1
|
Zhang H, Wang J, Liu J, Fan X, Jia Y, Huang Y, Han Q, Wang S, Xiao L, Li X, Zhang C. LncPrep + 96kb inhibits ovarian fibrosis by upregulating prolyl oligopeptidase expression. Mol Med Rep 2025; 31:113. [PMID: 40017148 PMCID: PMC11894593 DOI: 10.3892/mmr.2025.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
LncPrep + 96kb is a long non‑coding RNA expressed in murine granulosa cells. The 2.2-kb fragment of lncPrep + 96kb inhibits aromatase expression and estrogen secretion in ovarian granulosa cells. In the present study, lncPrep + 96kb‑knockout (KO) mice were generated, and significant ovarian fibrosis and reduced female fertility through fertility monitoring and superovulation. The augmentation of ovarian fibrosis was observed by Sirius red staining and western blot and RT‑qPCR. Notably, lncPrep + 96kb was identified in conserved non‑coding sequences adjacent to the prolyl oligopeptidase (POP) gene. Furthermore, POP expression was shown to be reduced in lncPrep + 96kb‑KO mice, whereas overexpression of lncPrep + 96kb increased POP expression. Further studies revealed that POP regulated the expression levels of factors related to fibrosis, including matrix metalloproteinase 2 (MMP2), transforming growth factor β1 (TGF‑β1) and peroxisome proliferator activated receptor γ (PPAR‑γ). In conclusion, ovarian fibrosis was elevated in lncPrep + 96kb‑KO mice, and POP may act as a target of lncPrep + 96kb, which mediates ovarian fibrosis through the regulation of PPAR‑γ, MMP2 and TGF‑β1 expression.
Collapse
Affiliation(s)
- Hongdan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
- Department of Pathology, The Second Affiliated Hospital of Army Medical University, Chongqing 400000, P.R. China
| | - Jing Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Jianwei Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Xiang Fan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Yinuo Jia
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Yingtong Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Qihui Han
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Shimeng Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Li Xiao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Xiang Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| |
Collapse
|
2
|
Six R, Benedetti C, Fan Y, Guan X, Gansemans Y, Hedia M, Bogado Pascottini O, Pavani KC, Van Nieuwerburgh F, Deforce D, Smits K, Van Soom A, Peelman L. Expression profile and gap-junctional transfer of microRNAs in the bovine cumulus-oocyte complex. Front Cell Dev Biol 2024; 12:1404675. [PMID: 39055654 PMCID: PMC11269113 DOI: 10.3389/fcell.2024.1404675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
MicroRNAs (miRNA) are important regulators of oocyte maturation, playing a key role in modulating gene expression both in a temporal- and spatial-specific manner. These small non-coding RNAs are involved in important processes during oocyte maturation, acting as messengers between the oocyte and its surrounding cumulus cells. Despite its significance, the bidirectional communication mechanism is still unknown. To test miRNA communication between oocyte and surrounding cumulus cells through the gap junctions the gap junctions were either blocked with carbenoxolone or not. MiRNA sequencing of oocytes at 1, 6, and 22 h of in vitro maturation was then performed. Among the differentially expressed miRNAs, bta-miR-21-5p, a regulator of cumulus cell viability and oocyte maturation, was the only previously known miRNA. Furthermore, by labeling a bta-miR-21-5p mimic with FAM, crossing of this miRNA through the gap junctions within the cumulus-oocyte complex could be visualized and internalization in the oocyte was confirmed by RT-qPCR. In conclusion, this study provides, for the first time, evidence that miRNA communication within the bovine cumulus-oocyte complex is enabled through the gap junctional network.
Collapse
Affiliation(s)
- R. Six
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - C. Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Y. Fan
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - X. Guan
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mohamed Hedia
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - O. Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - K. C. Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - D. Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - K. Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - A. Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - L. Peelman
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Karl KR, Schall PZ, Clark ZL, Ruebel ML, Cibelli J, Tempelman RJ, Latham KE, Ireland JJ. Ovarian stimulation with excessive FSH doses causes cumulus cell and oocyte dysfunction in small ovarian reserve heifers. Mol Hum Reprod 2023; 29:gaad033. [PMID: 37713463 PMCID: PMC10541857 DOI: 10.1093/molehr/gaad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Excessive FSH doses during ovarian stimulation in the small ovarian reserve heifer (SORH) cause premature cumulus expansion and follicular hyperstimulation dysgenesis (FHD) in nearly all ovulatory-size follicles with predicted disruptions in cell-signaling pathways in cumulus cells and oocytes (before ovulatory hCG stimulation). These observations support the hypothesis that excessive FSH dysregulates cumulus cell function and oocyte maturation. To test this hypothesis, we determined whether excessive FSH-induced differentially expressed genes (DEGs) in cumulus cells identified in our previously published transcriptome analysis were altered independent of extreme phenotypic differences observed amongst ovulatory-size follicles, and assessed predicted roles of these DEGs in cumulus and oocyte biology. We also determined if excessive FSH alters cumulus cell morphology, and oocyte nuclear maturation before (premature) or after an ovulatory hCG stimulus or during IVM. Excessive FSH doses increased expression of 17 cumulus DEGs with known roles in cumulus cell and oocyte functions (responsiveness to gonadotrophins, survival, expansion, and oocyte maturation). Excessive FSH also induced premature cumulus expansion and oocyte maturation but inhibited cumulus expansion and oocyte maturation post-hCG and diminished the ability of oocytes with prematurely expanded cumulus cells to undergo IVF or nuclear maturation during IVM. Ovarian stimulation with excessive FSH is concluded to disrupt cumulus cell and oocyte functions by inducing premature cumulus expansion and dysregulating oocyte maturation without an ovulatory hCG stimulus yielding poor-quality cumulus-oocyte complexes that may be incorrectly judged morphologically as suitable for IVF during ART.
Collapse
Affiliation(s)
- Kaitlin R Karl
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Peter Z Schall
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Zaramasina L Clark
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Meghan L Ruebel
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jose Cibelli
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Robert J Tempelman
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Keith E Latham
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Michigan State University, East Lansing, MI, USA
| | - James J Ireland
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Han S, Wang S, Fan X, Chen M, Wang X, Huang Y, Zhang H, Ma Y, Wang J, Zhang C. Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice. Biomedicines 2023; 11:1927. [PMID: 37509566 PMCID: PMC10377061 DOI: 10.3390/biomedicines11071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.
Collapse
Affiliation(s)
- Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Center for Drug Inspection of Guizhou Medical Products Administration, Guizhou Medical Products Administration, Guiyang 550081, China
| | - Shimeng Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiang Fan
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mengchi Chen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaojie Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yingtong Huang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yinyin Ma
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Xia L, Shen Y, Liu S, Du J. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications. Front Endocrinol (Lausanne) 2023; 14:1174817. [PMID: 37223010 PMCID: PMC10200985 DOI: 10.3389/fendo.2023.1174817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Disruption of iron homeostasis plays a negative role in follicle development. The dynamic changes in follicle growth are dependent on Hippo/YAP signaling and mechanical forces. However, little is known about the liaison between iron overload and the Hippo/YAP signalling pathway in term of folliculogenesis. Here, based on the available evidence, we established a hypothesized model linking excessive iron, extracellular matrix (ECM), transforming growth factor-β (TGF-β) and Hippo/Yes-associated protein (YAP) signal regarding follicle development. Hypothetically, the TGF-β signal and iron overload may play a synergistic role in ECM production via YAP. We speculate that the dynamic homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian reserve loss and may enhance the sensitivity of follicles to accumulated iron. Hence, therapeutic interventions targeting iron metabolism disorders, and Hippo/YAP signal may alter the consequences of the impaired developmental process based on our hypothesis, which provides potential targets and inspiration for further drug discovery and development applied to clinical treatment.
Collapse
Affiliation(s)
- Lingjin Xia
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Du
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Hao X, Yuan F, Cui Y, Zhang M. Oocyte-secreted factor TGFB2 enables mouse cumulus cell expansion in vitro. Mol Reprod Dev 2022; 89:554-562. [PMID: 36128893 DOI: 10.1002/mrd.23646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/25/2022]
Abstract
Cumulus expansion is necessary for the release of a fertilizable oocyte from the ovary, which is critical for the normal fertilization of mammals. Cumulus expansion requires cooperation between epidermal growth factor (EGF)-like growth factors and oocyte paracrine factors. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are well-known paracrine factors secreted by oocytes. In addition, transforming growth factor-β2 (TGFB2) was primarily expressed in oocytes and its membrane receptors type 1 receptor (TGFBR1) and type 2 receptor (TGFBR2) were located in cumulus cells. In our present study, TGFB2 induced expansion of oocytectomized (OOX) complexes and increased the expression of expansion-related genes in the presence of EGF, suggesting that TGFB2 enables cumulus expansion. Inhibition of TGF-β signaling with SD208 blocked TGFB2-promoted cumulus expansion. Furthermore, in the culture of OOX complexes from mice of Tgfbr2-specific depletion in granulosa cells, TGFB2-promoted cumulus expansion and the expression of expansion-related genes were impaired. These results suggest that TGFB2 could induce cumulus expansion through TGFBR-SMAD2/3 signaling. Tgfb2-specific depletion in oocytes using Zp3-Cre mice had no effect on cumulus expansion in vivo, possibly due to the compensatory effect of other cumulus expansion-enabling factors. Taken together, TGFB2 is involved in expansion-related gene expression and consequent cumulus expansion.
Collapse
Affiliation(s)
- Xiaoqiong Hao
- Department of Physiology, Baotou Medical College, Baotou, China.,Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feifei Yuan
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanying Cui
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meijia Zhang
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Chen F, Chen Y, Mai Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection–in vitro Fertilization. Front Public Health 2022; 10:924539. [PMID: 35844885 PMCID: PMC9282825 DOI: 10.3389/fpubh.2022.924539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background To explore the methylation profiles in cumulus cells (CCs) of women undergoing intracytoplasmic sperm injection–in vitro fertilization (ICSI–IVF) and establish a prediction model of pregnancy outcomes using machine learning approaches. Methods Methylation data were retrieved from the Gene Expression Omnibus (GEO) database, and differentially methylated genes (DMGs) were subjected to gene set analyses. Support vector machine (SVM), random forest (RF), and logistic regression (LR) were used to establish the prediction model, and microarray data from GEO was analyzed to identify differentially expressed genes (DEGs) associated with the dichotomous outcomes of clinical pregnancy (pregnant vs. non-pregnant). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis provided multi-dimensional validation for selected DMGs. Results A total of 338 differentially methylated CpG sites associated with 146 unique genes across the genome were identified. Among the identified pathways, the prominent ones were involved in the regulation of cell growth and oocyte development (hsa04340, hsa04012, hsa04914, hsa04614, hsa04913, hsa04020, and hsa00510). The area under the curve (AUC) of machine learning classifiers was 0.94 (SVM) vs. 0.88 (RF) vs. 0.97 (LR). 196 DEGs were found in transcriptional microarray. Mapped genes were selected through overlapping enriched pathways in transcriptional profiles and methylated data of CCs, predictive of successful pregnancy. Conclusions Methylated profiles of CCs were significantly different between women receiving ICSI-IVF procedures that conceived successfully and those that did not conceive. Machine learning approaches are powerful tools that may provide crucial information for prognostic assessment. Pathway analysis may be another way in multiomics analysis of cumulus cells.
Collapse
Affiliation(s)
- Fangying Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Division of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Qinyun Mai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qinyun Mai
| |
Collapse
|
9
|
Novel PMM2 missense mutation in a Chinese family with non-syndromic premature ovarian insufficiency. J Assist Reprod Genet 2020; 37:443-450. [PMID: 31902100 DOI: 10.1007/s10815-019-01675-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study sought to identify a disease-related gene in a consanguineous Chinese family in which there were two premature ovarian insufficiency (POI) sisters. METHOD We used whole-exome sequencing and Sanger sequencing to identify the disease-causing gene. Results were verified using an assay of mutant protein and in silico analyses. RESULT We identified a novel missense mutation (NM_000303: c.556G>A, p.Gly186Arg) in the PMM2 gene. The two sisters suffer from premature ovarian insufficiency (POI) only and have no other symptoms of congenital disorder of glycosylation type-1a (CDG-Ia). We found that the enzymic activity of the mutant PMM2 protein was reduced by 55.21% (p < 0.05) when compared with wild type, and many in silico tools suggested the mutation is disease-related. CONCLUSION This particular gene modification results in changes in activity of phosphomannomutase modification, which could lead to PMM2-CDG-Ia with an uncommon phenotype.
Collapse
|
10
|
Zhang Y, Yang J, Yang J, Li J, Zhang M. CREB activity is required for epidermal growth factor‐induced mouse cumulus expansion. Mol Reprod Dev 2019; 86:1887-1900. [DOI: 10.1002/mrd.23285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jian Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological SciencesChina Agricultural University Beijing China
| |
Collapse
|
11
|
Akintayo A, Stanley P. Roles for Golgi Glycans in Oogenesis and Spermatogenesis. Front Cell Dev Biol 2019; 7:98. [PMID: 31231650 PMCID: PMC6566014 DOI: 10.3389/fcell.2019.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins by N- and O-glycans or glycosaminoglycans (GAGs) mostly begins in the endoplasmic reticulum and is further orchestrated in the Golgi compartment via the action of >100 glycosyltransferases that reside in this complex organelle. The synthesis of glycolipids occurs in the Golgi, also by resident glycosyltransferases. A defect in the glycosylation machinery may impair the functions of glycoproteins and other glycosylated molecules, and lead to a congenital disorder of glycosylation (CDG). Spermatogenesis in the male and oogenesis in the female are tightly regulated differentiation events leading to the production of functional gametes. Insights into roles for glycans in gamete production have been obtained from mutant mice following deletion or inactivation of genes that encode a glycosylation activity. In this review, we will summarize the effects of altering the synthesis of N-glycans, O-glycans, proteoglycans, glycophosphatidylinositol (GPI) anchored proteins, and glycolipids during gametogenesis in the mouse. Glycosylation genes whose deletion causes embryonic lethality have been investigated following conditional deletion using various Cre recombinase transgenes with a cell-type specific promoter. The potential effects of mutations in corresponding glycosylation genes of humans will be discussed in relation to consequences to fertility and potential for use in contraception.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|