1
|
Kim S, Phan S, Tran HT, Shaw TR, Shahmoradian SH, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for neuronal nuclear pore complex localization and maturation. Nat Cell Biol 2024; 26:1482-1495. [PMID: 39117796 PMCID: PMC11542706 DOI: 10.1038/s41556-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hung Tri Tran
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
| | - Thomas R Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah H Shahmoradian
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
- Department of Biophysics, UT Southwestern, Dallas, TX, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
2
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
3
|
Hernandez-Ono A, Zhao YP, Murray JW, Östlund C, Lee MJ, Shi A, Dauer WT, Worman HJ, Ginsberg HN, Shin JY. Dynamic regulation of hepatic lipid metabolism by torsinA and its activators. JCI Insight 2024; 9:e175328. [PMID: 38194265 PMCID: PMC10967386 DOI: 10.1172/jci.insight.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA. We now show that depletion of LULL1 alone does not significantly decrease triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Depletion of both LAP1 and torsinA from hepatocytes generated phenotypes similar to those observed with only torsinA depletion, implying that the 2 proteins act in the same pathway in liver lipid metabolism. Our results demonstrate that torsinA and its activators dynamically regulate hepatic lipid metabolism.
Collapse
Affiliation(s)
| | | | - John W. Murray
- Department of Medicine
- Columbia Center for Human Development, and
| | - Cecilia Östlund
- Department of Medicine
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J. Lee
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Angsi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Howard J. Worman
- Department of Medicine
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
4
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
5
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
6
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Hernandez-Ono A, Zhao YP, Murray JW, Östlund C, Lee MJ, Shi A, Dauer WT, Worman HJ, Ginsberg HN, Shin JY. Functional interaction of torsinA and its activators in liver lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545957. [PMID: 37547008 PMCID: PMC10401926 DOI: 10.1101/2023.06.21.545957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activators lamina-associated polypeptide 1 (LAP1) in the perinuclear space or luminal domain-like LAP1 (LULL1) throughout the endoplasmic reticulum. However, the interaction of torsinA with LAP1 and LULL1 has not yet been shown to modulate a defined physiological process in mammals in vivo . We previously demonstrated that depletion of torsinA from mouse hepatocytes leads to reduced liver triglyceride secretion and marked steatosis, whereas depletion of LAP1 had more modest similar effects. We now show that depletion of LULL1 alone does not significantly decrease liver triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 from hepatocytes leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Our results demonstrate that torsinA and its activators dynamically regulate a physiological process in mammals in vivo .
Collapse
|
8
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
9
|
Pocratsky AM, Nascimento F, Özyurt MG, White IJ, Sullivan R, O’Callaghan BJ, Smith CC, Surana S, Beato M, Brownstone RM. Pathophysiology of Dyt1- Tor1a dystonia in mice is mediated by spinal neural circuit dysfunction. Sci Transl Med 2023; 15:eadg3904. [PMID: 37134150 PMCID: PMC7614689 DOI: 10.1126/scitranslmed.adg3904] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023]
Abstract
Dystonia, a neurological disorder defined by abnormal postures and disorganized movements, is considered to be a neural circuit disorder with dysfunction arising within and between multiple brain regions. Given that spinal neural circuits constitute the final pathway for motor control, we sought to determine their contribution to this movement disorder. Focusing on the most common inherited form of dystonia in humans, DYT1-TOR1A, we generated a conditional knockout of the torsin family 1 member A (Tor1a) gene in the mouse spinal cord and dorsal root ganglia (DRG). We found that these mice recapitulated the phenotype of the human condition, developing early-onset generalized torsional dystonia. Motor signs emerged early in the mouse hindlimbs before spreading caudo-rostrally to affect the pelvis, trunk, and forelimbs throughout postnatal maturation. Physiologically, these mice bore the hallmark features of dystonia, including spontaneous contractions at rest and excessive and disorganized contractions, including cocontractions of antagonist muscle groups, during voluntary movements. Spontaneous activity, disorganized motor output, and impaired monosynaptic reflexes, all signs of human dystonia, were recorded from isolated mouse spinal cords from these conditional knockout mice. All components of the monosynaptic reflex arc were affected, including motor neurons. Given that confining the Tor1a conditional knockout to DRG did not lead to early-onset dystonia, we conclude that the pathophysiological substrate of this mouse model of dystonia lies in spinal neural circuits. Together, these data provide new insights into our current understanding of dystonia pathophysiology.
Collapse
Affiliation(s)
- Amanda M. Pocratsky
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - M. Görkem Özyurt
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London; London, WC1E 6BT, UK
| | - Roisin Sullivan
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Benjamin J. O’Callaghan
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Calvin C. Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London; London, WC1E 6BT, UK
| | - Marco Beato
- Department of Neuroscience, Physiology, and Pharmacology, University College London; London, WC1E 6BT, UK
| | - Robert M. Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| |
Collapse
|
10
|
Kim S, Phan S, Shaw TR, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for the timing and localization of neuronal nuclear pore complex biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538491. [PMID: 37162852 PMCID: PMC10168336 DOI: 10.1101/2023.04.26.538491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Thomas R. Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
- Department of Neuroscience, UT Southwestern, Dallas, TX
| |
Collapse
|
11
|
Rauschenberger L, Krenig EM, Stengl A, Knorr S, Harder TH, Steeg F, Friedrich MU, Grundmann-Hauser K, Volkmann J, Ip CW. Peripheral nerve injury elicits microstructural and neurochemical changes in the striatum and substantia nigra of a DYT-TOR1A mouse model with dystonia-like movements. Neurobiol Dis 2023; 179:106056. [PMID: 36863527 DOI: 10.1016/j.nbd.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Esther-Marie Krenig
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alea Stengl
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Tristan H Harder
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Felix Steeg
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Maximilian U Friedrich
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
12
|
Kohler J, Hur KH, Mueller JD. Autocorrelation function of finite-length data in fluorescence correlation spectroscopy. Biophys J 2023; 122:241-253. [PMID: 36266971 PMCID: PMC9822791 DOI: 10.1016/j.bpj.2022.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023] Open
Abstract
The experimental autocorrelation function of fluorescence correlation spectroscopy calculated from finite-length data is a biased estimator of the theoretical correlation function. This study presents a new theoretical framework that explicitly accounts for the data length to allow for unbiased analysis of experimental autocorrelation functions. To validate our theory, we applied it to experiments and simulations of diffusion and characterized the accuracy and precision of the resulting parameter estimates. Because measurements in living cells are often affected by instabilities of the fluorescence signal, autocorrelation functions are typically calculated on segmented data to improve their robustness. Our reformulated theory extends the range of usable segment times down to timescales approaching the diffusion time. This flexibility confers unique advantages for live-cell data that contain intensity variations and instabilities. We describe several applications of short segmentation to analyze data contaminated with unwanted fluctuations, drifts, or spikes in the intensity that are not suited for conventional fluorescence correlation analysis. These results demonstrate the potential of our theoretical framework to significantly expand the experimental systems accessible to fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joachim Dieter Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
13
|
Bukhari-Parlakturk N, Frucht SJ. Isolated and combined dystonias: Update. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:425-442. [PMID: 37620082 DOI: 10.1016/b978-0-323-98817-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder with a unique motor phenomenology that can manifest as an isolated clinical syndrome or combined with other neurological features. This chapter reviews the characteristic features of dystonia phenomenology and the syndromic approach to evaluating the disorders that may allow us to differentiate the isolated and combined syndromes. We also present the most common types of isolated and combined dystonia syndromes. Since accelerated gene discoveries have increased our understanding of the molecular mechanisms of dystonia pathogenesis, we also present isolated and combined dystonia syndromes by shared biological pathways. Examples of these converging mechanisms of the isolated and combined dystonia syndromes include (1) disruption of the integrated response pathway through eukaryotic initiation factor 2 alpha signaling, (2) disease of dopaminergic signaling, (3) alterations in the cerebello-thalamic pathway, and (4) disease of protein mislocalization and stability. The discoveries that isolated and combined dystonia syndromes converge in shared biological pathways will aid in the development of clinical trials and therapeutic strategies targeting these convergent molecular pathways.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Movement Disorders Division, Duke University (NBP), Durham, NC, United States.
| | - Steven J Frucht
- Department of Neurology, NYU Grossman School of Medicine (SJF), New York, NY, United States
| |
Collapse
|
14
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
15
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
16
|
Prophet SM, Naughton BS, Schlieker C. p97/UBXD1 Generate Ubiquitylated Proteins That Are Sequestered into Nuclear Envelope Herniations in Torsin-Deficient Cells. Int J Mol Sci 2022; 23:4627. [PMID: 35563018 PMCID: PMC9100061 DOI: 10.3390/ijms23094627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.
Collapse
Affiliation(s)
- Sarah M. Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Brigitte S. Naughton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Caffall ZF, Wilkes BJ, Hernández-Martinez R, Rittiner JE, Fox JT, Wan KK, Shipman MK, Titus SA, Zhang YQ, Patnaik S, Hall MD, Boxer MB, Shen M, Li Z, Vaillancourt DE, Calakos N. The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Sci Transl Med 2021; 13:13/607/eabd3904. [PMID: 34408078 DOI: 10.1126/scitranslmed.abd3904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.
Collapse
Affiliation(s)
- Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Jennifer T Fox
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kanny K Wan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.,Department of Neurology, Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
19
|
DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress. Neurobiol Dis 2021; 158:105464. [PMID: 34358617 DOI: 10.1016/j.nbd.2021.105464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.
Collapse
|
20
|
Honer J, Niemeyer KM, Fercher C, Diez Tissera AL, Jaberolansar N, Jafrani YMA, Zhou C, Caramelo JJ, Shewan AM, Schulz BL, Brodsky JL, Zacchi LF. TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119073. [PMID: 34062155 PMCID: PMC8889903 DOI: 10.1016/j.bbamcr.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
The Endoplasmic Reticulum (ER) is responsible for the folding and post-translational modification of secretory proteins, as well as for triaging misfolded proteins. During folding, there is a complex yet only partially understood interplay between disulfide bond formation, which is an enzyme catalyzed event in the oxidizing environment of the ER, along with other post-translational modifications (PTMs) and chaperone-supported protein folding. Here, we used the glycoprotein torsinA as a model substrate to explore the impact of ER redox homeostasis on PTMs and protein biogenesis. TorsinA is a AAA+ ATPase with unusual oligomeric properties and controversial functions. The deletion of a C-terminal glutamic acid residue (∆E) is associated with the development of Early-Onset Torsion Dystonia, a severe movement disorder. TorsinA differs from other AAA+ ATPases since it is an ER resident, and as a result of its entry into the ER torsinA contains two N-linked glycans and at least one disulfide bond. The role of these PTMs on torsinA biogenesis and function and the identity of the enzymes that catalyze them are poorly defined. Using a yeast torsinA expression system, we demonstrate that a specific protein disulfide isomerase, Pdi1, affects the folding and N-linked glycosylation of torsinA and torsinA∆E in a redox-dependent manner, suggesting that the acquisition of early torsinA folding intermediates is sensitive to perturbed interactions between Cys residues and the quality control machinery. We also highlight the role of specific Cys residues during torsinA biogenesis and demonstrate that torsinA∆E is more sensitive than torsinA when these Cys residues are mutated.
Collapse
Affiliation(s)
- Jonas Honer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Katie M Niemeyer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Christian Fercher
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ana L Diez Tissera
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Noushin Jaberolansar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yohaann M A Jafrani
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chun Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Benjamin L Schulz
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Lucía F Zacchi
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America; Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
21
|
Structural Glycoprotein E2 of Classical Swine Fever Virus Critically Interacts with Host Protein Torsin-1A during the Virus Infectious Cycle. J Virol 2021; 95:JVI.00314-21. [PMID: 33827941 DOI: 10.1128/jvi.00314-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
The classical swine fever virus (CSFV) glycoprotein E2 is the major structural component of the virus particle. E2 is involved in several functions, such as virus adsorption to the cell, the elicitation of protective immune responses, and virus virulence in swine. Using a yeast two-hybrid system, we previously identified the swine host protein Torsin-1A, an ATPase protein residing in the endoplasmic reticulum and inner nucleus membrane of the cell, as a specific binding partner for E2. The interaction between Torsin-1A and E2 proteins was confirmed to occur in CSFV-infected swine cells using three independent methods: coimmunoprecipitation, confocal microscopy, and proximity ligation assay (PLA). Furthermore, the E2 residue critical to mediate the protein-protein interaction with Torsin-1A was identified by a reverse yeast two-hybrid assay using a randomly mutated E2 library. A recombinant CSFV E2 mutant protein with a Q316L substitution failed to bind swine Torsin-1A in the yeast two-hybrid model. In addition, a CSFV infectious clone harboring the E2 Q316L substitution, although expressing substantial levels of E2 protein, repetitively failed to produce virus progeny when the corresponding RNA was transfected into susceptible SK6 cells. Importantly, PLA analysis of the transfected cells demonstrated an abolishment of the interaction between E2 Q316L and Torsin-1A, indicating a critical role for that interaction during CSFV replication.IMPORTANCE Structural glycoprotein E2 is an important structural component of the CSFV particle. E2 is involved in several virus functions, particularly virus-host interactions. Here, we characterized the interaction between CSFV E2 and swine protein Torsin-1A during virus infection. The critical amino acid residue in E2 mediating the interaction with Torsin-1A was identified and the effect of disrupting the E2-Torsin-1A protein-protein interaction was studied using reverse genetics. It is shown that the amino acid substitution abrogating E2-Torsin-1A interaction constitutes a lethal mutation, demonstrating that this virus-host protein-protein interaction is a critical factor during CSFV replication. This highlights the potential importance of the E2-Torsin-1A protein-protein interaction during CSFV replication and provides a potential pathway toward blocking virus replication, an important step toward the potential development of novel virus countermeasures.
Collapse
|
22
|
Downs AM, Fan X, Kadakia RF, Donsante Y, Jinnah HA, Hess EJ. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2021; 155:105369. [PMID: 33894367 DOI: 10.1016/j.nbd.2021.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Radhika F Kadakia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Cascalho A, Foroozandeh J, Hennebel L, Swerts J, Klein C, Rous S, Dominguez Gonzalez B, Pisani A, Meringolo M, Gallego SF, Verstreken P, Seibler P, Goodchild RE. Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia. Brain 2021; 143:1746-1765. [PMID: 32516804 DOI: 10.1093/brain/awaa139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 11/14/2022] Open
Abstract
TOR1A/TorsinA mutations cause two incurable diseases: a recessive congenital syndrome that can be lethal, and a dominantly-inherited childhood-onset dystonia (DYT-TOR1A). TorsinA has been linked to phosphatidic acid lipid metabolism in Drosophila melanogaster. Here we evaluate the role of phosphatidic acid phosphatase (PAP) enzymes in TOR1A diseases using induced pluripotent stem cell-derived neurons from patients, and mouse models of recessive Tor1a disease. We find that Lipin PAP enzyme activity is abnormally elevated in human DYT-TOR1A dystonia patient cells and in the brains of four different Tor1a mouse models. Its severity also correlated with the dosage of Tor1a/TOR1A mutation. We assessed the role of excess Lipin activity in the neurological dysfunction of Tor1a disease mouse models by interbreeding these with Lpin1 knock-out mice. Genetic reduction of Lpin1 improved the survival of recessive Tor1a disease-model mice, alongside suppressing neurodegeneration, motor dysfunction, and nuclear membrane pathology. These data establish that TOR1A disease mutations cause abnormal phosphatidic acid metabolism, and suggest that approaches that suppress Lipin PAP enzyme activity could be therapeutically useful for TOR1A diseases.
Collapse
Affiliation(s)
- Ana Cascalho
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Lise Hennebel
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Stef Rous
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
25
|
Östlund C, Hernandez-Ono A, Shin JY. The Nuclear Envelope in Lipid Metabolism and Pathogenesis of NAFLD. BIOLOGY 2020; 9:biology9100338. [PMID: 33076344 PMCID: PMC7602593 DOI: 10.3390/biology9100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary The liver is a major organ regulating lipid metabolism and a proper liver function is essential to health. Nonalcoholic fatty liver disease (NAFLD) is a condition with abnormal fat accumulation in the liver without heavy alcohol use. NAFLD is becoming one of the most common liver diseases with the increase in obesity in many parts of the world. There is no approved cure for the disease and a better understanding of disease mechanism is needed for effective prevention and treatment. The nuclear envelope, a membranous structure that surrounds the cell nucleus, is connected to the endoplasmic reticulum where the vast majority of cellular lipids are synthesized. Growing evidence indicates that components in the nuclear envelope are involved in cellular lipid metabolism. We review published studies with various cell and animal models, indicating the essential roles of nuclear envelope proteins in lipid metabolism. We also discuss how defects in these proteins affect cellular lipid metabolism and possibly contribute to the pathogenesis of NAFLD. Abstract Nonalcoholic fatty liver disease (NAFLD) is a burgeoning public health problem worldwide. Despite its tremendous significance for public health, we lack a comprehensive understanding of the pathogenic mechanisms of NAFLD and its more advanced stage, nonalcoholic steatohepatitis (NASH). Identification of novel pathways or cellular mechanisms that regulate liver lipid metabolism has profound implications for the understanding of the pathology of NAFLD and NASH. The nuclear envelope is topologically connected to the ER, where protein synthesis and lipid synthesis occurs. Emerging evidence points toward that the nuclear lamins and nuclear membrane-associated proteins are involved in lipid metabolism and homeostasis. We review published reports that link these nuclear envelope proteins to lipid metabolism. In particular, we focus on the recent work demonstrating the essential roles for the nuclear envelope-localized torsinA/lamina-associated polypeptide (LAP1) complex in hepatic steatosis, lipid secretion, and NASH development. We also discuss plausible pathogenic mechanisms by which the loss of either protein in hepatocytes leads to hepatic dyslipidemia and NASH development.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
| | - Ji-Yeon Shin
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
- Correspondence: ; Tel.: +1-212-305-4088
| |
Collapse
|
26
|
Hennen J, Kohler J, Karuka SR, Saunders CA, Luxton GWG, Mueller JD. Differentiating Luminal and Membrane-Associated Nuclear Envelope Proteins. Biophys J 2020; 118:2385-2399. [PMID: 32304637 DOI: 10.1016/j.bpj.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
27
|
Karuka SR, Hennen J, Hur KH, Mueller JD. Time-shifted mean-segmented Q data of a luminal protein measured at the nuclear envelope by fluorescence fluctuation microscopy. Data Brief 2020; 28:105005. [PMID: 32226805 PMCID: PMC7093802 DOI: 10.1016/j.dib.2019.105005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Fluorescence fluctuation microscopy is a widely used method to determine the mobility and oligomeric state of proteins in the live cell environment. Existing analysis methods rely on statistical evaluation of data segments with the implicit assumption that no significant signal fluctuations occur on the time scale of a data segment. Recent work on extending fluorescence fluctuation methods to the nuclear envelope of living cells identified a slow fluctuation process that is associated with the undulations of the nuclear membranes, which lead to intensity fluctuations due to local volume changes at the nuclear envelope. This environment violates the above-mentioned assumption and is associated with biased evaluation of fluorescence fluctuation data by traditional analysis methods, such as the autocorrelation function. This challenge was overcome by the introduction of the time-shifted mean-segmented Q function, which relies on a sliding scale of data segment lengths. Here, we share experimental fluorescence fluctuation data taken at the nuclear envelope and demonstrate the calculation of the time-shifted mean-segmented Q function from the raw data. The data and analysis should be valuable for researchers interested in fluorescence fluctuation techniques and provides an opportunity to examine the influence of slow fluctuations on existing data analysis methods. The data is related to the research article titled "Protein oligomerization and mobility within the nuclear envelope evaluated by the time-shifted mean-segmented Q factor" [1].
Collapse
Affiliation(s)
| | - Jared Hennen
- School of Physics and Astronomy, University of Minnesota, MN, 55455, United States
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, MN, 55455, United States
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, MN, 55455, United States
| |
Collapse
|
28
|
Impaired differentiation of human induced neural stem cells by TOR1A overexpression. Mol Biol Rep 2020; 47:3993-4001. [PMID: 32239467 PMCID: PMC7239838 DOI: 10.1007/s11033-020-05390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023]
Abstract
DYT-TOR1A is the most common inherited dystonia caused by a three nucleotide (GAG) deletion (dE) in the TOR1A gene. Death early after birth and cortical anomalies of the full knockout in rodents underscore its developmental importance. We therefore explored the timed effects of TOR1A-wt and TOR1A-dE during differentiation in a human neural in vitro model. We used lentiviral tet-ON expression of TOR1A-wt and -dE in induced neural stem cells derived from healthy donors. Overexpression was induced during proliferation of neural precursors, during differentiation and after differentiation into mature neurons. Overexpression of both wildtype and mutated protein had no effect on the viability and cell number of neural precursors as well as mature neurons when initiated before or after differentiation. However, if induced during differentiation, overexpression of TOR1A-wt and -dE led to a pronounced reduction of mature neurons in a dose dependent manner. Our data underscores the importance of physiological expression levels of TOR1A as crucial for proper neuronal differentiation. We did not find evidence for a specific impact of the mutated TOR1A on neuronal maturation.
Collapse
|
29
|
Li J, Liang CC, Pappas SS, Dauer WT. TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models. eLife 2020; 9:e54285. [PMID: 32202496 PMCID: PMC7141835 DOI: 10.7554/elife.54285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic redundancy can be exploited to identify therapeutic targets for inherited disorders. We explored this possibility in DYT1 dystonia, a neurodevelopmental movement disorder caused by a loss-of-function (LOF) mutation in the TOR1A gene encoding torsinA. Prior work demonstrates that torsinA and its paralog torsinB have conserved functions at the nuclear envelope. This work established that low neuronal levels of torsinB dictate the neuronal selective phenotype of nuclear membrane budding. Here, we examined whether torsinB expression levels impact the onset or severity of abnormal movements or neuropathological features in DYT1 mouse models. We demonstrate that torsinB levels bidirectionally regulate these phenotypes. Reducing torsinB levels causes a dose-dependent worsening whereas torsinB overexpression rescues torsinA LOF-mediated abnormal movements and neurodegeneration. These findings identify torsinB as a potent modifier of torsinA LOF phenotypes and suggest that augmentation of torsinB expression may retard or prevent symptom development in DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of MichiganAnn ArborUnited States
- Cellular and Molecular Biology Graduate Program, University of MichiganAnn ArborUnited States
| | - Chun-Chi Liang
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| | - William T Dauer
- Department of Neurology, University of MichiganAnn ArborUnited States
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| |
Collapse
|
30
|
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease. Biomolecules 2020; 10:biom10030468. [PMID: 32204310 PMCID: PMC7175109 DOI: 10.3390/biom10030468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.
Collapse
|
31
|
Hölper JE, Klupp BG, Luxton GWG, Franzke K, Mettenleiter TC. Function of Torsin AAA+ ATPases in Pseudorabies Virus Nuclear Egress. Cells 2020; 9:cells9030738. [PMID: 32192107 PMCID: PMC7140721 DOI: 10.3390/cells9030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this, they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM). While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of the primary virion envelope with the ONM are still mostly enigmatic but might include cellular proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells showed decreased viral titers at early time points of infection and an accumulation of primary virions in the PNS pointing to a delay in capsid release during nuclear egress.
Collapse
Affiliation(s)
- Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
- Correspondence: ; Tel.: +49-38351-71250; Fax: +49-38351-71151
| |
Collapse
|
32
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
33
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Kariminejad A, Dahl-Halvarsson M, Ravenscroft G, Afroozan F, Keshavarz E, Goullée H, Davis MR, Faraji Zonooz M, Najmabadi H, Laing NG, Tajsharghi H. TOR1A variants cause a severe arthrogryposis with developmental delay, strabismus and tremor. Brain 2019; 140:2851-2859. [PMID: 29053766 DOI: 10.1093/brain/awx230] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article.
Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.
Collapse
Affiliation(s)
| | - Martin Dahl-Halvarsson
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Fariba Afroozan
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Elham Keshavarz
- Department of Radiology, Mahdieh Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hayley Goullée
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Homa Tajsharghi
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia.,School of Health and Education, Division Biomedicine and Public Health, University of Skovde, SE-541 28, Skovde, Sweden
| |
Collapse
|
35
|
Serrano JB, Martins F, Pereira CD, van Pelt AMM, da Cruz E Silva OAB, Rebelo S. TorsinA Is Functionally Associated with Spermatogenesis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:221-228. [PMID: 30246678 DOI: 10.1017/s1431927618015179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.
Collapse
Affiliation(s)
- Joana B Serrano
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Filipa Martins
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Cátia D Pereira
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Ans M M van Pelt
- 2Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Odete A B da Cruz E Silva
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| | - Sandra Rebelo
- 1Neuroscience and Signalling Laboratory,Department of Medical Sciences,Institute of Biomedicine (iBiMED),University of Aveiro,3810-193 Aveiro,Portugal
| |
Collapse
|
36
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
37
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Beauvais G, Watson JL, Aguirre JA, Tecedor L, Ehrlich ME, Gonzalez-Alegre P. Efficient RNA interference-based knockdown of mutant torsinA reveals reversibility of PERK-eIF2α pathway dysregulation in DYT1 transgenic rats in vivo. Brain Res 2018; 1706:24-31. [PMID: 30366018 DOI: 10.1016/j.brainres.2018.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
Abstract
DYT1 dystonia is a neurological disease caused by a dominant mutation that results in the loss of a glutamic acid in the endoplasmic reticulum-resident protein torsinA. Currently, treatments are symptomatic and only provide partial relief. Multiple reports support the hypothesis that selectively reducing expression of mutant torsinA without affecting levels of the wild type protein should be beneficial. Published cell-based studies support this hypothesis. It is unclear, however, if phenotypes are reversible by targeting the molecular defect once established in vivo. Here, we generated adeno-associated virus encoding artificial microRNA targeting human mutant torsinA and delivered them to the striatum of symptomatic transgenic rats that express the full human TOR1A mutant gene. We achieved efficient suppression of human mutant torsinA expression in DYT1 transgenic rats, partly reversing its accumulation in the nuclear envelope. This intervention rescued PERK-eIF2α pathway dysregulation in striatal projection neurons but not behavioral abnormalities. Moreover, we found abnormal expression of components of dopaminergic neurotransmission in DYT1 rat striatum, which were not normalized by suppressing mutant torsinA expression. Our findings demonstrate the reversibility of translational dysregulation in DYT1 neurons and confirm the presence of abnormal dopaminergic neurotransmission in DYT1 dystonia.
Collapse
Affiliation(s)
- Genevieve Beauvais
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Jaime L Watson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Jose A Aguirre
- Department of Human Physiology, University of Malaga, Malaga 29071, Spain
| | - Luis Tecedor
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai. New York, NY 10029, United States
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania. Philadelphia, PA 19104, United States.
| |
Collapse
|
39
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
40
|
Yu-Taeger L, Gaiser V, Lotzer L, Roenisch T, Fabry BT, Stricker-Shaver J, Casadei N, Walter M, Schaller M, Riess O, Nguyen HP, Ott T, Grundmann-Hauser K. Dynamic nuclear envelope phenotype in rats overexpressing mutated human torsinA protein. Biol Open 2018; 7:bio.032839. [PMID: 29739751 PMCID: PMC6078351 DOI: 10.1242/bio.032839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A three-base-pair deletion in the human TOR1A gene is causative for the most common form of primary dystonia: the early-onset dystonia type 1 (DYT1 dystonia). The pathophysiological consequences of this mutation are still unknown. To study the pathology of the mutant torsinA (TOR1A) protein, we have generated a transgenic rat line that overexpresses the human mutant protein under the control of the human TOR1A promoter. This new animal model was phenotyped with several approaches, including behavioral tests and neuropathological analyses. Motor phenotype, cellular and ultrastructural key features of torsinA pathology were found in this new transgenic rat line, supporting that it can be used as a model system for investigating the disease’s development. Analyses of mutant TOR1A protein expression in various brain regions also showed a dynamic expression pattern and a reversible nuclear envelope pathology. These findings suggest the differential vulnerabilities of distinct neuronal subpopulations. Furthermore, the reversibility of the nuclear envelope pathology might be a therapeutic target to treat the disease. Summary: A novel transgenic rat model displaying dystonia-like phenotypes and dynamic processes in NE pathology can become a useful tool for therapy development for dystonia and other related diseases.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Viktoria Gaiser
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Larissa Lotzer
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Tina Roenisch
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Core Facility Transgenic Animals, University Hospital Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Benedikt Timo Fabry
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Janice Stricker-Shaver
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Nicolas Casadei
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Michael Walter
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany .,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Thomas Ott
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Core Facility Transgenic Animals, University Hospital Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany.,Centre for Rare Diseases, University of Tuebingen, Calwerstr. 7, 72076 Tuebingen, Germany
| |
Collapse
|
41
|
Hennen J, Saunders CA, Mueller JD, Luxton GWG. Fluorescence fluctuation spectroscopy reveals differential SUN protein oligomerization in living cells. Mol Biol Cell 2018. [PMID: 29514929 PMCID: PMC5921568 DOI: 10.1091/mbc.e17-04-0233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fluorescence fluctuation spectroscopy is established as a powerful tool for quantifying protein oligomerization in the nuclear envelopes of living cells. It reveals that the SUN proteins SUN1 and SUN2 display differential oligomerization in vivo, which has important implications for LINC complex–dependent nuclear mechanotransduction. Linker-of-nucleoskeleton-and-cytoskeleton (LINC) complexes are conserved molecular bridges within the nuclear envelope that mediate mechanical force transmission into the nucleoplasm. The core of a LINC complex is formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Mammals encode six KASH proteins and five SUN proteins. Recently, KASH proteins were shown to bind to the domain interfaces of trimeric SUN2 proteins in vitro. However, neither the existence of SUN2 trimers in living cells nor the extent to which other SUN proteins conform to this assembly state have been tested experimentally. Here we extend the application of fluorescence fluctuation spectroscopy to quantify SUN protein oligomerization in the nuclear envelopes of living cells. Using this approach, we demonstrate for the first time that SUN2 trimerizes in vivo and we demonstrate that the in vivo oligomerization of SUN1 is not limited to a trimer. In addition, we provide evidence to support the existence of potential regulators of SUN protein oligomerization in the nuclear envelope. The differential SUN protein oligomerization illustrated here suggests that SUN proteins may have evolved to form different assembly states in order to participate in diverse mechanotransduction events.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
42
|
Zhu R, Liu C, Gundersen GG. Nuclear positioning in migrating fibroblasts. Semin Cell Dev Biol 2017; 82:41-50. [PMID: 29241691 DOI: 10.1016/j.semcdb.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
The positioning and movement of the nucleus has recently emerged as an important aspect of cell migration. Understanding of nuclear positioning and movement has reached an apogee in studies of fibroblast migration. Specific nuclear positioning and movements have been described in the polarization of fibroblast for cell migration and in active migration in 2D and 3D environments. Here, we review recent studies that have uncovered novel molecular mechanisms that contribute to these events in fibroblasts. Many of these involve a connection between the nucleus and the cytoskeleton through the LINC complex composed of outer nuclear membrane nesprins and inner nuclear membrane SUN proteins. We consider evidence that appropriate nuclear positioning contributes to efficient fibroblast polarization and migration and the possible mechanism through which the nucleus affects cell migration.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
43
|
Hennen J, Hur KH, Saunders CA, Luxton GWG, Mueller JD. Quantitative Brightness Analysis of Protein Oligomerization in the Nuclear Envelope. Biophys J 2017; 113:138-147. [PMID: 28700912 DOI: 10.1016/j.bpj.2017.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023] Open
Abstract
Brightness analysis of fluorescence fluctuation experiments has been used to successfully measure the oligomeric state of proteins at the plasma membrane, in the nucleoplasm, and in the cytoplasm of living cells. Here we extend brightness analysis to the nuclear envelope (NE), a double membrane barrier separating the cytoplasm from the nucleoplasm. Results obtained by applying conventional brightness analysis to fluorescently tagged proteins within the NE exhibited an unusual concentration dependence. Similarly, the autocorrelation function of the fluorescence fluctuations exhibited unexpected changes with protein concentration. These observations motivated the application of mean-segmented Q analysis, which identified the existence of a fluctuation process distinct from molecular diffusion in the NE. We propose that small changes in the separation of the inner and outer nuclear membrane are responsible for the additional fluctuation process, as suggested by results obtained for luminal and nuclear membrane-associated EGFP-tagged proteins. Finally, we applied these insights to study the oligomerization of the luminal domains of two nuclear membrane proteins, nesprin-2 and SUN2, which interact transluminally to form a nuclear envelope-spanning linker molecular bridge known as the linker of the nucleoskeleton and cytoskeleton complex.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
44
|
Abstract
Mainly due to the advent of next-generation sequencing (NGS), the field of genetics of dystonia has rapidly grown in recent years, which led to the discovery of a number of novel dystonia genes and the development of a new classification and nomenclature for inherited dystonias. In addition, new findings from both in vivo and in vitro studies have been published on the role of previously known dystonia genes, extending our understanding of the pathophysiology of dystonia. We here review the current knowledge and recent findings in the known genes for isolated dystonia TOR1A, THAP1, and GNAL as well as for the combined dystonias due to mutations in GCH1, ATP1A3, and SGCE. We present confirmatory evidence for a role of dystonia genes that had not yet been unequivocally established including PRKRA, TUBB4A, ANO3, and TAF1. We finally discuss selected novel genes for dystonia such as KMT2B and VAC14 along with the challenges for gene identification in the NGS era and the translational importance of dystonia genetics in clinical practice.
Collapse
|
45
|
Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci 2017; 36:10245-10256. [PMID: 27707963 DOI: 10.1523/jneurosci.0669-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.
Collapse
|
46
|
Chase AR, Laudermilch E, Schlieker C. Torsin ATPases: Harnessing Dynamic Instability for Function. Front Mol Biosci 2017; 4:29. [PMID: 28553638 PMCID: PMC5425593 DOI: 10.3389/fmolb.2017.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular activities) proteins residing in the endoplasmic reticulum and perinuclear space, where they are implicated in a variety of cellular functions. Recently, new structural and functional details about Torsins have emerged that will have a profound influence on unraveling the precise mechanistic details of their yet-unknown mode of action in the cell. While Torsins are phylogenetically related to Clp/HSP100 proteins, they exhibit comparatively weak ATPase activities, which are tightly controlled by virtue of an active site complementation through accessory cofactors. This control mechanism is offset by a TorsinA mutation implicated in the severe movement disorder DYT1 dystonia, suggesting a critical role for the functional Torsin-cofactor interplay in vivo. Notably, TorsinA lacks aromatic pore loops that are both conserved and critical for the processive unfolding activity of Clp/HSP100 proteins. Based on these distinctive yet defining features, we discuss how the apparent dynamic nature of the Torsin-cofactor system can inform emerging models and hypotheses for Torsin complex formation and function. Specifically, we propose that the dynamic assembly and disassembly of the Torsin/cofactor system is a critical property that is required for Torsins' functional roles in nuclear trafficking and nuclear pore complex assembly or homeostasis that merit further exploration. Insights obtained from these future studies will be a valuable addition to our understanding of disease etiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Anna R Chase
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA.,Department of Cell Biology, Yale School of MedicineNew Haven, CT, USA
| |
Collapse
|
47
|
Saunders CA, Harris NJ, Willey PT, Woolums BM, Wang Y, McQuown AJ, Schoenhofen A, Worman HJ, Dauer WT, Gundersen GG, Luxton GWG. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J Cell Biol 2017; 216:657-674. [PMID: 28242745 PMCID: PMC5350507 DOI: 10.1083/jcb.201507113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Patrick T Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Yuexia Wang
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Alex J McQuown
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Howard J Worman
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - William T Dauer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.,Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
48
|
Rittiner JE, Caffall ZF, Hernández-Martinez R, Sanderson SM, Pearson JL, Tsukayama KK, Liu AY, Xiao C, Tracy S, Shipman MK, Hickey P, Johnson J, Scott B, Stacy M, Saunders-Pullman R, Bressman S, Simonyan K, Sharma N, Ozelius LJ, Cirulli ET, Calakos N. Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron 2016; 92:1238-1251. [PMID: 27939583 DOI: 10.1016/j.neuron.2016.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - James L Pearson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Department of RNAi Screening Facility, Duke University, Durham, NC 27708, USA
| | | | - Anna Y Liu
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Changrui Xiao
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Samantha Tracy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Patrick Hickey
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Julia Johnson
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Burton Scott
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Mark Stacy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth T Cirulli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Nicole Calakos
- Department of Neurology, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
49
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
50
|
Camargos S, Cardoso F. Understanding dystonia: diagnostic issues and how to overcome them. ARQUIVOS DE NEURO-PSIQUIATRIA 2016; 74:921-936. [DOI: 10.1590/0004-282x20160140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 03/05/2025]
Abstract
ABSTRACT The diagnosis and treatment of dystonia are challenging. This is likely due to gaps in the complete understanding of its pathophysiology, lack of animal models for translational studies, absence of a consistent pathological substrate and highly variable phenotypes and genotypes. The aim of this review article is to provide an overview of the clinical, neurophysiological and genetic features of dystonia that can help in the identification of this movement disorder, as well as in the differential diagnosis of the main forms of genetic dystonia. The variation of penetrance, age of onset, and topographic distribution of the disease in carriers of the same genetic mutation indicates that other factors – either genetic or environmental – might be involved in the development of symptoms. The growing knowledge of cell dysfunction in mutants may give insights into more effective therapeutic targets.
Collapse
|