules, Frankia can fix nitrogen while being hosted inside plant cells. Like in legume/rhizobia symbioses, bacteria can enter the plant root either intracellularly through an infection thread formed in a curled root hair, or intercellularly without root hair involvement, and the entry mechanism is determined by the host plant species. Nodule primordium formation is induced in the root pericycle as for lateral root primordia. Mature actinorhizal nodules are coralloid structures consisting of multiple lobes, each of which represents a modified lateral root without a root cap, a superficial periderm and with infected cells in the expanded cortex. In this review, an overview of nodule induction mechanisms and nodule structure is presented including comparisons with the corresponding mechanisms in legume symbioses.
Collapse
|
18
|
Pawlowski K, Bogusz D, Ribeiro A, Berry AM. Progress on research on actinorhizal plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:633-638. [PMID: 32480917 DOI: 10.1071/fp11066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/10/2011] [Indexed: 06/11/2023]
Abstract
In recent years, our understanding of the plant side of actinorhizal symbioses has evolved rapidly. No homologues of the common nod genes from rhizobia were found in the three Frankia genomes published so far, which suggested that Nod factor-like molecules would not be used in the infection of actinorhizal plants by Frankia. However, work on chimeric transgenic plants indicated that Frankia Nod factor equivalents signal via the same transduction pathway as rhizobial Nod factors. The role of auxin in actinorhizal nodule formation differs from that in legume nodulation. Great progress has been made in the analysis of pathogenesis-related and stress-related gene expression in nodules. Research on nodule physiology has shown the structural and metabolic diversity of actinorhizal nodules from different phylogenetic branches. The onset of large-scale nodule transcriptome analysis in different actinorhizal systems will provide access to more information on the symbiosis and its evolution.
Collapse
Affiliation(s)
| | - Didier Bogusz
- Groupe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées, Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | - Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Ribeiro A, Berry AM, Pawlowski K, Santos PC. Actinorhizal plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:v-vii. [PMID: 32480916 DOI: 10.1071/fpv38n9_fo] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Actinorhizal plants are a group of taxonomically diverse angiosperms with remarkable economic and ecological significance. Most actinorhizal plants are able to thrive under extreme adverse environmental conditions as well as to fix atmospheric nitrogen due to their capacity to establish root nodule symbioses with Frankia bacteria. This special issue of Functional Plant Biology is dedicated to actinorhizal plant research, covering part of the work presented at the 16th International Meeting onFrankia and Actinorhizal Plants, held on 5-8 September 2010, in Oporto, Portugal. The papers (4 reviews and 10 original articles) give an overall picture of the status of actinorhizal plant research and the imposed challenges, covering several aspects of the symbiosis, ecology and molecular tools.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|