1
|
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A, Gago J, Bravo LA. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. PLANTA 2024; 260:55. [PMID: 39020000 DOI: 10.1007/s00425-024-04484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
MAIN CONCLUSIONS In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Melanie Morales
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Giovanni Larama
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Luengo-Escobar
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Dariel López
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mariana Machado
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Arnould Savouré
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears/Institute of Agro-Environmental Research and Water Economy-INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
3
|
Magni NN, Veríssimo ACS, Silva H, Pinto DCGA. Metabolomic Profile of Salicornia perennis Plant's Organs under Diverse In Situ Stress: The Ria de Aveiro Salt Marshes Case. Metabolites 2023; 13:metabo13020280. [PMID: 36837899 PMCID: PMC9960996 DOI: 10.3390/metabo13020280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Salicornia perennis is a halophyte belonging to the botanical subfamily Salicornioideae that forms extensive perennial salt marsh patches. This subfamily has excellent potential, still unexplored, as a source of food, medicine, and phytoremediation. This study aimed to evaluate the lipophilic composition of the Salicornia perennis different organs inhabiting salt marshes of Ria de Aveiro under different stress regimes. For this purpose, the lipophilic content was extracted with hexane and subsequent GC-MS analysis of the extracts for each plant organ, which was collected in three different salt marshes of the Ria de Aveiro. High sugar content was detected in the stems, whereas in fruiting articles, the higher content was in fatty acids. Shorter-chain organic acids were concentrated in the stems and vegetative articles; waxes were detected in greater quantity in photosynthetic organs. More or less stressful environments induce changes in the ratio and composition of molecules, such as acclimatization and oxidative stress reduction strategies; for example, fatty acid content was higher in plants subjected to a higher stress regime. These data contribute to understand the metabolic pathways of the species under study, suggesting new research approaches to its potential as food, medicine, and phytoremediator.
Collapse
Affiliation(s)
- Natasha N. Magni
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C. S. Veríssimo
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Silva
- CESAM, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; +351-234-401407
| |
Collapse
|
4
|
Hoang XLT, Chuong NN, Hoa TTK, Doan H, Van PHP, Trang LDM, Huyen PNT, Le DT, Tran LSP, Thao NP. The Drought-Mediated Soybean GmNAC085 Functions as a Positive Regulator of Plant Response to Salinity. Int J Mol Sci 2021; 22:8986. [PMID: 34445699 PMCID: PMC8396556 DOI: 10.3390/ijms22168986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Abiotic stress factors, such as drought and salinity, are known to negatively affect plant growth and development. To cope with these adverse conditions, plants have utilized certain defense mechanisms involved in various aspects, including morphological, biochemical and molecular alterations. Particularly, a great deal of evidence for the biological importance of the plant-specific NAM, ATAF1/2, CUC2 (NAC) transcription factors (TFs) in plant adaptation to abiotic stress conditions has been reported. A previous in planta study conducted by our research group demonstrated that soybean (Glycine max) GmNAC085 mediated drought resistance in transgenic Arabidopsis plants. In this study, further characterization of GmNAC085 function in association with salt stress was performed. The findings revealed that under this condition, transgenic soybean plants overexpressing GmNAC085 displayed better germination rates than wild-type plants. In addition, biochemical and transcriptional analyses showed that the transgenic plants acquired a better defense system against salinity-induced oxidative stress, with higher activities of antioxidant enzymes responsible for scavenging hydrogen peroxide or superoxide radicals. Higher transcript levels of several key stress-responsive genes involved in the proline biosynthetic pathway, sodium ion transporter and accumulation of dehydrins were also observed, indicating better osmoprotection and more efficient ion regulation capacity in the transgenic lines. Taken together, these findings and our previous report indicate that GmNAC085 may play a role as a positive regulator in plant adaptation to drought and salinity conditions.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Khanh Hoa
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Hieu Doan
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Pham Hoang Phuong Van
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Le Dang Minh Trang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Pham Ngoc Thai Huyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Dung Tien Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Str., Hanoi 100000, Vietnam;
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; (X.L.T.H.); (N.N.C.); (T.T.K.H.); (H.D.); (P.H.P.V.); (L.D.M.T.); (P.N.T.H.)
- Vietnam National University, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Xu X, Xue K, Tang S, He J, Song B, Zhou M, Zou Y, Zhou Y, Jenks MA. The relationship between cuticular lipids and associated gene expression in above ground organs of Thellungiella salsugineum (Pall.) Al-Shehbaz & Warwick. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110200. [PMID: 31481227 DOI: 10.1016/j.plantsci.2019.110200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The cuticle plays a critical role as barrier between plant and environment. Here, cuticular wax morphology, cuticular wax and cutin monomer composition, and expression of associated genes in five above ground organs were examined in model extremophyte Thellungiella salsugineum. Alkanes, ketones, and 2-alcohols were the predominant wax constitutes in rosette leaves, inflorescence stem leaves, stems, and siliques, whereas alkanes and acids were the predominant cuticular lipids in whole flowers. Unsubstituted acids were the most abundant cutin monomers in vegetative organs, especially C18:2 dioic acids, which reached the highest levels in stems. Hydroxy fatty acids were the predominant cutin monomers in flowers, especially 16-OH C16:0 and diOH C16:0. High-throughput RNA-Seq analysis using the Hiseq4000 platform was performed on these five above organs of T. salsugineum, and the differentially expressed lipid-associated genes and their associated metabolic pathways were identified. Expression of genes associated in previous reports to cuticle production, including those having roles in cuticle lipid biosynthesis, transport, and regulation were examined. The association of cuticle lipid composition and gene expression within different organs of T. salsugineum, and potential relationships between T. salsugineum's extreme cuticle and its adaptation to extreme environments is discussed.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minqi Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanli Zou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Matthew A Jenks
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Bar Eyal L, Ranjbar Choubeh R, Cohen E, Eisenberg I, Tamburu C, Dorogi M, Ünnep R, Appavou MS, Nevo R, Raviv U, Reich Z, Garab G, van Amerongen H, Paltiel Y, Keren N. Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria. Proc Natl Acad Sci U S A 2017; 114:9481-9486. [PMID: 28808031 PMCID: PMC5584450 DOI: 10.1073/pnas.1708206114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.
Collapse
Affiliation(s)
- Leeat Bar Eyal
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Reza Ranjbar Choubeh
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Eyal Cohen
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Eisenberg
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmen Tamburu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Márta Dorogi
- Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Renata Ünnep
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85748 Garching, Germany
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7600, Israel
| | - Győző Garab
- Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|