1
|
Yasir M, Choe J, Hassan M, Kloczkowski A, Chun W. Recent advances and future perspectives in small molecule JAK2 inhibitors. Future Med Chem 2025:1-17. [PMID: 40392133 DOI: 10.1080/17568919.2025.2507564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signaling pathway is essential for controlling immune function, blood cell formation, and cell growth. Dysregulation of this pathway is implicated in various diseases, including hematologic malignancies, autoimmune disorders, and chronic inflammatory conditions. This review provides a comprehensive overview of the structural and functional aspects of JAK/STAT signaling, with a particular focus on the role of JAK2. This manuscript explores the primary regulators of the JAK/STAT pathway, such as Suppressors Of Cytokine Signaling (SOCS), Protein Inhibitors of Activated STATs (PIAS), and Protein Tyrosine Phosphatases (PTPs), which play a crucial role in maintaining cellular balance and stability. Additionally, the therapeutic landscape of JAK2 inhibitors is explored, covering both approved and investigational drugs, including their mechanisms of action, efficacy, and safety profiles. Emerging strategies such as drug repositioning using computational approaches and experimental validation are also highlighted. By integrating insights from molecular docking studies, machine learning models, and kinase assays, this review emphasizes the potential of JAK2 inhibitors in disease management.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
3
|
Li X, Rasul A, Sharif F, Hassan M. PIAS family in cancer: from basic mechanisms to clinical applications. Front Oncol 2024; 14:1376633. [PMID: 38590645 PMCID: PMC10999569 DOI: 10.3389/fonc.2024.1376633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Protein inhibitors of activated STATs (PIAS) are proteins for cytokine signaling that activate activator-mediated gene transcription. These proteins, as versatile cellular regulators, have been described as regulators of approximately 60 proteins. Dysregulation of PIAS is associated with inappropriate gene expression that promotes oncogenic signaling in multiple cancers. Multiple lines of evidence have revealed that PIAS family members show modulated expressions in cancer cells. Most frequently reported PIAS family members in cancer development are PIAS1 and PIAS3. SUMOylation as post-translational modifier regulates several cellular machineries. PIAS proteins as SUMO E3 ligase factor promotes SUMOylation of transcription factors tangled cancer cells for survival, proliferation, and differentiation. Attenuated PIAS-mediated SUMOylation mechanism is involved in tumorigenesis. This review article provides the PIAS/SUMO role in the modulation of transcriptional factor control, provides brief update on their antagonistic function in different cancer types with particular focus on PIAS proteins as a bonafide therapeutic target to inhibit STAT pathway in cancers, and summarizes natural activators that may have the ability to cure cancer.
Collapse
Affiliation(s)
- Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farzana Sharif
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
5
|
Bao W, Wang J, Fan K, Gao Y, Chen J. PIAS3 promotes ferroptosis by regulating TXNIP via TGF-β signaling pathway in hepatocellular carcinoma. Pharmacol Res 2023; 196:106915. [PMID: 37689128 DOI: 10.1016/j.phrs.2023.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Ferroptosis has been suggested to play a potential role in cancer therapy as an iron-dependent programmed cell death mechanism distinct from other forms. Hepatocellular carcinoma (HCC) remains a great threat, with high mortality and limited therapeutic options. The induction of ferroptosis has emerged as a novel and promising therapeutic strategy for HCC. In the present study, we identified protein inhibitor of activated STAT3 (PIAS3) as a driver of ferroptosis in HCC using TMT-based quantitative proteomics and ferroptosis-related functional assays. Mechanistically, thioredoxin-interacting protein (TXNIP) was confirmed to be PIAS3 in promoting ferroptotic cell death, based on RNA-seq analysis. Knockdown of TXNIP degrades ferroptotic susceptibility caused by PIAS3-overexpression, whereas transfection-forced reexpression of TXNIP restores sensitivity to ferroptosis in PIAS3-downregulated cells. PIAS3 interacts with SMAD2/3 to activate transforming growth factor (TGF)-β signaling, leading to increased TXNIP expression. Our study revealed the critical role of PIAS3 in ferroptosis and a novel actionable axis-PIAS3/TGF-β/TXNIP that could govern ferroptotic sensitivity, paving the path for using ferroptosis as an efficient approach in HCC therapies.
Collapse
Affiliation(s)
- Wenfang Bao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Oncology, Ji'an Hospital, Shanghai East Hospital, Ji'an 343000, China.
| |
Collapse
|
6
|
Aldana J, Gardner ML, Freitas MA. Integrative Multi-Omics Analysis of Oncogenic EZH2 Mutants: From Epigenetic Reprogramming to Molecular Signatures. Int J Mol Sci 2023; 24:11378. [PMID: 37511137 PMCID: PMC10380343 DOI: 10.3390/ijms241411378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Somatic heterozygous mutations in the active site of the enhancer of zeste homolog 2 (EZH2) are prevalent in diffuse large B-cell lymphoma (DLBCL) and acute myeloid leukemia (AML). The methyltransferase activity of EZH2 towards lysine 27 on histone H3 (H3K27) and non-histone proteins is dysregulated by the presence of gain-of-function (GOF) and loss-of-function (LOF) mutations altering chromatin compaction, protein complex recruitment, and transcriptional regulation. In this study, a comprehensive multi-omics approach was carried out to characterize the effects of differential H3K27me3 deposition driven by EZH2 mutations. Three stable isogenic mutants (EZH2Y641F, EZH2A677G, and EZH2H689A/F667I) were examined using EpiProfile, H3K27me3 CUT&Tag, ATAC-Seq, transcriptomics, label-free proteomics, and untargeted metabolomics. A discrete set of genes and downstream targets were identified for the EZH2 GOF and LOF mutants that impacted pathways involved in cellular proliferation, differentiation, and migration. Disruption of protein networks and metabolic signatures able to sustain aberrant cell behavior was observed in response to EZH2 mutations. This systems biology-based analysis sheds light on EZH2-mediated cell transformative processes, from the epigenetic to the phenotypic level. These studies provide novel insights into aberrant EZH2 function along with targets that can be explored for improved diagnostics/treatment in hematologic malignancies with mutated EZH2.
Collapse
Affiliation(s)
- Julian Aldana
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Miranda L. Gardner
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A. Freitas
- Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (M.L.G.)
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Thirouin ZS, Figueiredo M, Hleihil M, Gill R, Bosshard G, McKinney RA, Tyagarajan SK. Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. J Biol Chem 2022; 298:101840. [PMID: 35307349 PMCID: PMC9019257 DOI: 10.1016/j.jbc.2022.101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen–glucose deprivation as an in vitro model for ischemia, we show that BDNF–tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Long J, Galvan DL, Mise K, Kanwar YS, Li L, Poungavrin N, Overbeek PA, Chang BH, Danesh FR. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J Biol Chem 2020; 295:15840-15852. [PMID: 32467232 PMCID: PMC7681008 DOI: 10.1074/jbc.ra120.013228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in a variety of biological activities of the cell. However, less is known about how lncRNAs respond to environmental cues and what transcriptional mechanisms regulate their expression. Studies from our laboratory have shown that the lncRNA Tug1 (taurine upregulated gene 1) is crucial for the progression of diabetic kidney disease, a major microvascular complication of diabetes. Using a combination of proximity labeling with the engineered soybean ascorbate peroxidase (APEX2), ChIP-qPCR, biotin-labeled oligonucleotide pulldown, and classical promoter luciferase assays in kidney podocytes, we extend our initial observations in the current study and now provide a detailed analysis on a how high-glucose milieu downregulates Tug1 expression in podocytes. Our results revealed an essential role for the transcription factor carbohydrate response element binding protein (ChREBP) in controlling Tug1 transcription in the podocytes in response to increased glucose levels. Along with ChREBP, other coregulators, including MAX dimerization protein (MLX), MAX dimerization protein 1 (MXD1), and histone deacetylase 1 (HDAC1), were enriched at the Tug1 promoter under high-glucose conditions. These observations provide the first characterization of the mouse Tug1 promoter's response to the high-glucose milieu. Our findings illustrate a molecular mechanism by which ChREBP can coordinate glucose homeostasis with the expression of the lncRNA Tug1 and further our understanding of dynamic transcriptional regulation of lncRNAs in a disease state.
Collapse
Affiliation(s)
- Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paul A Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas at MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
10
|
Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. Eur J Med Chem 2020; 190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
11
|
Zhang S, Li C, Wang W, Wang C, Sun C, Chan S, Shi L. Functional characterization of a protein inhibitor of activated STAT (PIAS) gene in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:417-426. [PMID: 31491531 DOI: 10.1016/j.fsi.2019.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Protein inhibitor of activated STAT (PIAS) plays a critical role in the feedback modulation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway as a negative regulator in mammals and Drosophila, but the function of PIAS in crustaceans is still unclear. In this study, a PIAS termed LvPIAS was cloned and characterized from Litopenaeus vannamei. The full length of LvPIAS was 3065 bp, including a 2361 bp open reading frame (ORF) coding for a protein of 786 aa. LvPIAS expression was most abundant in muscle and could respond to the challenge of LPS, Vibrio parahaemolyticus, Staphhylococcus aureus, Poly I: C and white spot syndrome virus (WSSV). LvPIAS could be induced by the transcription factor LvSTAT, but LvPIAS could inhibit the transcriptional activity of LvSTAT to the LvPIAS promoter conversely, which indicated that there was a negative feedback loop between LvSTAT and LvPIAS. Furthermore, RNAi-mediated knockdown of LvPIAS shrimps showed higher survival rate to WSSV infection than those in the control group (dsGFP injection), suggesting that LvPIAS may play a negatively role against WSSV infection.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China
| | - Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, PR China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Chenggui Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
12
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
13
|
Jiao J, Zhang R, Li Z, Yin Y, Fang X, Ding X, Cai Y, Yang S, Mu H, Zong D, Chen Y, Zhang Y, Zou J, Shao J, Huang Z. Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. Nat Commun 2018; 9:2504. [PMID: 29950561 PMCID: PMC6021382 DOI: 10.1038/s41467-018-04936-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
To date, the molecular mechanism underlying constitutive signal transducer and activator of transcription 3 (STAT3) activation in gliomas is largely unclear. In this study, we report that Smad6 is overexpressed in nuclei of glioma cells, which correlates with poor patient survival and regulates STAT3 activity via negatively regulating the Protein Inhibitors of Activated STAT3 (PIAS3). Mechanically, Smad6 interacts directly with PIAS3, and this interaction is mediated through the Mad homology 2 (MH2) domain of Smad6 and the Ring domain of PIAS3. Smad6 recruits Smurf1 to facilitate PIAS3 ubiquitination and degradation, which also depends on the MH2 domain and the PY motif of Smad6. Consequently, Smad6 reduces PIAS3-mediated STAT3 inhibition and promotes glioma cell growth and stem-like cell initiation. Moreover, the Smad6 MH2 transducible protein restores PIAS3 expression and subsequently reduces gliomagenesis. Collectively, we conclude that nuclear-Smad6 enhances glioma development by inducing PIAS3 degradation and subsequent STAT3 activity upregulation.
Collapse
Affiliation(s)
- Jiantong Jiao
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Rui Zhang
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Zheng Li
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Ying Yin
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Xiaopeng Ding
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Ying Cai
- Department of Pathology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Shudong Yang
- Department of Pathology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Huijun Mu
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Da Zong
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yuexin Chen
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yansong Zhang
- Department of Neurosurgery, Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jian Zou
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
- Wuxi Institute of Translational Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|
14
|
Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep 2017; 7:4676. [PMID: 28680062 PMCID: PMC5498717 DOI: 10.1038/s41598-017-04611-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
The multi-domain transcriptional coactivators CBP/p300 integrate a multitude of signaling inputs, interacting with more than 400 proteins via one or more of their globular domains. While CBP/p300 function is typically considered in terms of these structured domains, about half of the protein consists of intrinsically disordered regions (IDRs) of varying length. However, these IDRs have only been thought of as linkers that allow flexible spatial arrangement of the structured domains, but recent studies have shown that similar IDRs mediate specific and critical interactions in other proteins. To examine the roles of IDRs in CBP, we performed yeast-two-hybrid screenings of placenta and lung cancer cDNA libraries, which demonstrated that the long IDR linking the KIX domain and bromodomain of CBP (termed ID3) can potentially bind to several proteins. The RNA-binding Zinc-finger protein 106 (ZFP106) detected in both libraries was identified as a novel substrate for CBP-mediated acetylation. Nuclear magnetic resonance (NMR) spectroscopy combined with cross-linking experiments and competition-binding assays showed that the fully disordered isolated ID3 transiently interacts with an IDR of ZFP106 in a fashion that disorder of both regions is maintained. These findings demonstrate that beside the linking function, ID3 can also interact with acetylation substrates of CBP.
Collapse
|
15
|
Effect of Exogenous Fetuin-A on TGF- β/Smad Signaling in Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8462615. [PMID: 27990439 PMCID: PMC5136394 DOI: 10.1155/2016/8462615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
Objective. To explore the effects of low concentration of exogenous fetuin-A intervention on TGF-β1 induced LX2 cells through detection of the expression of mRNA and protein of Smad2, Smad3, and Smad7. Methods. MTT assay was used to detect the LX2 cells proliferation and the regression equation calculating software was applied to determine IC50 of fetuin-A. RT-PCR was used to determine the relative content of Smad2, Smad3, and Smad7 mRNA in LX2 cells. Western blot was used to detect the LX2 cells relative content of Smad2, Smad3, Smad7 protein expression, respectively. Results. The analysis from RT-PCR and western blot showed that when compared with the other groups TGF-β1 + fetuin-A group increased the expression of Smad2 and Smad3 while decreased the expression of Smad7 (P < 0.05). Conclusion. Fetuin-A may improve the excessive activation of hepatic stellate cells which is caused by an enhanced positive regulation of Smad2 and Smad3 protein and the deficiency in negative regulation of Smad7 protein. This is through inhibiting the expression of Smad2 and Smad3 gene and promoting the expression of Smad7 gene. As a result, the development of liver fibrosis will be reduced.
Collapse
|
16
|
Zhou G, Lin W, Fang P, Lin X, Zhuge L, Hu Z, Jin L. MiR-10a improves hepatic fibrosis by regulating the TGFβl/Smads signal transduction pathway. Exp Ther Med 2016; 12:1719-1722. [PMID: 27602086 PMCID: PMC4998216 DOI: 10.3892/etm.2016.3542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine the expression variation of the mouse hepatic fibrosis tissue transforming growth factor (TGF)-βl/Smads signal transduction pathway and its correlation with progression of hepatic fibrosis. The promotion effect of microRNA (miR)-10a on hepatic fibrosis and its possible mechanism was also assessed. Forty healthy female 8-week-old C57BL6/J mice were randomly divided into the control group (intraperitoneal injection of 5 µl/g normal saline, twice per week for 8 weeks) and the hepatic fibrosis group (intraperitoneal injection of 5 µl/g 10% CCI4 olive oil, twice per week for 8 weeks), with 20 mice per group. RT-PCR was used to test miR-10a expression in cells in the control and hepatic fibrosis groups. Cell culture and transfection of miR-10a mimics were conducted in the two groups and a Cell Counting Kit-8 was used to test the expression of TGF-β1 and Smad7 in hepatic fibroblasts. It was found that in comparison with the control group, miR-10a expression was significantly increased in the hepatic fibrosis group compared with the control group (P<0.05). The expression quantity of miR-10a was significantly increased in the transfection group compared with the control group (P<0.05). A high expression of miR-10a significantly improved TGF-β1 expression and reduced Smad7 expression in the hepatic fibrosis group (P<0.05). In conclusion, miR-10a expression was high in mouse hepatic tissues, transfection of miR-10a mimics significantly promoted the cell proliferation of hepatic fibrosis, and miR-10a improved hepatic fibrosis by regulating the TGF-βl/Smads signal transduction pathway.
Collapse
Affiliation(s)
- Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei Lin
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Peipei Fang
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiuzhen Lin
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Lu Zhuge
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhiqiu Hu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Lingxiang Jin
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
17
|
Yoo JY, Jeong JW, Fazleabas AT, Tayade C, Young SL, Lessey BA. Protein Inhibitor of Activated STAT3 (PIAS3) Is Down-Regulated in Eutopic Endometrium of Women with Endometriosis. Biol Reprod 2016; 95:11. [PMID: 27226311 PMCID: PMC5029430 DOI: 10.1095/biolreprod.115.137158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Endometriosis is a major cause of chronic pelvic pain and infertility. Activation of STAT3 appears central to the inflammatory phenotype of eutopic endometrium in women with endometriosis. However, the molecular mechanism by which this occurs remains unknown. Our objective is to determine how STAT3 activity is regulated in endometriosis. Protein inhibitor of activated STAT3 (PIAS3) is a negative regulator of STAT3 activity. We examined the levels of PIAS3 in endometrium from women with and without endometriosis using Western blot analysis and immunohistochemistry. Levels of PIAS3 are significantly lower, in contrast with phosphorylation of STAT3, in women with endometriosis compared to women without endometriosis. Furthermore, induction of endometriosis in the baboon showed a significant reduction of PIAS3 expression during the progression of the disease. Interferon-γ (INFγ) reduces PIAS3 protein levels and increases phospho-STAT3 levels through CXCL10 in endometrial cells, Ishikawa, and 12Z cells. These results suggest that attenuation of PIAS3 causes aberrant activation of STAT3 in endometriosis, leading to inflammatory changes that may impair fertility or cause pain.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Chandrakant Tayade
- Department of Obstetrics and Gynecology, Queens University, Kingston, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville Health System, Greenville, South Carolina
| |
Collapse
|
18
|
SUMOylation Regulates Growth Factor Independence 1 in Transcriptional Control and Hematopoiesis. Mol Cell Biol 2016; 36:1438-50. [PMID: 26951200 DOI: 10.1128/mcb.01001-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Cell fate specification requires precise coordination of transcription factors and their regulators to achieve fidelity and flexibility in lineage allocation. The transcriptional repressor growth factor independence 1 (GFI1) is comprised of conserved Snail/Slug/Gfi1 (SNAG) and zinc finger motifs separated by a linker region poorly conserved with GFI1B, its closest homolog. Moreover, GFI1 and GFI1B coordinate distinct developmental fates in hematopoiesis, suggesting that their functional differences may derive from structures within their linkers. We show a binding interface between the GFI1 linker and the SP-RING domain of PIAS3, an E3-SUMO (small ubiquitin-related modifier) ligase. The PIAS3 binding region in GFI1 contains a conserved type I SUMOylation consensus element, centered on lysine-239 (K239). In silico prediction algorithms identify K239 as the only high-probability site for SUMO modification. We show that GFI1 is modified by SUMO at K239. SUMOylation-resistant derivatives of GFI1 fail to complement Gfi1 depletion phenotypes in zebrafish primitive erythropoiesis and granulocytic differentiation in cultured human cells. LSD1/CoREST recruitment and MYC repression by GFI1 are profoundly impaired for SUMOylation-resistant GFI1 derivatives, while enforced expression of MYC blocks granulocytic differentiation. These findings suggest that SUMOylation within the GFI1 linker favors LSD1/CoREST recruitment and MYC repression to govern hematopoietic differentiation.
Collapse
|
19
|
PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:705-18. [PMID: 27032383 DOI: 10.1016/j.bbagrm.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
The PIAS proteins (Protein Inhibitor of Activated STATs) constitute a family of multifunctional nuclear proteins operating as SUMO E3 ligases and being involved in a multitude of interactions. They participate in a range of biological processes, also beyond their well-established role in the immune system and cytokine signalling. They act both as transcriptional corepressors and coactivators depending on the context. In the present work, we investigated mechanisms by which PIAS1 causes activation or repression of c-Myb dependent target genes. Analysis of global expression data shows that c-Myb and PIAS1 knockdowns affect a subset of common targets, but with a dual outcome consistent with a role of PIAS1 as either a corepressor or coactivator. Our mechanistic studies show that PIAS1 engages in a novel interaction with the acetyltransferase and coactivator p300. Interaction and ChIP analysis suggest a bridging function where PIAS1 enhances p300 recruitment to c-Myb-bound sites through interaction with both proteins. In addition, the E3 activity of PIAS1 enhances further its coactivation. Remarkably, the SUMO status of c-Myb had a decisive role, indicating a SUMO-dependent switch in the way PIAS1 affects c-Myb, either as a coactivator or corepressor. Removal of the two major SUMO-conjugation sites in c-Myb (2KR mutant), which enhances its activity significantly, turned PIAS1 into a corepressor. Also, p300 was less efficiently recruited to chromatin by c-Myb-2KR. We propose that PIAS1 acts as a "protein inhibitor of activated c-Myb" in the absence of SUMOylation while, in its presence, PIAS behaves as a "protein activator of repressed c-Myb".
Collapse
|
20
|
Zhang Q, Shi K, Yoo D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 2016; 489:252-68. [PMID: 26773386 PMCID: PMC7111358 DOI: 10.1016/j.virol.2015.12.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 10/20/2015] [Accepted: 12/19/2015] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression.
Collapse
Affiliation(s)
- Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA
| | - Kaichuang Shi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, IL, USA.
| |
Collapse
|
21
|
Nakagawa K, Kohara T, Uehata Y, Miyakawa Y, Sato-Ueshima M, Okubo N, Asaka M, Takeda H, Kobayashi M. PIAS3 enhances the transcriptional activity of HIF-1α by increasing its protein stability. Biochem Biophys Res Commun 2015; 469:470-6. [PMID: 26697750 DOI: 10.1016/j.bbrc.2015.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/19/2023]
Abstract
The transcription factor hypoxia-inducible factor-1 (HIF-1) functions as a master regulator of hypoxic response by inducing the transcription of various genes responsible for cellular adaptation to hypoxia. In this study, we investigated the effects of protein inhibitor of activated STAT3 (PIAS3), a small ubiquitin-related modifier (SUMO) E3 ligase, on HIF-1-mediated transcriptional activation. We found that PIAS3 physically associated with HIF-1α. Moreover, PIAS3 overexpression enhanced the transcriptional activity of HIF-1α independently of its SUMO E3 ligase activity. Conversely, quantitative RT-PCR analysis showed that RNAi-mediated PIAS3 knockdown reduced the expression of HIF-1 target genes under hypoxia. In addition, PIAS3 knockdown induced the destabilization of HIF-1α protein, and the destabilization was reversed by the proteasome inhibitor MG132. Taken together, these results suggest that PIAS3 functions as a positive regulator of HIF-1α-mediated transcription by increasing its protein stability.
Collapse
Affiliation(s)
- Koji Nakagawa
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Toshihisa Kohara
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yasuko Uehata
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yui Miyakawa
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Maremi Sato-Ueshima
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Naoto Okubo
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Masahiro Asaka
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masanobu Kobayashi
- Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
22
|
Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat Commun 2015; 6:7600. [PMID: 26194464 PMCID: PMC4518312 DOI: 10.1038/ncomms8600] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4+ T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad–STAT3 signalling network in TH17 differentiation. TGF-ß and IL-6 are the essential cytokines for mediating the differentiation of IL-17-producing CD4+ T helper cells (TH17). Here, Yoon et al. provide more insights into this process and describe the opposing roles of TGFß-signalling intermediates Smad2 and Smad3 as STAT3 cofactors in Th17 differentiation.
Collapse
|
23
|
Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T, Miyazawa K. STAT3 integrates cooperative Ras and TGF-β signals that induce Snail expression. Oncogene 2015; 35:1049-57. [PMID: 25961936 DOI: 10.1038/onc.2015.161] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/04/2015] [Accepted: 03/20/2015] [Indexed: 01/05/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor β (TGF-β) in certain kinds of cancer cells through the induction of Snail, a key regulator of EMT. We have previously found that TGF-β remarkably induces Snail expression in cooperation with Ras signals; however, the underlying mechanism of this synergism has not yet been determined. Here, we demonstrate that signal transducer and activator of transcription 3 (STAT3) acts as a mediator that synergizes TGF-β and Ras signals. The overexpression of STAT3 enhanced Snail induction, whereas siRNA-mediated knockdown of STAT3 inhibited it. The STAT3-YF mutant, which has Tyr 705 substituted with Phe, did not enhance Snail induction. Several STAT3 mutants lacking transcriptional activity also failed to enhance it; however, the putative STAT3-binding elements in the Snail promoter regions were not required for STAT3-mediated Snail induction. Protein inhibitor of activated STAT3 (PIAS3) inhibited the enhanced Snail promoter activity induced by TGF-β and Ras. The interaction between PIAS3 and STAT3 was reduced by TGF-β in cells harboring oncogenic Ras, whereas TGF-β promoted the binding of PIAS3 to Smad3, a crucial mediator of TGF-β signaling. Therefore, these findings suggest that STAT3 enhances Snail induction when it is dissociated from PIAS3 by TGF-β in cooperation with Ras signals.
Collapse
Affiliation(s)
- M Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - K Endo
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - S Furuya
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan.,Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - M Minami
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan.,Research Training Program for Undergraduates, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - A Fukasawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - T Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - K Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| |
Collapse
|
24
|
Lee SH, Kim PH, Oh SM, Park JH, Yoo YC, Lee J, Park SR. SUMO Proteins are not Involved in TGF-β1-induced, Smad3/4-mediated Germline α Transcription, but PIASy Suppresses it in CH12F3-2A B Cells. Immune Netw 2014; 14:321-7. [PMID: 25550698 PMCID: PMC4275389 DOI: 10.4110/in.2014.14.6.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022] Open
Abstract
TGF-β induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-β signal-transducing transcription factors, mediate germline (GL) α transcription induced by TGF-β1, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-β-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-β1-induced, Smad3/4-mediated GLα transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-β1-induced, Smad3/4-mediated GLα promoter activity, expression of endogenous GLα transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-β1-induced, Smad3/4-mediated GLα promoter activity. We found that PIASy overexpression suppresses the GLα promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of GLα transcription and IgA switching induced by TGF-β1/Smad3/4, while PIASy acts as a repressor.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
25
|
Kremer M, Son G, Zhang K, Moore SM, Norris A, Manzini G, Wheeler MD, Hines IN. Smad3 signaling in the regenerating liver: implications for the regulation of IL-6 expression. Transpl Int 2014; 27:748-58. [PMID: 24649805 DOI: 10.1111/tri.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/24/2013] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
Abstract
Liver regeneration is vital for graft survival and adequate organ function. Smad activation regulates hepatocyte proliferation and macrophage function. The aim of the current study was to evaluate the impact of Smad3 signaling during liver regeneration in the mouse. Male C57Bl/6 wild-type (wt) mice or mice deficient in Smad3 (Smad3(-/-) ) were subjected to a 70% partial hepatectomy (pHx) or sham surgery and sacrificed 24, 42, or 48 h later. Tissue was analyzed for TGF-β signaling, the mitogenic cytokine response [i.e., tumor necrosis factor alpha, TNF-α; interleukin (IL)-6], and liver regeneration. Partial hepatectomy stimulated a strong regenerative response measured by proliferating cell nuclear antigen-positive hepatocytes 42 and 48 h post-pHx in conjunction with an increased expression of IL-6, TNF-α, and Smad2/3 phosphorylation 24 h post-pHx in both hepatocytes and nonparenchymal cells. Surprisingly, Smad3 deficiency led to reduced hepatocyte proliferation 42 h post-pHx which recovered by 48 h, a process that correlated with and was preceded by significant reductions in IL-6 expression and signal transducer and activator of transcription 3 phosphorylation, and cyclin D1 induction 24 h post-pHx. Loss of Smad3 signaling suppresses the expression of key mitogenic cytokines and delays hepatocellular regeneration. Therapies directed at finely regulating Smad3 activation early within the regenerating liver may prove useful in promoting liver cell proliferation and restoration of liver mass.
Collapse
Affiliation(s)
- Michael Kremer
- Department of General Surgery, University of Ulm, Ulm, Germany; Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee SH, Moon SJ, Park MJ, Kim EK, Moon YM, Cho ML. PIAS3 suppresses acute graft-versus-host disease by modulating effector T and B cell subsets through inhibition of STAT3 activation. Immunol Lett 2014; 160:79-88. [PMID: 24718277 DOI: 10.1016/j.imlet.2014.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 01/08/2023]
Abstract
Graft-versus-host disease (GVHD) caused by transplanted donor T cells remains the major obstacle of allogeneic bone marrow transplantation (BMT). Previous reports have suggested that IL-17-producing helper T (Th17) cells mediate the development of acute GVHD (aGVHD). Protein inhibitor of activated STAT3 (PIAS) inhibits the activity of the transcription factor STAT3, which is a pivotal transcription factor for Th17 differentiation. To elucidate whether PIAS3 could inhibit the development of aGVHD, pcDNA-PIAS3 or mock vector was administered in a murine model of aGVHD by intramuscular injection and subsequent electroporation. The results demonstrated that PIAS3 overexpression by pcDNA-vector administration significantly attenuated the clinical severity and histopathological severities of aGHVD involving the skin, liver, intestine, and lung. Additionally, the STAT3 activities in aGVHD target organs were suppressed by PIAS3 overexpression. Furthermore, phosphorylated (p) STAT3 activity in the spleen was profoundly attenuated in PIAS3-overexpressing GVHD mice. Interestingly, flow cytometric analysis demonstrated that the populations of CD21(high)CD23(low) marginal zone B cells were dramatically expanded in PIAS3-overexpressing mice. PIAS3-induced inhibition of aGVHD was largely related to the downregulation of Th1 and Th17 and the upregulation of Th2 and Treg populations. Both populations of pSTAT3(Tyr705)-expressing Th17 cells and B cells were significantly reduced in the spleens of PIAS3-overexpressing mice, whereas pSTAT5 activity was increased. In addition to CD4(+)CD25(+)Foxp3(+) Treg cells, the populations of CD8(+)CD25(+)Foxp3(+) Treg cells were also expanded by treatment with PIAS3. These data suggest the therapeutic potential of PIAS3 in the development of aGVHD through reciprocal regulation of Th17/Treg lineages.
Collapse
Affiliation(s)
- Sung-Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
27
|
Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J Allergy Clin Immunol 2014; 134:460-9. [PMID: 24582310 DOI: 10.1016/j.jaci.2013.12.1075] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/03/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The involvement of mitochondrial oxidative phosphorylation (OXPHOS) in mast cell exocytosis was recently suggested by the finding that mitochondria translocate to exocytosis sites upon mast cell activation. In parallel, mitochondrial signal transducer and activator of transcription 3 (STAT3) was found to be involved in ATP production. However, the regulation of mitochondrial STAT3 function and its connection to mast cell exocytosis is unknown. OBJECTIVE We sought to explore the role played by mitochondrial STAT3 in mast cell exocytosis. METHODS Experiments were performed in vitro with human and mouse mast cells and rat basophilic leukemia (RBL) cells and in vivo in mice. OXPHOS activity was measured after immunologic activation. The expression of STAT3, extracellular signal-regulated kinase 1/2, and protein inhibitor of activated STAT3 in the mitochondria during mast cell activation was determined, as was the effect of STAT3 inhibition on OXPHOS activity and mast cell function. RESULTS Here we show that mitochondrial STAT3 is essential for immunologically mediated degranulation of human and mouse mast cells and RBL cells. Additionally, in IgE-antigen-activated RBL cells, mitochondrial STAT3 was phosphorylated on serine 727 in an extracellular signal-regulated kinase 1/2-dependent manner, which was followed by induction of OXPHOS activity. Furthermore, the endogenous inhibitor of STAT3, protein inhibitor of activated STAT3, was found to inhibit OXPHOS activity in the mitochondria, resulting in inhibition of mast cell degranulation. Moreover, mice injected with Stattic, a STAT3 inhibitor, had a significant decrease in histamine secretion. CONCLUSION These results provide the first evidence of a regulatory role for mitochondrial STAT3 in mast cell functions, and therefore mitochondrial STAT3 could serve as a new target for the manipulation of allergic diseases.
Collapse
|
28
|
PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis. Cell Death Dis 2013; 4:e811. [PMID: 24052079 PMCID: PMC3789191 DOI: 10.1038/cddis.2013.333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
Abstract
Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21WAF1/Cip1 in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21WAF1/Cip1 promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21WAF1/Cip1 reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21WAF1/Cip1 promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21WAF1/Cip1 transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a model that demonstrates zinc endorses the Smad2/4/PIAS1 complex to activate the p21WAF1/Cip1 gene that mediates apoptosis.
Collapse
|
29
|
Wang J, Sun Z, Zhang Z, Saadi I, Wang J, Li X, Gao S, Engle JJ, Kuburas A, Fu X, Yu W, Klein WH, Russo AF, Amendt BA. Protein inhibitors of activated STAT (Pias1 and Piasy) differentially regulate pituitary homeobox 2 (PITX2) transcriptional activity. J Biol Chem 2013; 288:12580-95. [PMID: 23515314 PMCID: PMC3642306 DOI: 10.1074/jbc.m112.374561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/12/2013] [Indexed: 12/31/2022] Open
Abstract
Protein inhibitors of activated STAT (Pias) proteins can act independent of sumoylation to modulate the activity of transcription factors and Pias proteins interacting with transcription factors can either activate or repress their activity. Pias proteins are expressed in many tissues and cells during development and we asked if Pias proteins regulated the pituitary homeobox 2 (PITX2) homeodomain protein, which modulates developmental gene expression. Piasy and Pias1 proteins are expressed during craniofacial/tooth development and directly interact and differentially regulate PITX2 transcriptional activity. Piasy and Pias1 are co-expressed in craniofacial tissues with PITX2. Yeast two-hybrid, co-immunoprecipitation and pulldown experiments demonstrate Piasy and Pias1 interactions with the PITX2 protein. Piasy interacts with the PITX2 C-terminal tail to attenuate its transcriptional activity. In contrast, Pias1 interacts with the PITX2 C-terminal tail to increase PITX2 transcriptional activity. The E3 ligase activity associated with the RING domain in Piasy is not required for the attenuation of PITX2 activity, however, the RING domain of Pias1 is required for enhanced PITX2 transcriptional activity. Bimolecular fluorescence complementation assays reveal PITX2 interactions with Piasy and Pias1 in the nucleus. Piasy represses the synergistic activation of PITX2 with interacting co-factors and Piasy represses Pias1 activation of PITX2 transcriptional activity. In contrast, Pias1 did not affect the synergistic interaction of PITX2 with transcriptional co-factors. Last, we demonstrate that Pias proteins form a complex with PITX2 and Lef-1, and PITX2 and β-catenin. Lef-1, β-catenin, and Pias interactions with PITX2 provide new molecular mechanisms for the regulation of PITX2 transcriptional activity and the activity of Pias proteins.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | - Zhao Sun
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | - Zichao Zhang
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | - Irfan Saadi
- the Departments of Molecular Physiology and Biophysics
| | - Jun Wang
- the Center for Stem Cell Engineering, Texas Heart Institute, Houston, Texas 77030, and
| | - Xiao Li
- Anatomy and Cell Biology, and
| | - Shan Gao
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Adisa Kuburas
- the Departments of Molecular Physiology and Biophysics
| | - Xueyao Fu
- the Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | | | - William H. Klein
- the Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | | | - Brad A. Amendt
- Anatomy and Cell Biology, and
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Degradation of CREB-binding protein and modulation of type I interferon induction by the zinc finger motif of the porcine reproductive and respiratory syndrome virus nsp1α subunit. Virus Res 2013; 172:54-65. [DOI: 10.1016/j.virusres.2012.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
|
31
|
Wang S, Li Y, Hu YH, Song R, Gao Y, Liu HY, Shu HB, Liu Y. STUB1 is essential for T-cell activation by ubiquitinating CARMA1. Eur J Immunol 2013; 43:1034-41. [PMID: 23322406 DOI: 10.1002/eji.201242554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 12/03/2012] [Accepted: 01/11/2013] [Indexed: 11/08/2022]
Abstract
Ag receptor engagement triggers lymphocyte activation and proliferation by activating several transcription factors including NF-κB. Caspase recruitment domain (CARD) containing membrane-associated guanylate kinase (MAGUK) protein 1 (CARMA1) is an essential adaptor protein that links Ag receptors to NF-κB activation. Here, we identify stress-induced-phosphoprotein 1 homology and U-box containing protein 1 (STUB1) as a CARMA1-associated protein. STUB1 constitutively interacted with CARMA1, and the interaction was intensified by TCR stimulation. Downregulation of STUB1 expression by RNAi markedly diminished TCR-induced canonical NF-κB activation and IL-2 production. Furthermore, overexpression of STUB1 enhanced the ubiquitination of CARMA1, whereas knockdown of STUB1 abolished the endogenous ubiquitination of CARMA1 induced by TCR stimulation. Subsequently, the ubiquitination of CARMA1 catalyzed by STUB1 was identified as Lys-27 linked, which is important for CARMA1-mediated NF-κB activation. These data provide the first evidence that ubiquitination of CARMA1 by STUB1 promotes TCR-induced NF-κB signaling.
Collapse
Affiliation(s)
- Shuai Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ding B, Sun Y, Huang J. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J Biol Chem 2012; 287:14621-30. [PMID: 22411991 DOI: 10.1074/jbc.m111.301523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Boxiao Ding
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
33
|
Xiong Q, Zhong Q, Zhang J, Yang M, Li C, Zheng P, Bi LJ, Ge F. Identification of novel miR-21 target proteins in multiple myeloma cells by quantitative proteomics. J Proteome Res 2012; 11:2078-90. [PMID: 22316494 DOI: 10.1021/pr201079y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substantial evidence indicates that microRNA-21 (miR-21) is a key oncomiR in carcinogenesis and is significantly elevated in multiple myeloma (MM). In this study, we explored the role of miR-21 in human MM cells and searched for miR-21 targets. By knocking down the expression of endogenous miR-21 in U266 myeloma cells, we observed reduced growth, an arrested cell cycle, and increased apoptosis. To further understand its molecular mechanism in the pathogenesis of MM, we employed a SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative proteomic strategy to systematically identify potential targets of miR-21. In total, we found that the expression of 178 proteins was up-regulated significantly by miR-21 inhibition, implying that they could be potential targets of miR-21. Among these, the protein inhibitor of activated STAT3 (PIAS3) was confirmed as a direct miR-21 target by Western blotting and reporter gene assays. We further demonstrated that miR-21 enhances the STAT3-dependent signal pathway by inhibiting the function of PIAS3 and that down-regulation of PIAS3 contributes to the oncogenic function of miR-21. This elucidation of the role of PIAS3 in the miR-21-STAT3 positive regulatory loop not only may shed light on the molecular basis of the biological effects of miR-21 observed in MM cells but also has direct implications for the development of novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Boulay G, Dubuissez M, Van Rechem C, Forget A, Helin K, Ayrault O, Leprince D. Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins. J Biol Chem 2012; 287:10509-10524. [PMID: 22315224 DOI: 10.1074/jbc.m111.320234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene epigenetically silenced or deleted in many human cancers. HIC1 is involved in regulatory loops modulating p53- and E2F1-dependent cell survival, growth control, and stress responses. HIC1 is also essential for normal development because Hic1-deficient mice die perinatally and exhibit gross developmental defects throughout the second half of development. HIC1 encodes a transcriptional repressor with five C(2)H(2) zinc fingers mediating sequence-specific DNA binding and two repression domains: an N-terminal BTB/POZ domain and a central region recruiting CtBP and NuRD complexes. By yeast two-hybrid screening, we identified the Polycomb-like protein hPCL3 as a novel co-repressor for HIC1. Using multiple biochemical strategies, we demonstrated that HIC1 interacts with hPCL3 and its paralog PHF1 to form a stable complex with the PRC2 members EZH2, EED, and Suz12. Confirming the implication of HIC1 in Polycomb recruitment, we showed that HIC1 shares some of its target genes with PRC2, including ATOH1. Depletion of HIC1 by siRNA interference leads to a partial displacement of EZH2 from the ATOH1 promoter. Furthermore, in vivo, ATOH1 repression by HIC1 is associated with Polycomb activity during mouse cerebellar development. Thus, our results identify HIC1 as the first transcription factor in mammals able to recruit PRC2 to some target promoters through its interaction with Polycomb-like proteins.
Collapse
Affiliation(s)
- Gaylor Boulay
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59021, France
| | - Marion Dubuissez
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59021, France
| | - Capucine Van Rechem
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59021, France
| | - Antoine Forget
- Institut Curie, CNRS UMR 3306, INSERM U1005, Centre Universitaire, Orsay 91405, France, and
| | - Kristian Helin
- BRIC, University of Copenhagen, Ole Maaløes vej, 5, Dk-2200, Copenhagen, Denmark
| | - Olivier Ayrault
- Institut Curie, CNRS UMR 3306, INSERM U1005, Centre Universitaire, Orsay 91405, France, and
| | - Dominique Leprince
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59021, France,.
| |
Collapse
|
35
|
Dabir S, Kluge A, Aziz MA, Houghton JA, Dowlati A. Identification of STAT3-independent regulatory effects for protein inhibitor of activated STAT3 by binding to novel transcription factors. Cancer Biol Ther 2011; 12:139-51. [PMID: 21532337 DOI: 10.4161/cbt.12.2.15732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein Inhibitor of Activated Signal Transducer and Activators of Transcription 3 (PIAS3) is a molecule that regulates STAT3 and has antiproliferative properties. Glioblastoma and squamous cell lung cancer lack PIAS3 expression. To test the hypothesis that PIAS3 transcriptional effects are STAT3-independent, we developed models for STAT3 knockdown and PIAS3 over-expression. PIAS3 expression results in a distinct transcriptional profile that does not occur with STAT3 knockdown. We identify novel transcription factor binding partners for PIAS3 including ETS, EGR1, NR1I2, and GATA1. PIAS3 binds to these factors and regulates their transcriptional effects resulting in alterations in canonical pathways including Wnt/β-catenin signaling and functions such as cell death and proliferation. A model is proposed by which PIAS3 effects EGR1 regulated pathways.
Collapse
Affiliation(s)
- Snehal Dabir
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH USA
| | | | | | | | | |
Collapse
|
36
|
Alm-Kristiansen AH, Lorenzo PI, Molværsmyr AK, Matre V, Ledsaak M, Sæther T, Gabrielsen OS. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb. Mol Cancer 2011; 10:21. [PMID: 21338522 PMCID: PMC3050860 DOI: 10.1186/1476-4598-10-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/21/2011] [Indexed: 11/15/2022] Open
Abstract
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci.
Collapse
|
37
|
Zelivianski S, Cooley A, Kall R, Jeruss JS. Cyclin-dependent kinase 4-mediated phosphorylation inhibits Smad3 activity in cyclin D-overexpressing breast cancer cells. Mol Cancer Res 2010; 8:1375-87. [PMID: 20736297 PMCID: PMC3253857 DOI: 10.1158/1541-7786.mcr-09-0537] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smad3, a component of the transforming growth factor β signaling cascade, contributes to G(1) arrest in breast cancer cells. Cyclin D1/cyclin-dependent kinase 4 (CDK4) promotes G(1)-S-phase transition, and CDK phosphorylation of Smad3 has been associated with inhibition of Smad3 activity. We hypothesized that overexpression of cyclin D1 exerts tumorigenic effects in breast cancer cells through CDK4-mediated phosphorylation and inhibition of Smad3 and release of G(1) arrest. Real-time quantitative reverse transcription-PCR and immunoblotting were used to evaluate expression of study proteins in cyclin D1-overexpressing breast cancer cells. Smad3 transcriptional activity and cell cycle control were examined in cells transfected with wild-type (WT) Smad3 or Smad3 with single or multiple CDK phosphorylation site mutations (M) in the presence or absence of the CDK4 inhibitor or cotransfection with cdk4 small interfering RNA (siRNA). Transfection of the Smad3 5M construct resulted in decreased c-myc and higher p15(INK4B) expression. Compared with WT Smad3, overexpression of the Smad3 T8, T178, 4M, or 5M mutant constructs resulted in higher Smad3 transcriptional activity. Compared with cells transfected with WT Smad3, Smad3 transcriptional activity was higher in cells overexpressing Smad3 mutant constructs and treated with the CDK4 inhibitor or transfected with cdk4 siRNA. Cells transfected with Smad3 T8 or T178 and treated with the CDK4 inhibitor showed an increase in the G(1) cell population. Inhibition of CDK-mediated Smad3 phosphorylation released cyclin D1-regulated blockade of Smad3 transcriptional activity and recovered cell cycle arrest in breast cancer cells. Targeted inhibition of CDK4 activity may have a role in the treatment of cyclin D-overexpressing breast cancers.
Collapse
Affiliation(s)
- Stanislav Zelivianski
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne Cooley
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ron Kall
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jacqueline S. Jeruss
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611
| |
Collapse
|
38
|
Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nat Neurosci 2010; 13:1059-65. [PMID: 20729845 PMCID: PMC2932661 DOI: 10.1038/nn.2618] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/19/2010] [Indexed: 01/17/2023]
Abstract
Selective expression of retinal cone opsin genes is essential for color vision, but the mechanism mediating this process is poorly understood. Both vertebrate rod and medium wavelength-sensitive (M) cone photoreceptors differentiate by repression of a short wavelength-sensitive (S)-cone differentiation program. We show that Pias3 acts in mouse cone photoreceptors to activate expression of M-opsin and repress expression of S-opsin, with the transcription factors Trβ2 and Rxrγ mediating preferential expression of Pias3 in M-cones. Finally, we observe that Pias3 directly regulates M- and S-cone opsin expression by modulating the cone-enriched transcription factors Rxrγ Rorα, and Trβ1. This study reveals that Pias3-dependent SUMOylation of photoreceptor-specific transcription factors is a common mechanism that controls both rod and cone photoreceptor subtype specification, regulating distinct molecular targets in the two cell types.
Collapse
|
39
|
Yagil Z, Nechushtan H, Kay G, Yang CM, Kemeny DM, Razin E. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol 2010; 31:199-204. [PMID: 20181527 DOI: 10.1016/j.it.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023]
Abstract
Protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of signal transducers and activator of transcription 3 (STAT3), has been described as a modulator of DNA binding transcription factors. The exploration of the emerging roles of PIAS3 in immune regulation is a growing and fascinating field. Recent discoveries have shed new light on the key role of PIAS3 in the regulation of transcriptional activity, and on the molecular mechanism involved. These findings suggest that the known functions of this signalling molecule are merely the "tip of the iceberg". This article reviews the challenging questions regarding the link between PIAS3 and the intracellular signalling in immune cells. Some of the known functions of PIAS3 that potentially modulate key proteins in the immune system will also be discussed.
Collapse
Affiliation(s)
- Zohar Yagil
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Mukhopadhyay D, Mathew S, Hasebe T, Heimeier RA, Azuma Y, Kolli N, Shi YB, Wilkinson KD, Dasso M. Identification and developmental expression of Xenopus laevis SUMO proteases. PLoS One 2009; 4:e8462. [PMID: 20041154 PMCID: PMC2794540 DOI: 10.1371/journal.pone.0008462] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
SUMO proteins are small ubiquitin-related modifiers. All SUMOs are synthesized as propeptides that are post-translationally cleaved prior to conjugation. After processing, SUMOs become covalently conjugated to cellular targets through a pathway that is similar to ubiquitination. Ubiquitin like protein proteases/Sentrin specific proteases (Ulp/SENPs) mediate both processing and deconjugation of SUMOs. The action of Ulp/SENPs makes SUMOylation a highly dynamic post-translational modification. To investigate how Ulp/SENPs are regulated in a developmental context, we isolated and characterized all Ulp/SENPs in Xenopus laevis. Xenopus possess homologues of mammalian SENP3, 5, 6 and 7. All of these enzymes reacted with HA-tagged vinyl sulfone derivatives of SUMO-2 (HA-SU2-VS) but not SUMO-1 (HA-SU1-VS), suggesting that they act primarily on SUMO-2 and -3. In contrast, Xenopus possess a single member of the SENP1/SENP2 subfamily of Ulp/SENPs, most closely related to mammalian SENP1. Xenopus SENP1 reacted with HA-SU1-VS and HA-SU2-VS, suggesting that it acts on all SUMO paralogues. We analyzed the mRNA and protein levels for each of the Ulp/SENPs through development; we found that they show distinct patterns of expression that may involve both transcriptional and post-transcriptional regulation. Finally, we have characterized the developmental function of the most abundant Ulp/SENP found within Xenopus eggs, SENP3. Depletion of SENP3 using morpholino antisense oligonucleotides (morpholinos) caused accumulation of high molecular weight SUMO-2/3 conjugated species, defects in developing embryos and changes in the expression of some genes regulated by the transforming growth factor beta (TGF-beta) pathway. These findings collectively indicate that SUMO proteases are both highly regulated and essential for normal development.
Collapse
Affiliation(s)
- Yonggang Wang
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Debaditya Mukhopadhyay
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Smita Mathew
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Takashi Hasebe
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Rachel A. Heimeier
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Yoshiaki Azuma
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Nagamalleswari Kolli
- Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Keith D. Wilkinson
- Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T, Palvimo JJ. PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 2009; 66:3029-41. [PMID: 19526197 PMCID: PMC11115825 DOI: 10.1007/s00018-009-0061-z] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 01/02/2023]
Abstract
The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Sanna Kaikkonen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| |
Collapse
|
42
|
Kluge A, Dabir S, Kern J, Nethery D, Halmos B, Ma P, Dowlati A. Cooperative interaction between protein inhibitor of activated signal transducer and activator of transcription-3 with epidermal growth factor receptor blockade in lung cancer. Int J Cancer 2009; 125:1728-34. [PMID: 19569236 DOI: 10.1002/ijc.24553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) targeting in nonsmall cell lung cancer (NSCLC) is an established treatment modality; however, it only benefits a minority of patients. STAT3 (signal transducer and activator of transcription-3) plays an important role in the oncogenic signal transduction pathway of NSCLC. Inhibition of STAT3 results in NSCLC growth inhibition and apoptosis. We have previously shown that combined inhibition of EGFR and STAT3 by small molecules resulted in improved therapeutic efficacy as compared with blocking EGFR alone. However, the STAT3 protein has a number of endogenous negative regulators including PIAS3 (Protein Inhibitor of Activated STAT3). In this study, we investigated for the first time the role of PIAS3 in modulating oncogenic EGFR-STAT3 signaling pathway in lung cancer and the anti-proliferative effect of using PIAS3 in conjunction with EGFR blockade in NSCLC. We demonstrate that PIAS3 is expressed in variable degrees in all NSCLC cells. EGF and IL-6 stimulation resulted in the association of PIAS3 with STAT3. The PIAS3/STAT3 complex then bound the STAT3 DNA binding sequence resulting in STAT3 regulated gene expression. Over-expression of PIAS3, using a PIAS3 expression construct, decreases STAT3 transcriptional activity. Furthermore, over-expression of PIAS3 consistently decreased proliferation. EGFR blockade and PIAS3 over-expression in combination had significantly greater anti-proliferative effects as compared with either EGFR blockade or PIAS3 over-expression alone. In conclusion, PIAS3 is expressed in NSCLC cell lines and its over-expression decreased STAT3 transcriptional activity, decreased proliferation of NSCLC cells and when used in conjunction with EGFR inhibitors, increased the anti-proliferative effects.
Collapse
Affiliation(s)
- Amy Kluge
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Qin H, Chan MWY, Liyanarachchi S, Balch C, Potter D, Souriraj IJ, Cheng ASL, Agosto-Perez FJ, Nikonova EV, Yan PS, Lin HJ, Nephew KP, Saltz JH, Showe LC, Huang THM, Davuluri RV. An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules. BMC SYSTEMS BIOLOGY 2009; 3:73. [PMID: 19615063 PMCID: PMC2724489 DOI: 10.1186/1752-0509-3-73] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 07/17/2009] [Indexed: 12/24/2022]
Abstract
Background The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context. Results To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-β activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1). Conclusion Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules.
Collapse
Affiliation(s)
- Huaxia Qin
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Dürr P, Hermann M, Zwerschke W. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem 2009; 107:293-302. [PMID: 19308990 DOI: 10.1002/jcb.22125] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pyruvate kinase M2 (M2-PK) controls the rate-limiting step at the end of the glycolytic pathway in normal proliferating and tumor cells. Other functions of M2-PK in addition to its role in glycolysis are little understood. The aim of this study was to identify new cellular interaction partners of M2-PK in order to discover novel links between M2-PK and cellular functions. Here we show that the SUMO-E3 ligase protein PIAS3 (inhibitor of activated STAT3) physically interacts with M2-PK and its isoenzyme M1-PK. Moreover, we demonstrate that endogenous SUMO-1-M2-PK conjugates exist in mammalian cells. Furthermore, we show that transient expression of PIAS3 but not the RING domain mutant PIAS3 (C299S, H301A) is consistent with nuclear localization of M2-PK and PIAS3 and M2-PK partially co-localize in the nucleus of these cells. This study suggests a link between PIAS3 and nuclear pyruvate kinase.
Collapse
Affiliation(s)
- Gilles A Spoden
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 2009; 61:234-46. [PMID: 19186166 DOI: 10.1016/j.neuron.2008.12.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/16/2008] [Accepted: 12/03/2008] [Indexed: 11/21/2022]
Abstract
Specification of retinal rod photoreceptors is determined by several different transcription factors that activate expression of rod-specific genes and repress expression of cone photoreceptor-specific genes. The mechanism by which this dual regulation occurs is unclear. We have found that Pias3, a transcriptional coregulator and E3 SUMO ligase that is selectively expressed in developing photoreceptors, promotes the differentiation of rod photoreceptors while preventing rods from adopting cone photoreceptor-like characteristics. Pias3 binds the photoreceptor-specific transcription factors Crx and Nr2e3 and is specifically targeted to the promoters of photoreceptor-specific genes. Pias3 SUMOylates Nr2e3, converting it into a potent repressor of cone-specific gene expression. Rod- and cone-specific promoters are bound by hyperSUMOylated proteins in rod photoreceptors, and blocking SUMOylation in photoreceptors results in cells with morphological and molecular features of cones and an absence of rod-specific markers. Our data thus identify Pias3-mediated SUMOylation of photoreceptor-specific transcription factors as a key mechanism of rod specification.
Collapse
|
46
|
Baughn LB, Di Liberto M, Niesvizky R, Cho HJ, Jayabalan D, Lane J, Liu F, Chen-Kiang S. CDK2 Phosphorylation of Smad2 Disrupts TGF-β Transcriptional Regulation in Resistant Primary Bone Marrow Myeloma Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1810-7. [DOI: 10.4049/jimmunol.0713726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, Smith RD, Hayashida T. TGF-beta signal transduction in chronic kidney disease. Front Biosci (Landmark Ed) 2009; 14:2448-65. [PMID: 19273211 DOI: 10.2741/3389] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transforming growth factor (TGF)-beta is a central stimulus of the events leading to chronic progressive kidney disease, having been implicated in the regulation of cell proliferation, hypertrophy, apoptosis and fibrogenesis. The fact that it mediates these varied events suggests that multiple mechanisms play a role in determining the outcome of TGF-beta signaling. Regulation begins with the availability and activation of TGF-beta and continues through receptor expression and localization, control of the TGF-beta family-specific Smad signaling proteins, and interaction of the Smads with multiple signaling pathways extending into the nucleus. Studies of these mechanisms in kidney cells and in whole-animal experimental models, reviewed here, are beginning to provide insight into the role of TGF-beta in the pathogenesis of renal dysfunction and its potential treatment.
Collapse
Affiliation(s)
- H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave.; Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo X, Waddell DS, Wang W, Wang Z, Liberati NT, Yong S, Liu X, Wang XF. Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-beta signaling. Oncogene 2008; 27:7235-47. [PMID: 18794808 DOI: 10.1038/onc.2008.337] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-beta (TGF-beta) elicits a variety of cellular activities primarily through a signaling cascade mediated by two key transcription factors, Smad2 and Smad3. Numerous regulatory mechanisms exist to control the activity of Smad3, thereby modulating the strength and specificity of TGF-beta responses. In search for potential regulators of Smad3 through a yeast two-hybrid screen, we identified casein kinase 1 gamma 2 (CKIgamma2) as a novel Smad3-interacting protein. In mammalian cells, CKIgamma2 selectively and constitutively binds Smad3 but not Smad1, -2 or -4. Functionally, CKIgamma2 inhibits Smad3-mediated TGF-beta responses including induction of target genes and cell growth arrest, and this inhibition is dependent on CKIgamma2 kinase activity. Mechanistically, CKIgamma2 does not affect the basal levels of Smad proteins or activity of the receptors. Rather, CKIgamma2 preferentially promotes the ubiquitination and degradation of activated Smad3 through direct phosphorylation of its MH2 domain at Ser418. Importantly, mutation of Ser418 to alanine or aspartic acid causes an increase or decrease of Smad3 activity, respectively, in the presence of TGF-beta. CKIgamma2 is the first kinase known to mark activated Smad3 for destruction. Given its negative function in TGF-beta signaling and its reported overexpression in human cancers, CKIgamma2 may act as an oncoprotein during tumorigenesis.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem Soc Trans 2008; 35:1405-8. [PMID: 18031232 DOI: 10.1042/bst0351405] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcriptional activity of signal-dependent transcription factors, including nuclear receptors, relies on interacting co-regulator proteins, many of which possess protein-modifying activity. SUMOs (small ubiquitin-related modifiers) and their conjugation pathway components act as co-regulator proteins for numerous transcription factors that also are often targets for SUMO modification. PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)] proteins promote SUMOylation in a manner that resembles the action of RING-type ubiquitin E3 ligases. PIAS proteins were initially named for their ability to interact with STAT proteins and inhibit their activity, but their interactions and functions are not restricted to the STATs. Moreover, PIAS proteins do not operate merely as SUMO E3s, since their co-regulator effects are often independent of their RING finger but dependent on their SIM (SUMO-interacting motif) or SAP (scaffold attachment factor-A/B/acinus/PIAS) domain capable of interacting with DNA. The modulator activity imparted by the PIAS/SUMO system involves altered subnuclear targeting and/or assembly of transcription complexes. PIAS proteins may act as platforms that facilitate both removal and recruitment of other regulatory proteins in the transcription complexes.
Collapse
|
50
|
Wrighton KH, Feng XH. To (TGF)beta or not to (TGF)beta: fine-tuning of Smad signaling via post-translational modifications. Cell Signal 2008; 20:1579-91. [PMID: 18387785 DOI: 10.1016/j.cellsig.2008.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/06/2008] [Indexed: 01/17/2023]
Abstract
Smad proteins are key signal transducers for the TGF-beta superfamily and are frequently inactivated in human cancers, yet the molecular basis of how their levels and activities are regulated remains unclear. Recent progress, discussed herein, illustrates the critical roles of Smad post-translational modifications in the cellular outcome to TGF-beta signaling.
Collapse
Affiliation(s)
- Katharine H Wrighton
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|