1
|
Momayyezi M, Knipfer T, Hernandez-Perez MI, Kluepfel DA, Wakholi C, Rippner DA, Albuquerque CP, Bambach NE, DeGrom J, McElrone AJ. Differential impact of commercial rootstocks on the physiological response of a common walnut scion to drought stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70188. [PMID: 40207703 DOI: 10.1111/ppl.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Walnut rootstocks are commonly used in California orchards to provide resistance to soil-borne pests and diseases. However, little information exists about the impact of commercial rootstock on the common scion's physiological response under drought. This is becoming increasingly important since walnuts are commonly cultivated in semi-arid regions where frequent and severe droughts require efficient water use. We previously reported that own-rooted walnut rootstocks (RX1, VX211 and Vlach) differ in their physiological performance under drought. Here, we evaluated whether similar water relations and performance are conferred to a common English walnut scion (Juglans regia cv. Cisco). To do so, we used a mini-lysimeter platform to continuously track soil moisture and transpirational water loss from trees. Along with the canopy's estimated leaf area, changes in canopy shape and texture were evaluated using deep learning as an independent method to analyze canopy response to water stress. In support of our recent findings, the scion grafted onto rootstock RX1 exhibited subtle improvements in physiological performance associated with higher transpiration and canopy conductance under well-watered condition compared to Vlach and VX211 rootstocks. Canopy conductance, texture, and shape were not significantly affected by rootstock under water stress. However, Cisco grafted onto RX1 exhibited higher leaf turgor and water use efficiency, and lower osmotic potentials under water stress. Our results suggest some subtle differences in water relations between the rootstock genotypes, and propose an efficient deep-learning method to screen canopies for water stress-induced response through image processing.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel A Kluepfel
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, USA
| | - Collins Wakholi
- USDA-ARS, Horticultural Crops Research Unit, Prosser, WA, USA
| | - Devin A Rippner
- USDA-ARS, Horticultural Crops Research Unit, Prosser, WA, USA
| | - Caetano P Albuquerque
- Department of Biology & Chemistry, California State University, Monterey Bay, CA, USA
| | - Nicolas E Bambach
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Jack DeGrom
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, California, USA
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, USA
| |
Collapse
|
2
|
Hankin LE, Barrios-Masias FH, Urza AK, Bisbing SM. Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings. ANNALS OF BOTANY 2025; 135:293-304. [PMID: 38687134 PMCID: PMC11805925 DOI: 10.1093/aob/mcae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Hotter drought- and biotically driven tree mortality are expected to increase with climate change in much of the western USA, and species persistence will depend upon ongoing establishment in novel conditions or migration to track ecological niche requirements. High-elevation tree species might be particularly vulnerable to increasing water stress as snowpack declines, increasing the potential for adult mortality and simultaneous regeneration failures. Seedling survival will be determined by ecophysiological limitations in response to changing water availability and temperature. METHODS We exposed seedlings from populations of Pinus longaeva, Pinus flexilis and Pinus albicaulis to severe drought and concurrent temperature stress in common gardens, testing the timing of drought onset under two different temperature regimes. We monitored seedling functional traits, physiological function and survival. KEY RESULTS The combined stressors of water limitation and extreme heat led to conservative water-use strategies and declines in physiological function, with these joint stressors ultimately exceeding species tolerances and leading to complete episodic mortality across all species. Growing conditions were the primary determinant of seedling trait expression, with seedlings exhibiting more drought-resistant traits, such as lower specific leaf area, in the hottest, driest treatment conditions. Water stress-induced stomatal closure was also widely apparent. In the presence of adequate soil moisture, seedlings endured prolonged exposure to high air and surface temperatures, suggesting broad margins for survival. CONCLUSIONS The critical interaction between soil moisture and temperature suggests that rising temperatures will exacerbate moisture stress during the growing season. Our results highlight the importance of local conditions over population- and species-level influences in shaping strategies for stress tolerance and resistance to desiccation at this early life stage. By quantifying some of the physiological consequences of drought and heat that lead to seedling mortality, we can gain a better understanding of the future effects of global change on the composition and distribution of high-elevation conifer forests.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Alexandra K Urza
- Rocky Mountain Research Station, USDA Forest Service, 920 Valley Road, Reno, NV 89512, USA
| | - Sarah M Bisbing
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
3
|
Bianchi D, Ricciardi V, Pozzoli C, Grossi D, Caramanico L, Pindo M, Stefani E, Cestaro A, Brancadoro L, De Lorenzis G. Physiological and Transcriptomic Evaluation of Drought Effect on Own-Rooted and Grafted Grapevine Rootstock (1103P and 101-14MGt). PLANTS (BASEL, SWITZERLAND) 2023; 12:1080. [PMID: 36903939 PMCID: PMC10005690 DOI: 10.3390/plants12051080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strategy.
Collapse
Affiliation(s)
- Davide Bianchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Valentina Ricciardi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Carola Pozzoli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Daniele Grossi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Leila Caramanico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie e Ambientali-Produzione Territorio e Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| |
Collapse
|
4
|
Buesa I, Hernández-Montes E, Tortosa I, Baraldi G, Rosselló M, Medrano H, Escalona JM. Unraveling the Physiological Mechanisms Underlying the Intracultivar Variability of Water Use Efficiency in Vitis vinifera "Grenache". PLANTS (BASEL, SWITZERLAND) 2022; 11:3008. [PMID: 36365461 PMCID: PMC9654430 DOI: 10.3390/plants11213008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Selecting genotypes with a better capacity to respond and adapt to soil water deficits is essential to achieve the sustainability of grapevine cultivation in the context of increasing water scarcity. However, cultivar changes are very poorly accepted, and therefore it is particularly interesting to explore the intracultivar genetic diversity in water use efficiency (WUE). In previous studies, the cultivar "Grenache" has shown up to 30% variability in WUE. This research aimed to confirm the intracultivar variability and to elucidate the traits underlying this variability in the response to a water deficit by analyzing the growth rates, water relations, osmotic potential, leaf morphology, leaf gas exchange and carbon isotope discrimination in nine "Grenache" genotypes grown in pots during two seasons. The results showed lower differences in WUE and carbon isotope ratio than in previous field studies, but fairly good consistency in genotype ranking. Leaf mass area and osmotic potential did not underlie differences in stem water potential and in stomatal conductance. Overall, stomatal regulation and photosynthetic capacity seem to underlie differences in WUE among genotypes with an important environmental influence. These results confirm the ability to select clones with higher WUE and present an opportunity for the genetic improvement of WUE in grapevines.
Collapse
Affiliation(s)
- Ignacio Buesa
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
- Plant Biology and Environment, Agro-Environmental and Water Economics Institute—University of Balearic Islands (INAGEA—UIB), 07122 Palma, Balearic Islands, Spain
| | - Esther Hernández-Montes
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
- Plant Biology and Environment, Agro-Environmental and Water Economics Institute—University of Balearic Islands (INAGEA—UIB), 07122 Palma, Balearic Islands, Spain
| | - Ignacio Tortosa
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
| | - Gabriele Baraldi
- Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy
| | - Miquel Rosselló
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
| | - Hipólito Medrano
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
- Plant Biology and Environment, Agro-Environmental and Water Economics Institute—University of Balearic Islands (INAGEA—UIB), 07122 Palma, Balearic Islands, Spain
| | - Jose Mariano Escalona
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of Balearic Islands (UIB), 07122 Palma, Balearic Islands, Spain
- Plant Biology and Environment, Agro-Environmental and Water Economics Institute—University of Balearic Islands (INAGEA—UIB), 07122 Palma, Balearic Islands, Spain
| |
Collapse
|
5
|
Buesa I, Pérez-Pérez JG, Visconti F, Strah R, Intrigliolo DS, Bonet L, Gruden K, Pompe-Novak M, de Paz JM. Physiological and Transcriptional Responses to Saline Irrigation of Young 'Tempranillo' Vines Grafted Onto Different Rootstocks. FRONTIERS IN PLANT SCIENCE 2022; 13:866053. [PMID: 35734259 PMCID: PMC9207310 DOI: 10.3389/fpls.2022.866053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 06/02/2023]
Abstract
The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young 'Tempranillo' (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m-1 and a Saline treatment with 3.5 dS m-1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl- and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.
Collapse
Affiliation(s)
- Ignacio Buesa
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, Institut National de la Recherche Agronomique, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
- Research Group on Plant Biology Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - Juan G. Pérez-Pérez
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| | - Fernando Visconti
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
- Centro de Investigaciones sobre Desertificación, Departmento de Ecología (CSIC, UV, GV), Valencia, Spain
| | - Rebeka Strah
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School Ljubljana, Ljubljana, Slovenia
| | - Diego S. Intrigliolo
- Centro de Investigaciones sobre Desertificación, Departmento de Ecología (CSIC, UV, GV), Valencia, Spain
| | - Luis Bonet
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Jose M. de Paz
- Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo de la Agricultura Sostenible, Unidad Asociada al CSIC “Riego en la Agricultura Mediterránea”, Valencia, Spain
| |
Collapse
|
6
|
Bonarota MS, Kosma DK, Barrios-Masias FH. Salt tolerance mechanisms in the Lycopersicon clade and their trade-offs. AOB PLANTS 2022; 14:plab072. [PMID: 35079327 PMCID: PMC8782609 DOI: 10.1093/aobpla/plab072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Salt stress impairs growth and yield in tomato, which is mostly cultivated in arid and semi-arid areas of the world. A number of wild tomato relatives (Solanum pimpinellifolium, S. pennellii, S. cheesmaniae and S. peruvianum) are endemic to arid coastal areas and able to withstand higher concentration of soil salt concentrations, making them a good genetic resource for breeding efforts aimed at improving salt tolerance and overall crop improvement. However, the complexity of salt stress response makes it difficult to introgress tolerance traits from wild relatives that could effectively increase tomato productivity under high soil salt concentrations. Under commercial production, biomass accumulation is key for high fruit yields, and salt tolerance management strategies should aim to maintain a favourable plant water and nutrient status. In this review, we first compare the effects of salt stress on the physiology of the domesticated tomato and its wild relatives. We then discuss physiological and energetic trade-offs for the different salt tolerance mechanisms found within the Lycopersicon clade, with a focus on the importance of root traits to sustain crop productivity.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
7
|
Bartlett MK, Sinclair G. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1995-2009. [PMID: 33300576 DOI: 10.1093/jxb/eraa577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Selection for crop cultivars has largely focused on reproductive traits, while the impacts of global change on crop productivity are expected to depend strongly on the vegetative physiology traits that drive plant resource use and stress tolerance. We evaluated relationships between physiology traits and growing season climate across wine grape cultivars to characterize trait variation across European growing regions. We compiled values from the literature for seven water use and drought tolerance traits and growing season climate. Cultivars with a lower maximum stomatal conductance were associated with regions with a higher mean temperature and mean and maximum vapor pressure deficit (r2=0.39-0.65, P<0.05, n=14-29). Cultivars with greater stem embolism resistance and more anisohydric stomatal behavior (i.e. a more negative water potential threshold for 50% stomatal closure) were associated with cooler regions (r2=0.48-0.72, P<0.03, n=10-29). Overall, cultivars grown in warmer, drier regions exhibited traits that would reduce transpiration and conserve soil water longer into the growing season, but potentially increase stomatal and temperature limitations on photosynthesis under future, hotter conditions.
Collapse
Affiliation(s)
- Megan K Bartlett
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | - Gabriela Sinclair
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Bristow ST, Hernandez-Espinoza LH, Bonarota MS, Barrios-Masias FH. Tomato Rootstocks Mediate Plant-Water Relations and Leaf Nutrient Profiles of a Common Scion Under Suboptimal Soil Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 11:618488. [PMID: 33552111 PMCID: PMC7859091 DOI: 10.3389/fpls.2020.618488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Environments with short growing seasons and variable climates can have soil temperatures that are suboptimal for chilling-sensitive crops. These conditions can adversely affect root growth and physiological performance thus impairing water and nutrient uptake. Four greenhouse trials and a field study were conducted to investigate if rootstocks can enhance tomato performance under suboptimal soil temperatures (SST). In a controlled greenhouse environment, we exposed four commercial rootstocks (Estamino, Maxifort, RST-04-106-T, and Supernatural) grafted with a common scion (cv. BHN-589) to optimal (mean: 24°C) and SST (mean: 13.5°C) and compared their performance with the non-grafted BHN-589 cultivar. Several root and shoot physiological traits were evaluated: root hydraulic conductivity and conductance, root anatomy, leaf gas exchange, leaf δ13C, shoot C and N, and biomass. Under field conditions, the same five phenotypes were evaluated for canopy growth, normalized difference vegetation index (NDVI), leaf nutrients, biomass, and yield. Under SST, root hydraulic conductivity (Lp) and conductance (K R), stomatal conductance (g s), and plant biomass decreased. Hydrostatic Lp decreased more than osmotic Lp (Lp ∗ hyd: 39-65%; Lp ∗ os: 14-40%) and some of the reduced conductivity was explained by the increased cortex area of primary roots observed under SST (67-140%). Under optimal soil temperatures, all rootstocks conferred higher g s than the non-grafted cultivar, but only two rootstocks maintained higher g s under SST. All phenotypes showed greater reductions in shoot biomass than root biomass resulting in greater (∼20%) root-to-shoot ratios. In the field, most grafted phenotypes increased early canopy cover, NDVI, shoot biomass, and fruit yield. Greenhouse results showed that Lp ∗ os may be less affected by SST than Lp ∗ hyd and that reductions in Lp may be offset by enhanced root-to-shoot ratios. We show that some commercial rootstocks possess traits that maintained better rates of stomatal conductance and shoot N content, which can contribute toward better plant establishment and improved performance under SST.
Collapse
|
9
|
Hugalde IP, Agüero CB, Barrios-Masias FH, Romero N, Viet Nguyen A, Riaz S, Piccoli P, McElrone AJ, Walker MA, Vila HF. Modeling vegetative vigour in grapevine: unraveling underlying mechanisms. Heliyon 2020; 6:e05708. [PMID: 33385078 PMCID: PMC7770548 DOI: 10.1016/j.heliyon.2020.e05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mechanistic modeling constitutes a powerful tool to unravel complex biological phenomena. This study describes the construction of a mechanistic, dynamic model for grapevine plant growth and canopy biomass (vigor). To parametrize and validate the model, the progeny from a cross of Ramsey (Vitis champinii) × Riparia Gloire (V. riparia) was evaluated. Plants with different vigor were grown in a greenhouse during the summer of 2014 and 2015. One set of plants was grafted with Cabernet Sauvignon. Shoot growth rate (b), leaf area (LA), dry biomass, whole plant and root specific hydraulic conductance (kH and Lpr), stomatal conductance (gs), and water potential (Ψ) were measured. Partitioning indices and specific leaf area (SLA) were calculated. The model includes an empirical fit of a purported seasonal pattern of bioactive GAs based on published seasonal evolutionary levels and reference values. The model provided a good fit of the experimental data, with R = 0.85. Simulation of single trait variations defined the individual effect of each variable on vigor determination. The model predicts, with acceptable accuracy, the vigor of a young plant through the measurement of Lpr and SLA. The model also permits further understanding of the functional traits that govern vigor, and, ultimately, could be considered useful for growers, breeders and those studying climate change.
Collapse
Affiliation(s)
- Inés P. Hugalde
- Estación Experimental Agropecuaria Mendoza, INTA, San Martín 3853, M. Drummond, 5507, Mendoza, Argentina
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- Corresponding author.
| | - Cecilia B. Agüero
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Felipe H. Barrios-Masias
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Nina Romero
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andy Viet Nguyen
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Summaira Riaz
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, UNCuyo – CONICET, Argentina
| | - Andrew J. McElrone
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
- USDA-ARS, Davis, CA, 95616, USA
| | - M. Andrew Walker
- Dept. Viticulture and Enology, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - Hernán F. Vila
- Estación Experimental Agropecuaria Mendoza, INTA, San Martín 3853, M. Drummond, 5507, Mendoza, Argentina
| |
Collapse
|
10
|
Lucini L, Miras-Moreno B, Busconi M, Marocco A, Gatti M, Poni S. Molecular basis of rootstock-related tolerance to water deficit in Vitis vinifera L. cv. Sangiovese: A physiological and metabolomic combined approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110600. [PMID: 32900438 DOI: 10.1016/j.plantsci.2020.110600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The rootstock M4 (V. vinifera × V. berlandieri) × V. berlandieri cv. Resseguier n.1) is a recent selection reported to confer improved drought tolerance to grafted V. vinifera scions, a very desired feature in the era of global warming. Therefore, a short-term study was performed on a batch of 12 potted cv. Sangiovese vines grafted either on M4 or on the drought susceptible SO4 rootstock. Ecophysiological assessments as whole canopy net CO2 exchange rate (NCER), transpiration (Tc), and pre-dawn leaf water potential (Ψpd) and UHPLC-ESI/QTOF-MS metabolomics were then used to investigate the different vine responses during water limiting conditions. Water stress was induced by applying 50 % of estimated daily water use from days of year 184-208. M4 was able to deliver similar CO2, at a significantly reduced water use, compared to SO4 grafting. In turn, this resulted in enhanced canopy water use efficiency (NCER/Tc ratio) quantified as +15.1 % during water stress and +21.7 % at re-watering. Untargeted metabolomics showed a similar modulation of brassinosteroids and ABA between the two rootstocks, whereas the up accumulation of cytokinins and gibberellins under drought was peculiar of M4 grafted vines. The increase in gibberellins, together with a concurrent down accumulation of chlorophyll precursors and catabolites and an up accumulation of folates in M4 rootstock suggests that the capacity of limiting reactive-oxygen-species and redox imbalance under drought stress was improved. Finally, distinctive osmolyte accumulation patterns could be observed, with SO4 investing more on proline and glycine-betaine content and M4 primarily showing polyols accumulation.
Collapse
Affiliation(s)
- Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Gatti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|