1
|
Dubois M, Achon I, Brench RA, Polyn S, Tenorio Berrío R, Vercauteren I, Gray JE, Inzé D, De Veylder L. SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells. NATURE PLANTS 2023:10.1038/s41477-023-01452-7. [PMID: 37386150 DOI: 10.1038/s41477-023-01452-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1. By controlling SLGC-to-pavement cell differentiation, SMR1 determines the ratio of pavement cells to stomata and adjusts epidermal development to suit environmental conditions. We therefore propose SMR1 as an attractive target for engineering climate-resilient plants.
Collapse
Affiliation(s)
- Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Robert A Brench
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Julie E Gray
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
2
|
Klemm S, Buhl J, Möller B, Bürstenbinder K. Quantitative Analysis of Microtubule Organization in Leaf Epidermis Pavement Cells. Methods Mol Biol 2023; 2604:43-61. [PMID: 36773224 DOI: 10.1007/978-1-0716-2867-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Birgit Möller
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle (Saale), Germany.
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
| |
Collapse
|
3
|
Brown MJM, Jordan GJ. No cell is an island: characterising the leaf epidermis using epidermalmorph, a new R package. THE NEW PHYTOLOGIST 2023; 237:354-366. [PMID: 36205061 PMCID: PMC10098627 DOI: 10.1111/nph.18519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The leaf epidermis is the interface between a plant and its environment. The epidermis is highly variable in morphology, with links to both phylogeny and environment, and this diversity is relevant to several fields, including physiology, functional traits, palaeobotany, taxonomy and developmental biology. Describing and measuring leaf epidermal traits remains challenging. Current approaches are either extremely labour-intensive and not feasible for large studies or limited to measurements of individual cells. Here, we present a method to characterise individual cell size, shape (including the effect of neighbouring cells) and arrangement from light microscope images. We provide the first automated characterisation of cell arrangement (from traced images) as well as multiple new shape characteristics. We have implemented this method in an R package, epidermalmorph, and provide an example workflow using this package, which includes functions to evaluate trait reliability and optimal sampling effort for any given group of plants. We demonstrate that our new metrics of cell shape are independent of gross cell shape, unlike existing metrics. epidermalmorph provides a broadly applicable method for quantifying epidermal traits that we hope can be used to disentangle the fundamental relationships between form and function in the leaf epidermis.
Collapse
Affiliation(s)
- Matilda J. M. Brown
- Biological SciencesUniversity of TasmaniaHobart7000Tas.Australia
- Royal Botanic Gardens KewRichmondTW9 3AEUK
| | | |
Collapse
|
4
|
Panteris E, Adamakis IDS. Double Puzzle: Morphogenesis of the Bi-Layered Leaf Adaxial Epidermis of Magnolia grandiflora. PLANTS (BASEL, SWITZERLAND) 2022; 11:3437. [PMID: 36559549 PMCID: PMC9785140 DOI: 10.3390/plants11243437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Anticlinal ordinary epidermal cell wall waviness is a widespread feature found in the leaves of a variety of land plant species. However, it has not yet been encountered in leaves with multiple epidermides. Surprisingly, in Magnolia grandiflora leaves, ordinary epidermal cells in both layers of the bi-layered adaxial epidermis exhibit wavy anticlinal contour. During the development of the above cells, cortical microtubules are organized in anticlinally oriented bundles under the anticlinal walls, and radial arrays extending from the bundles at the edges of anticlinal and external periclinal walls, under the external periclinal walls. This microtubule pattern is followed by cell wall reinforcement with local thickenings, the cellulose microfibrils of which are parallel to the underlying microtubules. This specialized microtubule organization and concomitant cell wall reinforcement is initiated in the external epidermal layer, while hypodermis follows. The waviness pattern of each epidermal layer is unrelated to that of the other. The above findings are discussed in terms of morphogenetic mechanism induction and any implications in the functional significance of ordinary epidermal cell waviness.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | |
Collapse
|
5
|
Zuch DT, Doyle SM, Majda M, Smith RS, Robert S, Torii KU. Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. THE PLANT CELL 2022; 34:209-227. [PMID: 34623438 PMCID: PMC8774078 DOI: 10.1093/plcell/koab250] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/18/2021] [Indexed: 05/02/2023]
Abstract
As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.
Collapse
Affiliation(s)
- Daniel T Zuch
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Keiko U Torii
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:525-550. [PMID: 34143651 DOI: 10.1146/annurev-arplant-080720-081920] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
Collapse
Affiliation(s)
- Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Zahra Rahneshan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| |
Collapse
|
7
|
Bidhendi AJ, Altartouri B, Gosselin FP, Geitmann A. Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell Rep 2020; 28:1237-1250.e6. [PMID: 31365867 DOI: 10.1016/j.celrep.2019.07.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Pavement cells form wavy interlocking patterns in the leaf epidermis of many plants. We use computational mechanics to simulate the morphogenetic process based on microtubule organization and cell wall chemistry. Based on the in silico simulations and experimental evidence, we suggest that a multistep process underlies the morphogenesis of pavement cells. The in silico model predicts alternatingly located, feedback-augmented mechanical heterogeneity of the periclinal and anticlinal walls. It suggests that the emergence of waves is created by a stiffening of the emerging indented sides, an effect that matches cellulose and de-esterified pectin patterns in the cell wall. Further, conceptual evidence for mechanical buckling of the cell walls is provided, a mechanism that has the potential to initiate wavy patterns de novo and may precede chemical and geometrical symmetry breaking.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada; Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada
| | - Bara Altartouri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada
| | - Frédérick P Gosselin
- Laboratoire de Mécanique Multi-échelles, Département de Génie Mécanique, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada; Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec H1X 2B2, Canada.
| |
Collapse
|
8
|
Seerangan K, van Spoordonk R, Sampathkumar A, Eng RC. Long-term live-cell imaging techniques for visualizing pavement cell morphogenesis. Methods Cell Biol 2020; 160:365-380. [PMID: 32896328 DOI: 10.1016/bs.mcb.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advancements in microscopy and biological technologies have allowed scientists to study dynamic plant developmental processes with high temporal and spatial resolution. Pavement cells, epidermal cells found on leaf tissue, form complex shapes with alternating regions of indentations and outgrowths that are postulated to be driven by the microtubule cytoskeleton. Given their complex shapes, pavement cells and the microtubule contribution towards morphogenesis have been of great interest in the field of developmental biology. Here, we focus on two live-cell imaging methods that allow for early and long-term imaging of the cotyledon (embryonic leaf-like tissue) and leaf epidermis with minimal invasiveness in order to study microtubules throughout pavement cell morphogenesis. The methods described in this chapter can be applied to studying other developmental processes associated with cotyledon and leaf tissue.
Collapse
Affiliation(s)
- Kumar Seerangan
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ruben van Spoordonk
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Arun Sampathkumar
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Ryan Christopher Eng
- Plant Cell Biology & Microscopy, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
9
|
Bidhendi AJ, Geitmann A. Geometrical Details Matter for Mechanical Modeling of Cell Morphogenesis. Dev Cell 2019; 50:117-125.e2. [DOI: 10.1016/j.devcel.2019.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
|
10
|
Rudall PJ, Bateman RM. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales. Biol Rev Camb Philos Soc 2019; 94:1179-1194. [DOI: 10.1111/brv.12497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022]
|
11
|
Sapala A, Runions A, Smith RS. Mechanics, geometry and genetics of epidermal cell shape regulation: different pieces of the same puzzle. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:1-8. [PMID: 30170216 DOI: 10.1016/j.pbi.2018.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Pavement cells in the leaf epidermis of many plant species have intricate shapes that fit together much like the pieces of a jigsaw puzzle. They provide an accessible system to understand the development of complex cell shape. Since a protrusion in one cell must fit into the indentation in its neighbor, puzzle cells are also a good system to study how cell shape is coordinated across a plant tissue. Although molecular mechanisms have been proposed for both the patterning and coordination of puzzle cells, evidence is accumulating that mechanical and/or geometric cues may play a more significant role than previously thought.
Collapse
Affiliation(s)
- Aleksandra Sapala
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
12
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 PMCID: PMC6322583 DOI: 10.1093/jxb/ery395] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/14/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
13
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 DOI: 10.1101/268466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/23/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
14
|
Vőfély RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA. Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. THE NEW PHYTOLOGIST 2019; 221:540-552. [PMID: 30281798 PMCID: PMC6585845 DOI: 10.1111/nph.15461] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 05/18/2023]
Abstract
Epidermal cells of leaves are diverse: tabular pavement cells, trichomes, and stomatal complexes. Pavement cells from the monocot Zea mays (maize) and the eudicot Arabidopsis thaliana (Arabidopsis) have highly undulate anticlinal walls. The molecular basis for generating these undulating margins has been extensively investigated in these species. This has led to two assumptions: first, that particular plant lineages are characterized by particular pavement cell shapes; and second, that undulatory cell shapes are common enough to be model shapes. To test these assumptions, we quantified pavement cell shape in epidermides from the leaves of 278 vascular plant taxa. We found that monocot pavement cells tended to have weakly undulating margins, fern cells had strongly undulating margins, and eudicot cells showed no particular undulation degree. Cells with highly undulating margins, like those of Arabidopsis and maize, were in the minority. We also found a trend towards more undulating cell margins on abaxial leaf surfaces; and that highly elongated leaves in ferns, monocots and gymnosperms tended to have highly elongated cells. Our results reveal the diversity of pavement cell shapes, and lays the quantitative groundwork for testing hypotheses about pavement cell form and function within a phylogenetic context.
Collapse
Affiliation(s)
- Róza V. Vőfély
- The Sainsbury LaboratoryUniversity of CambridgeBateman StreetCambridgeCB1 2LRUK
| | - Joseph Gallagher
- Department of BiologyUniversity of Massachusetts611 North Pleasant StreetAmherstMA01003‐9297USA
| | - Grace D. Pisano
- Department of BiologyUniversity of Massachusetts611 North Pleasant StreetAmherstMA01003‐9297USA
| | - Madelaine Bartlett
- Department of BiologyUniversity of Massachusetts611 North Pleasant StreetAmherstMA01003‐9297USA
| | - Siobhan A. Braybrook
- The Sainsbury LaboratoryUniversity of CambridgeBateman StreetCambridgeCB1 2LRUK
- Department of Molecular, Cell and Developmental BiologyUniversity of California at Los Angeles610 Charles E Young Dr. SouthLos AngelesCA90095USA
- Molecular Biology InstituteUniversity of California at Los Angeles611 Charles E. Young Drive EastLos AngelesCA90095‐1570USA
| |
Collapse
|
15
|
Abstract
Morphological analysis of cell shapes requires segmentation of cell contours from input images and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative and quantitative assessment of shape characteristics. Here, we describe the publicly available ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.
Collapse
|
16
|
Sotiriou P, Giannoutsou E, Panteris E, Galatis B, Apostolakos P. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:223-237. [PMID: 29247575 DOI: 10.1111/plb.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells.
Collapse
Affiliation(s)
- P Sotiriou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - E Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - B Galatis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P Apostolakos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Sapala A, Runions A, Routier-Kierzkowska AL, Das Gupta M, Hong L, Hofhuis H, Verger S, Mosca G, Li CB, Hay A, Hamant O, Roeder AHK, Tsiantis M, Prusinkiewicz P, Smith RS. Why plants make puzzle cells, and how their shape emerges. eLife 2018; 7:e32794. [PMID: 29482719 PMCID: PMC5841943 DOI: 10.7554/elife.32794] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis.
Collapse
Affiliation(s)
- Aleksandra Sapala
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Adam Runions
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Department of Computer ScienceUniversity of CalgaryCalgaryCanada
| | | | - Mainak Das Gupta
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Lilan Hong
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- School of Integrative Plant Science, Section of Plant BiologyCornell UniversityIthacaUnited States
| | - Hugo Hofhuis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCBL, INRA, CNRSLyonFrance
| | - Gabriella Mosca
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Chun-Biu Li
- Department of MathematicsStockholm UniversityStockholmSweden
| | - Angela Hay
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCBL, INRA, CNRSLyonFrance
| | - Adrienne HK Roeder
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- School of Integrative Plant Science, Section of Plant BiologyCornell UniversityIthacaUnited States
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| | | | - Richard S Smith
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
| |
Collapse
|
18
|
Breuer D, Nowak J, Ivakov A, Somssich M, Persson S, Nikoloski Z. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. Proc Natl Acad Sci U S A 2017; 114:E5741-E5749. [PMID: 28655850 PMCID: PMC5514762 DOI: 10.1073/pnas.1706711114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms.
Collapse
Affiliation(s)
- David Breuer
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany;
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jacqueline Nowak
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Ivakov
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, Canberra, Acton, ACT 2601, Australia
| | - Marc Somssich
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
19
|
Akita K, Kobayashi M, Sato M, Kutsuna N, Ueda T, Toyooka K, Nagata N, Hasezawa S, Higaki T. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells. PROTOPLASMA 2017; 254:367-377. [PMID: 26960821 DOI: 10.1007/s00709-016-0955-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.
Collapse
Affiliation(s)
- Kae Akita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| | - Megumi Kobayashi
- Faculty of Science, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- Research and Development Division, LPixel Inc., Bunkyo-ku, Tokyo, 150-0002, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| |
Collapse
|
20
|
Higaki T, Takigawa-Imamura H, Akita K, Kutsuna N, Kobayashi R, Hasezawa S, Miura T. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells. PLANT & CELL PHYSIOLOGY 2017; 58:106-119. [PMID: 28011873 DOI: 10.1093/pcp/pcw183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Abstract
Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kae Akita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
- Research and Development Division, LPixel Inc., Bunkyo-ku, Tokyo, Japan
| | - Ryo Kobayashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:488-504. [PMID: 26738547 DOI: 10.1093/pcp/pcv209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/24/2015] [Indexed: 05/03/2023]
Abstract
Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Colombian Institute for Agricultural Research-CORPOICA-Turipana, Km 13 via Monteria, Cereté, Cordoba, Colombia Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 586/11, CZ 783 71 Olomouc-Holice, Czech Republic
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Lenka Stillerová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Petra Schiebertová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Michal Grunt
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| |
Collapse
|
22
|
Cvrčková F, Oulehlová D, Žárský V. On growth and formins. PLANT SIGNALING & BEHAVIOR 2016; 11:e1155017. [PMID: 26910482 PMCID: PMC4883901 DOI: 10.1080/15592324.2016.1155017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 05/03/2023]
Abstract
Development of the plant aerial organs epidermis involves a complex interplay of cytoskeletal rearrangements, membrane trafficking-dependent cell surface expansion, and intra- and intercellular signaling, resulting in a pattern of perfectly interlocking pavement cells. While recent detailed in vivo observations convincingly identify microtubules rather than actin as key players at the early stages of development of pavement cell lobes in Arabidopsis, mutations affecting the actin-nucleating ARP2/3 complex are long known to reduce pavement cell lobing, suggesting a central role for actin. We have now shown that functional impairment of the Arabidopsis formin FH1 enhances both microtubule dynamics and pavement cell lobing. While formins are best known for their ability to nucleate actin, many members of this old gene family now emerge as direct or indirect regulators of the microtubule cytoskeleton, and our findings suggest that they might co-ordinate action of the two cytoskeletal systems during pavement cell morphogenesis.
Collapse
Affiliation(s)
- Fatima Cvrčková
- a Department of Experimental Plant Biology , Faculty of Sciences, Charles University , Prague , Czech Republic
| | - Denisa Oulehlová
- a Department of Experimental Plant Biology , Faculty of Sciences, Charles University , Prague , Czech Republic
| | - Viktor Žárský
- a Department of Experimental Plant Biology , Faculty of Sciences, Charles University , Prague , Czech Republic
| |
Collapse
|
23
|
Szymanski DB. The kinematics and mechanics of leaf expansion: new pieces to the Arabidopsis puzzle. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:141-148. [PMID: 25460079 DOI: 10.1016/j.pbi.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 05/20/2023]
Abstract
Leaves are the primary organs for photosynthesis, and their angle, size, and timing of deployment determine the light capture efficiency of the canopy. Therefore, leaf development is an important trait in both natural and managed populations. In dicot leaves, the spatial and temporal patterns of cell division and expansion are heterogeneous, and a long-standing challenge has been to understand how subcellular and cellular growth processes can operate across broad spatial scales to influence the macroscopic growth of leaves. This review focuses on recent time-lapse analyses that help to clarify relationships between the polarized growth of individual cells, the growth behaviors of cell clusters, and leaf morphology.
Collapse
Affiliation(s)
- Daniel B Szymanski
- Purdue University, Department of Botany and Plant Pathology, United States; Purdue University, Department of Biological Sciences, United States.
| |
Collapse
|