1
|
Nair RS, Patel MN, Kannan T, Gour S, Hariharan MM, Prasanna V, Thirumalai A, Chockalingam R, Vasantharekha R, ThyagaRajan S, Priyanka HP. Effects of 17β-estradiol and estrogen receptor subtype-specific agonists on Jurkat E6.1 T-cell leukemia cells. Toxicol In Vitro 2025; 106:106057. [PMID: 40112934 DOI: 10.1016/j.tiv.2025.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Estrogen signaling plays a crucial role in immune regulation and cancer metabolism, yet its impact on T-cell leukemia remains unclear. In hematological malignancies, estrogen receptor (ER) activation may influence metabolic shifts that affect cell survival and proliferation. This study investigates the in vitro effects of 17β-estradiol and estrogen receptor subtype-specific agonists on Jurkat E6.1 T-cell leukemia cells. PURPOSE To assess how estrogen signaling influences metabolic reprogramming, inflammatory response, and survival pathways in Jurkat E6.1 cells through receptor-dependent and independent mechanisms. METHODS Jurkat E6.1 cells incubated with different concentrations of 17β-estradiol (10-12 M, 10-10 M, 10-8 M) or ER-α agonist 4,4',4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (10-10 M, 10-8 M, 10-6 M) or ER-β agonist diarylproprionitrile (10-10 M, 10-8 M, 10-6 M) with and without non-specific antagonist ICI 182,780 (10-6 M). The metabolic enzyme activities of hexokinase, pyruvate kinase, and citrate synthase were measured in cell pellets, while supernatants were analyzed for IL-6 and nitric oxide (NO) production. Additionally, PI3K/Akt pathway activation was assessed by measuring p-Akt/Total Akt expression. RESULTS A shift from glycolysis to oxidative phosphorylation was observed on treatment with 17β-estradiol with significant decline in hexokinase activity and a concomitant increase in activities of pyruvate kinase and citrate synthase. CONCLUSION 17β-estradiol mediates its effects on Jurkat E6.1 cells in vitro through receptor-subtype dependent and independent mechanisms involving metabolic enzymes (hexokinase, pyruvate kinase, citrate synthase), cytokines (IL-6), nitric oxide, and signaling molecules (p-Akt).
Collapse
Affiliation(s)
- Rahul S Nair
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Chennai, Tamil Nadu, India; Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Mantavya N Patel
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thangamani Kannan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shaili Gour
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Murali M Hariharan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vijayarengamani Prasanna
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anupriya Thirumalai
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramanathan Chockalingam
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hannah P Priyanka
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Chennai, Tamil Nadu, India; Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
2
|
Zeng B, Shi H, Liu T, Tang J, Lin J, Lin X, Zeng T. The influence of homologous recombination repair on temozolomide chemosensitivity in gliomas. Carcinogenesis 2025; 46:bgaf017. [PMID: 40120126 DOI: 10.1093/carcin/bgaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Gliomas represent a prevalent form of primary brain tumors, with temozolomide (TMZ) serving as the established first-line therapeutic option. Nevertheless, the effectiveness of TMZ is hindered by the development of chemoresistance. Recent investigations have underscored the correlation of homologous recombination repair (HRR), a pivotal mechanism responsible for mending DNA double-strand breaks, with TMZ resistance in glioma treatment. This review centers on elucidating the significance of HRR in the management of gliomas, with a particular emphasis on pivotal molecules implicated in the HRR process, including RAD51, ATM, ATR, and newly identified small molecules that impact HRR. Modulating the expression of these genes can effectively restrain pathways such as ATM/CHK2, ATR/CHK1, and PI3K/AKT, subsequently augmenting the sensitivity of gliomas to TMZ. Noteworthy efforts have been directed towards exploring inhibitors of these pathways in recent research endeavors, culminating in encouraging outcomes. In conclusion, the involvement of HRR in glioma resistance unveils novel therapeutic avenues, with targeting crucial molecules in the HRR pathway, holding promise for enhancing the effectiveness of TMZ therapy.
Collapse
Affiliation(s)
- Biyun Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P. R. China
- School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Hansen Shi
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P. R. China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jinjing Tang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P. R. China
| | - Juncheng Lin
- School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Xiaocong Lin
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P. R. China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P. R. China
| |
Collapse
|
3
|
Qaed E, Liu W, Almoiliqy M, Mohamed R, Tang Z. Unleashing the potential of Genistein and its derivatives as effective therapeutic agents for breast cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3321-3343. [PMID: 39549063 DOI: 10.1007/s00210-024-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Genistein (Gen), a phytoestrogen soy isoflavone, has emerged as a promising agent in the prevention and treatment of breast cancer due to its ability to function as a natural selective estrogen receptor modulator (SERM). This review explores the multifaceted mechanisms through which Gen and its derivatives exert their anticancer effects, including modulation of the PI3K/Akt signaling pathway, regulation of apoptosis, inhibition of angiogenesis, and impacts on DNA methylation and enzyme functions. We discuss the dual roles of Gen in both enhancing and inhibiting estrogen receptor (ER)-dependent pathways., highlighting its complex interactions with ERα and ERβ. Furthermore, the review examines the synergistic effect of combining Gen with conventional chemotherapeutic agents such as doxorubicin, cisplatin, and selenium, as well as other natural compounds like lycopene. Clinical studies suggest that while isoflavones may not significantly influence breast cancer progression in general, the high consumption of soy isoflavones is associated with reduced recurrence rates in breast cancer survivors. Importantly, Gen's ability to modulate key signaling pathways and enhance the efficacy of existing treatments improves its potential as a valuable adjunct in breast cancer therapy. In conclusion, Gen and its derivatives offer a novel and promising approach for treatment of breast cancer. Continued research into their mechanisms of action and clinical applications will be essential in optimizing their therapeutic potential and translating these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wu Liu
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Marwan Almoiliqy
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China
| | - Rawan Mohamed
- College of Clinical Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun Dalian, Dalian, 116044, China.
| |
Collapse
|
4
|
Nordeen SK, Kumar V, Bona BJ, Batson JD, Backos DS, Wempe MF. Endocrine-Disrupting Activities of Flavones on Steroid Receptors: Structural Requirements and Synthesis of Novel Flavone with Improved Estrogenic Activity. Biomedicines 2025; 13:748. [PMID: 40149724 PMCID: PMC11940309 DOI: 10.3390/biomedicines13030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Flavonoids are common ubiquitous components of plants and are consumed by humans and livestock in their diets. Many different activities have been proposed for a variety of flavonoids that play a role in the benefits of a plant-rich diet. On the downside, excessive exposure to some flavonoids comes with a risk of endocrine disruption. Our objective was to define the structural elements of flavones and selected other flavonoids required for endocrine-disrupting activities on each of four steroid receptors, estrogen, androgen, progesterone, and glucocorticoid receptors. Methods: This work presents a systematic screen for the hormone agonist or antagonist activity of a selected panel of flavonoids on estrogen, androgen, progesterone, and glucocorticoid receptors. The screen is focused on the positional requirements of hydroxyl substituents on the flavone backbone. Results: Each receptor exhibited a distinct pattern for structural requirements of the flavones to impact receptor signaling. The most active flavones exhibited antagonist activity on androgen and progesterone receptors with an IC50 of 0.5 and 2 µM, respectively. Flavones only exhibited weak antagonism on glucocorticoid receptors. When active, flavones acted as estrogen receptor agonists. The findings were utilized to design and synthesize a novel flavone, 3-fluoro, 6,4'-dihydroxyflavone 14, that displays increased potency as an estrogen agonist (EC50~30 nM). Modeling of the binding of this novel flavone predicts increased preference for ERα versus ERβ relative to the estrogenic phytoestrogen, genistein. Conclusions: The structural requirements for flavones to act as estrogen agonists and antagonists of other steroid receptors are defined. The synthesis of a novel flavone offers potential for topical applications where systemic estrogen activity is undesired. However, the results highlight the potential for endocrine disruption when certain flavones are consumed in quantity as supplements.
Collapse
Affiliation(s)
- Steven K. Nordeen
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (V.K.); (J.D.B.); (D.S.B.); (M.F.W.)
| | - Betty J. Bona
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Joshua D. Batson
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (V.K.); (J.D.B.); (D.S.B.); (M.F.W.)
| | - Donald S. Backos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (V.K.); (J.D.B.); (D.S.B.); (M.F.W.)
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (V.K.); (J.D.B.); (D.S.B.); (M.F.W.)
- University of Colorado Cancer Center, University of Colorado—Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Li Y, Ding B, Wei M, Yang X, Fu R, Liu Y, Zhu L, Ding Y, Zhang W, Zhang G, Zhang S, Bu Y, He J, Deng J, Bao X, Hao J, Ma L. The prognostic and immune significance of Rab11A in pan-cancer and its function and mechanism underlying estrogen receptor targeting in breast cancer. Asia Pac J Clin Oncol 2025; 21:12-30. [PMID: 39395024 DOI: 10.1111/ajco.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/22/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Rab11A is an important molecule for recycling endosomes and is closely related to the proliferation, invasion, and metastasis of tumors. This study investigated the prognostic and immune significance of Rab11A and validated its potential function and mechanism in breast cancer (BRCA). METHODS RNA sequencing data for 33 tumors were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases. Correlation analysis was used to evaluate the relationship between Rab11A expression and immune characteristics. Potential pathways were identified using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis. Immunohistochemical analysis, colony formation assay, bromodeoxyuridine incorporation assay, immunofluorescence, and Western blot were used to explore potential function and mechanism. RESULTS Analysis of the TCGA database showed significant upregulation of Rab11A expression in a variety of cancers. Rab11A was up-regulated in 82.4% of BRCA. High Rab11A expression is associated with poor survival in cancer patients and is a predictor of poor prognosis. CIBERSORT analysis showed that Rab11A was negatively associated with almost all immune cycle activity scores pan-cancer. The results of the TCGA-BRCA cohort were further confirmed by using pathological samples from clinical BRCA patients. The results showed that Rab11A expression was correlated with estrogen receptor (ER) and progesterone receptor expression in BRCA (p < 0.05). Knockdown and overexpression of Rab11A affected the proliferation of BRCA cells. Further mechanistic studies revealed that down-regulation of ER alpha (ERα) and up-regulation of ER beta (ERβ) mediated Rab11A-induced inhibition of BRCA cell proliferation. CONCLUSION Rab11A expression in pan-cancer is associated with poor prognosis and immune profile. In particular, in BRCA, Rab11A expression regulates cell proliferation by targeting ERα and ERβ. High Rab11A expression is tightly associated with immune characteristics, tumor microenvironment, and genetic mutations. These results provide a reference for exploring the role of Rab11A in pan-cancer and provide a new perspective for revealing potential therapeutic targets in BRCA.
Collapse
Affiliation(s)
- Yilun Li
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baifang Ding
- Department of Breast Surgery, Panjin central hospital, Panjin, China
| | - Mengyu Wei
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolu Yang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruihuan Fu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yinfeng Liu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Ding
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjin Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Geng Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Zhang
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhui Bu
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianchao He
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianye Deng
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohuan Bao
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Park CJ, Oh JE, Lin P, Zhou S, Bunnell M, Bikorimana E, Spinella MJ, Lim HJ, Ko CJ. A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary. Endocrinology 2025; 166:bqaf006. [PMID: 39834231 PMCID: PMC12054734 DOI: 10.1210/endocr/bqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
This study uncovers a dynamic shift in estrogen receptor expression during granulosa cell (GC) differentiation in the ovary, highlighting a transition from estrogen receptor alpha (ESR1) to estrogen receptor beta (ESR2). Using a transgenic mouse model with Esr1-iCre-mediated Esr2 deletion, we demonstrate that ESR2 expression is absent in GCs derived from ESR1-expressing ovarian surface epithelium (OSE) cells. Single-cell analysis of the OSE-GC lineage reveals a developmental trajectory from Esr1-expressing OSE cells to Foxl2-expressing pre-GCs, culminating in GCs exclusively expressing Esr2. Transcriptome analyses identified vasculature-derived TGFβ1 ligands as key regulators of this transition. Supporting this, TGFβ1 treatment of cultured embryonic ovaries reduced Esr1 expression while promoting Esr2 expression. This study underscores the capability of GCs to switch from ESR1 to ESR2 expression as a fundamental aspect of normal differentiation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sherry Zhou
- Epivara, Inc., Research Park, Champaign, IL 61820, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Hyunjung Jade Lim
- Department of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Korea
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
7
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
8
|
Franceschi BT, Bezerra PHA, Torqueti MR. Antitumor effects of co-treatment of resveratrol with antitumor drugs in ER- and HER2-positive breast cancer cells are due to induction of apoptosis and modulation of estrogen receptor expression. Breast Cancer 2024; 31:754-768. [PMID: 38780752 DOI: 10.1007/s12282-024-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Resveratrol, a natural compound, may be an alternative to improving conventional breast cancer therapy. Thus, we assessed the capability of resveratrol at a low dose to enhance the in vitro effect of conventional theray in estrogen receptor (ER) and human epidermal growth factor receptor type 2 (HER2)-positive breast cancer cells. METHODS Cell viability of breast cancer cells was measured with neutral red uptake assay. Apoptosis, autophagy, cell cycle progression and cell proliferation were detected through hypotonic fluorescent solution assay, formation of acidic vesicular organelles, flow cytometry, and bromodeoxyuridine assay, respectively. Western blotting was performed to study the expression of pro-apoptotic, anti-apoptotic and autophagic proteins, and estrogen receptors. RESULTS Resveratrol combined with tamoxifen metabolites or trastuzumab reduced cell viability of ER- and HER2-positive breast cancer cells, respectively. This effect was mainly associated with induction of apoptosis due to a greater formation of hypodiploid nuclei, reduced protein expression of procaspase-7, Bcl-2, Bcl-xL, and PARP; and increased expression of cleaved PARP. Resveratrol decreased the expression of ERα and increased that of ERβ, contributing to the reduced viability on breast cancer cells. Combined treatments induced autophagy, evidenced by increased levels of acidic vesicular organelles and degradation of p62/SQSTM1 protein. Nevertheless, on inhibiting autophagy with 3-methyladenine, cell viability was further reduced and apoptosis was induced, suggesting a pro-survival role of autophagy, impairing apoptosis. CONCLUSIONS Resveratrol increasead the in vitro cytotoxic effect of conventional therapy in breast cancer cells. However, it was necessary to block resveratrol-induced autophagy to improve the therapeutic response.
Collapse
Affiliation(s)
- Beatriz Tinoco Franceschi
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Patrícia Heloise Alves Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Zamer BA, Cui ZG, Eladl MA, Hamad M, Muhammad JS. Estrogen treatment in combination with pyruvate kinase M2 inhibition precipitate significant cumulative antitumor effects in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23799. [PMID: 39132768 DOI: 10.1002/jbt.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
It is well established that pyruvate kinase M2 (PKM2) activity contributes to metabolic reprogramming in various cancers, including colorectal cancer (CRC). Estrogen or 17β-estradiol (E2) signaling is also known to modulate glycolysis markers in cancer cells. However, whether the inhibition of PKM2 combined with E2 treatment could adversely affect glucose metabolism in CRC cells remains to be investigated. First, we confirmed the metabolic plasticity of CRC cells under varying environmental conditions. Next, we identified glycolysis markers that were upregulated in CRC patients and assessed in vitro mRNA levels following E2 treatment. We found that PKM2 expression, which is highly upregulated in CRC clinical samples, is not altered by E2 treatment in CRC cells. In this study, glucose uptake, generation of reactive oxygen species (ROS), lactate production, cell viability, and apoptosis were evaluated in CRC cells following E2 treatment, PKM2 silencing, or a combination of both. Compared to individual treatments, combination therapy resulted in a significant reduction in cell viability and enhanced apoptosis. Glucose uptake and ROS production were markedly reduced in PKM2-silenced E2-treated cells. The data presented here suggest that E2 signaling combined with PKM2 inhibition cumulatively targets glucose metabolism in a manner that negatively impacts CRC cell growth. These findings hold promise for novel therapeutic strategies targeting altered metabolic pathways in CRC.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Zheng-Guo Cui
- Department of Environmental Health, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mohamed Ahmed Eladl
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
11
|
Kaur K, Verma H, Gangwar P, Jangid K, Dhiman M, Kumar V, Jaitak V. Design, synthesis, in silico and biological evaluation of new indole based oxadiazole derivatives targeting estrogen receptor alpha. Bioorg Chem 2024; 147:107341. [PMID: 38593531 DOI: 10.1016/j.bioorg.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 μM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-β is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 μM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 μM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India.
| |
Collapse
|
12
|
Kaur K, Verma H, Gangwar P, Dhiman M, Jaitak V. Design, synthesis, in vitro and in silico evaluation of indole-based tetrazole derivatives as putative anti-breast cancer agents. RSC Med Chem 2024; 15:1329-1347. [PMID: 38665833 PMCID: PMC11042173 DOI: 10.1039/d3md00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/28/2024] Open
Abstract
A series of new indole-tetrazole derivatives were designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited in vitro anti-proliferative activity against ER-α positive T-47D (IC50 = 3.82-24.43 μM), MCF-7 (IC50 = 3.08-22.65 μM), and ER-α negative MDA-MB-231 (IC50 = 7.69-19.4 μM) human breast cancer cell lines. Compounds 5d and 5f displayed significant anti-proliferative activity compared to bazedoxifene (IC50 = 14.23 ± 0.68 μM), with IC50 values of 10.00 ± 0.59 and 3.83 ± 0.74 μM, respectively, against the ER-α dominant T-47D cell line. Also, both compounds showed non-significant cytotoxicity against normal cells HEK-293. Further, the ER-α binding affinity of 5d and 5f was assessed through a fluorescence polarization-based competitive binding assay, where 5d and 5f have shown significant binding with IC50 = 5.826 and 110.6 nM, respectively, as compared to the standard drug bazedoxifene (IC50 = 339.2 nM). Western blot analysis confirmed that compound 5d reduced ER-α protein expression in T-47D cells, hindering its transactivation and signalling pathways. Additionally, a molecular docking study suggests that compounds 5d and 5f bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Pharmacokinetic profiles showed that the compounds possessed drug-like properties. Furthermore, molecular dynamics simulation studies establish the dynamic stability and conformational behaviour of the ER-α protein and ligand complex of both compounds. Additionally, 5d and 5f ensure biological feasibility as per their DFT analysis through HOMO-LUMO energy gap analysis. In conclusion, compounds 5d and 5f, exhibiting significant ER-α antagonistic activity, can act as potential lead compounds for anti-breast cancer therapies.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda (Pb) 151401 India
| |
Collapse
|
13
|
Saidy B, Vasan R, Durant R, Greener MR, Immanuel A, Green AR, Rakha E, Ellis I, Ball G, Martin SG, Storr SJ. Unravelling transcriptomic complexity in breast cancer through modulation of DARPP-32 expression and signalling pathways. Sci Rep 2023; 13:21163. [PMID: 38036593 PMCID: PMC10689788 DOI: 10.1038/s41598-023-48198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
DARPP-32 is a key regulator of protein-phosphatase-1 (PP-1) and protein kinase A (PKA), with its function dependent upon its phosphorylation state. We previously identified DKK1 and GRB7 as genes with linked expression using Artificial Neural Network (ANN) analysis; here, we determine protein expression in a large cohort of early-stage breast cancer patients. Low levels of DARPP-32 Threonine-34 phosphorylation and DKK1 expression were significantly associated with poor patient prognosis, while low levels of GRB7 expression were linked to better survival outcomes. To gain insight into mechanisms underlying these associations, we analysed the transcriptome of T47D breast cancer cells following DARPP-32 knockdown. We identified 202 differentially expressed transcripts and observed that some overlapped with genes implicated in the ANN analysis, including PTK7, TRAF5, and KLK6, amongst others. Furthermore, we found that treatment of DARPP-32 knockdown cells with 17β-estradiol or PKA inhibitor fragment (6-22) amide led to the differential expression of 193 and 181 transcripts respectively. These results underscore the importance of DARPP-32, a central molecular switch, and its downstream targets, DKK1 and GRB7 in breast cancer. The discovery of common genes identified by a combined patient/cell line transcriptomic approach provides insights into the molecular mechanisms underlying differential breast cancer prognosis and highlights potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Behnaz Saidy
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richa Vasan
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rosie Durant
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Megan-Rose Greener
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Adelynn Immanuel
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian Ellis
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Bishop Hall Lane, Chelmsford, CM1 1SQ, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
14
|
Pratap UP, Tidwell M, Balinda HU, Clanton NA, Yang X, Viswanadhapalli S, Sareddy GR, Liang D, Xie H, Chen Y, Lai Z, Tekmal RR, McHardy SF, Brenner AJ, Vadlamudi RK. Preclinical Development of Brain Permeable ERβ Agonist for the Treatment of Glioblastoma. Mol Cancer Ther 2023; 22:1248-1260. [PMID: 37493258 PMCID: PMC10811744 DOI: 10.1158/1535-7163.mct-23-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/13/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERβ) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERβ agonist to promote its antitumor action is limiting the therapeutic promise of ERβ. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERβ agonists. Because of its high activity in ERβ reporter assays, specific binding to ERβ in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERβ than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 μmol/L, while having little to no effect on ERβ-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERβ target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERβ agonist, offering patients with GBM a potential means of improving survival.
Collapse
Affiliation(s)
- Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Michael Tidwell
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | | | - Nicholas A Clanton
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Stanton F McHardy
- Department of Chemistry, Center for Innovative Drug Discovery, University of Texas Health San Antonio, Texas
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Hematology & Oncology, University of Texas San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
15
|
Alatawi FS, Faridi U. Anticancer and anti-metastasis activity of 1,25 dihydroxycholecalciferols and genistein in MCF-7 and MDA-MB-231 breast cancer cell lines. Heliyon 2023; 9:e21975. [PMID: 38034665 PMCID: PMC10682641 DOI: 10.1016/j.heliyon.2023.e21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
A powerful steroid hormone precursor, 1,25 dihydroxycholecalciferols (1,25(OH)2D3), and dietary phytoestrogen (genistein) are essential compounds that act by binding to nuclear receptors and altering gene expression. They have many biological benefits, some of which have anticancer properties. We studied the impact of 1,25(OH)2D3 and genistein on the proliferation, progression, and metastasis of MCF-7 and MDA-MB-231 cells when they were used alone or in combination and investigated whether there was a synergistic effect between genistein and 1,25(OH)2D3. To achieve these goals, a variety of assays, including flow cytometry, cell invasion assays, cell adhesion assays, Western blotting, and RT‒PCR, were used. Our findings showed that genistein, 1,25(OH)2D3, and the two combined all effectively declined the growth of MCF-7 and MDA-MB-231 cells by arresting the cells in the G0/G1 phase and inducing an apoptotic pathway. Stimulation of apoptosis was achieved by upregulating the expression of BAX and CASP3 genes and downregulating the expression levels of BCL-2 gene. Furthermore, both compounds suppress metastasis by reducing cell adhesion and cell migration/invasion by elevating the expression level of E-cadherin and reducing the expression level of P-cadherin and N-cadherin. Additionally, both genistein and 1,25(OH)2D3 increased the expression level of ERK1 and reduced the expression levels of JNK, p38, Ras, and MEK proteins, which reduced metastasis, enhanced the response to cancer treatment, and improved overall survival. Thus, genistein and 1,25(OH)2D3 can both be considered key candidates in the search for new breast cancer treatments.
Collapse
Affiliation(s)
- Fatema Suliman Alatawi
- Faculty of Sciences, Biochemistry Department, Science College, University of Tabuk, Tabuk Saudi Arabia
| | - Uzma Faridi
- Faculty of Sciences, Biochemistry Department, Science College, University of Tabuk, Tabuk Saudi Arabia
| |
Collapse
|
16
|
Schüler-Toprak S, Skrzypczak M, Gründker C, Ortmann O, Treeck O. Role of Estrogen Receptor β, G-Protein Coupled Estrogen Receptor and Estrogen-Related Receptors in Endometrial and Ovarian Cancer. Cancers (Basel) 2023; 15:2845. [PMID: 37345182 DOI: 10.3390/cancers15102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Ovarian and endometrial cancers are affected by estrogens and their receptors. It has been long known that in different types of cancers, estrogens activate tumor cell proliferation via estrogen receptor α (ERα). In contrast, the role of ERs discovered later, including ERβ and G-protein-coupled ER (GPER1), in cancer is less well understood, but the current state of knowledge indicates them to have a considerable impact on both cancer development and progression. Moreover, estrogen related receptors (ERRs) have been reported to affect pathobiology of many tumor types. This article provides a summary and update of the current findings on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancer. For this purpose, original research articles on the role of ERβ, GPER1, and ERRs in ovarian and endometrial cancers listed in the PubMed database have been reviewed.
Collapse
Affiliation(s)
- Susanne Schüler-Toprak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Olaf Ortmann
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| | - Oliver Treeck
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Caritas-Hospital St. Josef, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Dairkee SH, Moore DH, Luciani MG, Anderle N, Gerona R, Ky K, Torres SM, Marshall PV, Goodson Iii WH. Reduction of daily-use parabens and phthalates reverses accumulation of cancer-associated phenotypes within disease-free breast tissue of study subjects. CHEMOSPHERE 2023; 322:138014. [PMID: 36746253 DOI: 10.1016/j.chemosphere.2023.138014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Estrogenic overstimulation is carcinogenic to the human breast. Personal care products (PCPs) commonly contain xenoestrogens (XE), such as parabens and phthalates. Here, we identified the adverse effects of persistent exposure to such PCPs directly within human estrogen responsive breast tissue of subjects enrolled in a regimen of reduced XE use (REDUXE). Pre- and post-intervention fine needle aspirates (FNAs) of the breast were collected from healthy volunteers who discontinued the use of paraben and phthalate containing PCPs over a 28 d period. Based on high-dimensional gene expression data of matched FNA pairs of study subjects, we demonstrate a striking reversal of cancer-associated phenotypes, including the PI3K-AKT/mTOR pathway, autophagy, and apoptotic signaling networks within breast cells of REDUXE compliant subjects. These, and other altered phenotypes were detected together with a significant reduction in urinary parabens and phthalate metabolites. Moreover, in vitro treatment of paired FNAs with 17β-estradiol (E2), displayed a 'normalizing' impact of REDUXE on gene expression within known E2-modulated pathways, and on functional endpoints, including estrogen receptor alpha: beta ratio, and S-phase fraction of the cell cycle. In a paradigm shifting approach facilitated by community-based participatory research, REDUXE reveals unfavorable consequences from exposure to XEs from daily-use PCPs. Our findings illustrate the potential for REDUXE to suppress pro-carcinogenic phenotypes at the cellular level towards the goal of breast cancer prevention.
Collapse
Affiliation(s)
- Shanaz H Dairkee
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| | - Dan H Moore
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - M Gloria Luciani
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Nicole Anderle
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Roy Gerona
- Department of OB/Gyn and Reproductive Sciences, University of California, San Francisco, CA, 94115, USA
| | - Karina Ky
- Department of OB/Gyn and Reproductive Sciences, University of California, San Francisco, CA, 94115, USA
| | | | | | | |
Collapse
|
18
|
Scarpetti L, Oturkar CC, Juric D, Shellock M, Malvarosa G, Post K, Isakoff S, Wang N, Nahed B, Oh K, Das GM, Bardia A. Therapeutic Role of Tamoxifen for Triple-Negative Breast Cancer: Leveraging the Interaction Between ERβ and Mutant p53. Oncologist 2023; 28:358-363. [PMID: 36772966 PMCID: PMC10078911 DOI: 10.1093/oncolo/oyac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/30/2022] [Indexed: 02/12/2023] Open
Abstract
The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERβ) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERβ in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERβ protein expression and anti-proliferative interaction between mutant p53 and ERβ were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERβ+TNBC, especially in the setting of brain metastasis.
Collapse
Affiliation(s)
- Lauren Scarpetti
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Maria Shellock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giuliana Malvarosa
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn Post
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Steven Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Brian Nahed
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gokul M Das
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
20
|
Huang D, Berglund M, Damdimopoulos A, Antonson P, Lindskog C, Enblad G, Amini RM, Okret S. Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma-Possible Estrogen Effects. Cancers (Basel) 2023; 15:cancers15041298. [PMID: 36831639 PMCID: PMC9954534 DOI: 10.3390/cancers15041298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
For most lymphomas, including diffuse large B-cell lymphoma (DLBCL), the male incidence is higher, and the prognosis is worse compared to females. The reasons are unclear; however, epidemiological and experimental data suggest that estrogens are involved. With this in mind, we analyzed gene expression data from a publicly available cohort (EGAD00001003600) of 746 DLBCL samples based on RNA sequencing. We found 1293 genes to be differentially expressed between males and females (adj. p-value < 0.05). Few autosomal genes and pathways showed common sex-regulated expression between germinal center B-cell (GCB) and activated B-cell lymphoma (ABC) DLBCL. Analysis of differentially expressed genes between pre- vs. postmenopausal females identified 208 GCB and 345 ABC genes, with only 5 being shared. When combining the differentially expressed genes between females vs. males and pre- vs. postmenopausal females, nine putative estrogen-regulated genes were identified in ABC DLBCL. Two of them, NR4A2 and MUC5B, showed induced and repressed expression, respectively. Interestingly, NR4A2 has been reported as a tumor suppressor in lymphoma. We show that ABC DLBCL females with a high NR4A2 expression showed better survival. Inversely, MUC5B expression causes a more malignant phenotype in several cancers. NR4A2 and MUC5B were confirmed to be estrogen-regulated when the ABC cell line U2932 was grafted to mice. The results demonstrate sex- and female reproductive age-dependent differences in gene expression between DLBCL subtypes, likely due to estrogens. This may contribute to the sex differences in incidence and prognosis.
Collapse
Affiliation(s)
- Dan Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sam Okret
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
- Correspondence: ; Tel.: +46-8-524-81069
| |
Collapse
|
21
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
23
|
Malik P, Singh R, Kumar M, Malik A, Mukherjee TK. Understanding the Phytoestrogen Genistein Actions on Breast Cancer: Insights on Estrogen Receptor Equivalence, Pleiotropic Essence and Emerging Paradigms in Bioavailability Modulation. Curr Top Med Chem 2023; 23:1395-1413. [PMID: 36597609 DOI: 10.2174/1568026623666230103163023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023]
Abstract
Prevalent as a major phenolic ingredient of soy and soy products, genistein is recognized as an eminent phytoestrogen owing to its interacting ability with estrogen receptors (ERs). The metabolic conversion of plant-derived genistin to genistein by gut microbes and intestinal enzymes enhances its absorption at intestinal pH of ~7.5-7.8. Genistein interferes in breast cancer (BC) development via pleiotropic actions on cell proliferation, survival, angiogenesis, and apoptosis. Though multiple investigations have demonstrated genistein intake-driven reduced BC risk, similar efficacy has not been replicated in clinical trials. Furthermore, multiple studies have structurally and functionally equated genistein extents with 17-β-estradiol (E2), the most available physiological estrogen in females, culminating in aggravated BC growth. Of note, both genistein and E2 function via interacting with ERs (ERα and ERβ). However, although E2 shows almost equal affinity towards both ERα and ERβ, genistein shows more affinity towards ERβ than ERα. Our cautious literature survey revealed typical intake mode, ER expression pattern and the ratio of ERα and ERβ, transactivators/ regulators of ERα and ERβ expression and activities, patient age, and menopausal status as decisive factors affecting genistein BC activities. Of further interest are the mechanisms by which genistein inhibits triple-negative breast cancers (TNBCs), which lack ERs, progesterone receptors (PRs), and human epidermal growth factor receptors (HER2). Herein, we attempt to understand the dosage-specific genistein actions in BC cells and patients with an insight into its better response via derivative development, nanocarrier-assisted, and combinatorial delivery with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Anuj Malik
- Department of Pharmacy, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | | |
Collapse
|
24
|
Velesiotis C, Kanellakis M, Vynios DH. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB Life 2022; 74:1012-1028. [PMID: 36054915 DOI: 10.1002/iub.2669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Steviol glycosides, the active sweet components of stevia plant, have been recently found to possess a number of therapeutic properties, including some recorded anticancer ones against various cancer cell types (breast, ovarian, cervical, pancreatic, and colon cancer). Our aim was to investigate this anticancer potential on the two most commonly used breast cancer cell lines which differ in the phenotype and estrogen receptor (ER) status: the low metastatic, ERα+ MCF-7 and the highly metastatic, ERα-/ERβ+ MDA-MB-231. Specifically, glycosides' effect was studied on cancer cells': (a) viability, (b) functionality (proliferation, migration, and adhesion), and (c) gene expression (mRNA level) of crucial molecules implicated in cancer's pathophysiology. Results showed that steviol glycosides induced cell death in both cell lines, in the first 24 hr, which was in line with the antiapoptotic BCL2 decrease. However, cells that managed to survive showcased diametrically opposite behavior. The low metastatic ERα+ MCF-7 cells acquired an aggressive phenotype, depicted by the upregulation of all receptors and co-receptors (ESR, PGR, AR, GPER1, EGFR, IGF1R, CD44, SDC2, and SDC4), as well as VIM and MMP14. On the contrary, the highly metastatic ERα-/ERβ+ MDA-MB-231 cells became less aggressive as pointed out by the respective downregulation of EGFR, IGF1R, CD44, and SDC2. Changes observed in gene expression were compatible with altered cell functions. Glycosides increased MCF-7 cells migration and adhesion, but reduced MDA-MB-231 cells migratory and metastatic potential. In conclusion, the above data clearly demonstrate that steviol glycosides have different effects on breast cancer cells according to their ER status, suggesting that steviol glycosides might be examined for their potential anticancer activity against breast cancer, especially triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Marinos Kanellakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
25
|
Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022; 12:830894. [PMID: 35847875 PMCID: PMC9280148 DOI: 10.3389/fonc.2022.830894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
The immunohistochemical definition of estrogen/progesterone receptors dictates endocrine feasibility in the treatment course of breast cancer. Characterized by the deficiency of estrogen receptor α, ERα-negative breast cancers are dissociated from any endocrine regimens in the routine clinical setting, triple-negative breast cancer in particular. However, the stereotype was challenged by triple-negative breast cancers’ retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action and the carcinogenic signaling program previously underscored was gradually recognized along with the increasing investigation. In parallel, the overlooked endocrine-responsiveness in ERα-negative breast cancers attracted attention and supplied fresh insight into the therapeutic strategy in an ERα-independent manner. This review elaborates on the genomic and non-genomic steroid hormone actions and endocrine-related signals in triple-negative breast cancers attached to the hormone insensitivity label. We also shed light on the non-canonical mechanism detected in common hormone agents to showcase their pleiotropic effects.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese medicine, Beijing, China
| | | | - Jianrong Sun
- School of Clinical Medicine. Beijing University of Chinese Medicine, Beijing, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minkai Ma
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Fourth Central Hospital, Baoding, China
| | - Liqun Jia
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia,
| |
Collapse
|
26
|
Takeshita T, Tokumaru Y, Oshi M, Wu R, Patel A, Tian W, Hatanaka Y, Hatanaka KC, Yan L, Takabe K. Clinical Relevance of Estrogen Reactivity in the Breast Cancer Microenvironment. Front Oncol 2022; 12:865024. [PMID: 35677163 PMCID: PMC9169154 DOI: 10.3389/fonc.2022.865024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Estrogen signals play an important role in the phenotype of estrogen receptor-positive breast cancer. However, comprehensive analyses of the effect of responsiveness to estrogen signals on the tumor microenvironment and survival in large cohorts of primary breast cancer patients have been lacking. We aimed to test the hypothesis that estrogen reactivity affects gene expression and immune cell infiltration profiles in the tumor microenvironment and survival. Methods A total of 3,098 breast cancer cases were analyzed: 1,904 from the Molecular Taxonomy of Breast Cancer (METABRIC) cohort, 1,082 from The Cancer Genome Atlas (TCGA) cohort, and 112 from the Hokkaido University Hospital cohort. We divided the group into estrogen reactivity-high and estrogen reactivity-low groups utilizing the scores of ESTROGEN_RESPONSE_EARLY and ESTROGEN_RESPONSE_LATE in Gene Set Variation Analysis. Results Breast cancer with high estrogen reactivity was related to Myc targets, metabolism-related signaling, cell stress response, TGF-beta signaling, androgen response, and MTORC1 signaling gene sets in the tumor microenvironment. Low estrogen reactivity was related to immune-related proteins, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, KRAS signaling, cell cycle-related gene sets, and EMT. In addition, breast cancer with high levels of estrogen reactivity had low immune cytolytic activity and low levels of immunostimulatory cells. It also had low levels of stimulatory and inhibitory factors of the cancer immunity cycle. Patients with high estrogen reactivity were also associated with a better prognosis. Conclusion We demonstrated the relationship between estrogen reactivity and the profiles of immune cells and gene expression, as well as survival.
Collapse
Affiliation(s)
- Takashi Takeshita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rongrong Wu
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ankit Patel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Wanqing Tian
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yutaka Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako C Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kazuaki Takabe
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, United States.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, Yokohama City University, Yokohama, Japan.,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
27
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
28
|
Cao S, Liu L, Zhu Q, Zhu Z, Zhou J, Wei P, Wu M. Adherence to the Vegetable-Fruit-Soy Dietary Pattern, a Reference From Mediterranean Diet, Protects Against Postmenopausal Breast Cancer Among Chinese Women. Front Nutr 2022; 9:800996. [PMID: 35425800 PMCID: PMC9001898 DOI: 10.3389/fnut.2022.800996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background The diet-center hypothesis has gained much support from the apparent protective effect of the Mediterranean diet on breast cancer. However, the evidence of the association between Mediterranean diet adherence and breast cancer molecular subtypes remains small, especially in non-Mediterranean populations. Methods The subjects from the Chinese Wuxi Exposure and Breast Cancer Study, a population-based case-control study, included 818 patients and 935 healthy controls. A validated food frequency questionnaire used for diet assessment and a modified version of the alternate Mediterranean Diet Score, which is called the alternate Chinese Diet Score, was developed to assess adherence to a migrated Chinese version of the Mediterranean diet, which we called the vegetable-fruit-soy dietary pattern. Soy foods, rapeseed oil, and coarse cereals replaced legumes, olive oil, and whole grains reflecting the cuisine of the region. We examined the association between the vegetable-fruit-soy diet adherence and breast cancer risk, stratified by menopause status (pre- or postmenopausal) and receptor status [estrogen-receptor (ER), progesterone-receptor (PR) status, and human epidermal growth factor 2 (HER2)] oncogene expression, followed by five specific combinations (ER+, ER–, ER+/PR+,ER–/PR–, and ER–/PR–/HER2–). Results The results suggest that the vegetable-fruit-soy dietary pattern was inversely associated with postmenopausal breast cancer risk [4th vs. 1st quartile, odds ratio (OR) = 0.57, 95%CI = 0.41, 0.80; P trend < 0.001] and that the inverse association was somewhat stronger to detect among ER- subtypes (OR = 0.63; 95%CI = 0.37, 0.94; P trend = 0.003) and ER–/PR–subtypes (OR = 0.64; 95%CI = 0.41, 0.93; P trend = 0.012). We did not observe any significant association between the vegetable-fruit-soy diet characteristics and ER+ subtype, as well as between PR+ and ER+/PR+ subtypes. Conclusion The favorable influence from the Mediterranean diet may also apply to Chinese women. The vegetable-fruit-soy dietary pattern may reduce the risk of postmenopausal breast cancer, particularly among ER- subtype, and ER–/PR–subtype.
Collapse
Affiliation(s)
- Shang Cao
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, China
| | - Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qianrang Zhu
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zheng Zhu
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jinyi Zhou
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, China
| | - Ming Wu
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, China
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- *Correspondence: Ming Wu,
| |
Collapse
|
29
|
Gunathilake TMSU, Ching YC, Kadokami K. An overview of organic contaminants in indoor dust, their health impact, geographical distribution and recent extraction/analysis methods. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:677-713. [PMID: 34170457 DOI: 10.1007/s10653-021-01013-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 05/16/2023]
Abstract
People spend a substantial proportion of their time indoors; therefore, exposure to contaminants in indoor dust is persistent and profuse. According to the findings of recent studies, contaminants such as flame retardants (FRs), organochlorines (OCs), and phthalate esters (PAEs) are more prevalent in indoor dust. The discrepancy in the geographical distribution of these chemicals indicates country-specific applications. However, many studies have revealed that chlorophosphates, polychlorinated biphenyls (PCBs) and di-2-ethylhexyl phthalate are frequently detected in indoor dust throughout the world. Although some chemicals (e.g., OCs) were banned/severely restricted decades ago, they have still been detected in indoor dust. These organic contaminants have shown clear evidence of carcinogenic, neurotoxic, immunogenic, and estrogenic activities. Recent extraction methods have shown their advantages, such as high recoveries, less solvent consumption, less extraction time and simplicity of use. The latest separation techniques such as two-dimensional gas/liquid chromatography, latest ionization techniques (e.g., matrix-assisted laser desorption/ionization (MALDI)), and modern techniques of mass spectrometry (e.g., tandem mass spectrometry (MS/MS), time-of-flight (TOF) and high-resolution mass spectrometry (HRMS)) improve the detection limits, accuracy, reproducibility and simultaneous detection of organic contaminants. For future perspectives, it is suggested that the importance of the study of dust morphology for comprehensive risk analysis, introducing standard reference materials to strengthen the analytical methods, adopt common guidelines for comparison of research findings and the importance of dust analysis in the developing world since lack of records on the production and usage of hazardous substances. Such measures will help to evaluate the effectiveness of prevailing legislations and to set up new regulations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Hibikino 1-1, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
30
|
Li Y, Zheng N, Li Y, Li P, Sun S, Wang S, Song X. Exposure of childbearing-aged female to phthalates through the use of personal care products in China: An assessment of absorption via dermal and its risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150980. [PMID: 34662603 DOI: 10.1016/j.scitotenv.2021.150980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) are widely used in personal care products (PCPs) and skin care packaging materials. Through national representative sampling, 328 childbearing-aged females in China were investigated by questionnaire, whose contact factors for 30 cosmetic products were collected. According to the daily exposure method and adverse cumulative effects of PAE exposure on female reproduction, we derived the ERα, ERβ binding, and AR anti-androgenic effects. The utilization rates of acne cleanser, acne cream, cleanser (non-acne), and cream (non-acne) in volunteers were 21.90%, 22.22%, 51.63%, and 51.96%, respectively. Examining the data for PAEs in PCPs, the content of DBP (dibutyl phthalate) in them was significantly higher for tubes (0.26 ± 0.05 μg/g) and other packaging (pump type and metal tube) (0.25 ± 0.03 μg/g) than bowl (0.17 ± 0.04 μg/g). The DBP content of acne cream (0.27 ± 0.03 μg/g) was significantly higher than that of non-acne cream (0.17 ± 0.03 μg/g); likewise, there was significantly more DEHP (di (2-ethylhexyl) phthalate) in acne cleanser (0.87 ± 0.15 μg/g) than non-acne cleanser (0.64 ± 0.36 μg/g). Students and office worker were the main consumers of PCPs; however, among all occupation groups, the daily exposure dose of PCPs for workers was highest (mean = 0.0004, 0.0002, 0.0009 μg/kg bw/day for DEP (diethyl phthalate), DBP, and DEHP, respectively). The cumulative indices of PAEs' exposure revealed that the level of ERα and ERβ binding and AR anti-androgenic effects in workers was respectively 0.4935, 0.0186, and 0.2411 μg/kg bw/day. The risk index (HITDI and HIRfDs) of DEP, DBP, and DEHP was lower than their corresponding reference value (hazard index <1), but using PCPs may cause potential health risks. Therefore, we should pay attention to the adverse effects of PAEs on female reproductive functioning, especially the cumulative exposure of females of childbearing age.
Collapse
Affiliation(s)
- Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Yang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xue Song
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
31
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
32
|
Liang Y, Besch-Williford C, Hyder SM. The estrogen receptor beta agonist liquiritigenin enhances the inhibitory effects of the cholesterol biosynthesis inhibitor RO 48-8071 on hormone-dependent breast-cancer growth. Breast Cancer Res Treat 2022; 192:53-63. [PMID: 35037188 DOI: 10.1007/s10549-021-06487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Most hormone-dependent human breast cancers develop resistance to anti-hormone therapy over time. Our goal was to identify novel treatment strategies to avoid this drug resistance and thereby control hormone-dependent breast cancer. METHODS Sulforhodamine B assays were used to measure viability of cultured human breast-cancer cells. BT-474 cell tumor xenografts in nude mice were used to evaluate tumor growth. Immunohistochemistry was used to assess estrogen-receptor and angiogenesis-marker expression, as well as apoptosis, in tumor-xenograft tissues. RESULTS MCF-7 and BT-474 breast-cancer cells treated with either RO 48-8071 <[4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate] [RO]; a small-molecule inhibitor of oxidosqualene cyclase, a key enzyme in cholesterol biosynthesis> or liquiritigenin [LQ; an estrogen receptor (ER) β agonist] exhibited significantly reduced viability in vitro. RO + LQ treatment further significantly reduced cell viability. Administration of RO, LQ, or RO + LQ significantly inhibited growth of BT-474 tumor xenografts in vivo. RO, LQ, or RO + LQ reduced ERα but induced ER β expression in tumor xenografts. Both compounds significantly reduced angiogenesis-marker expression and increased apoptosis in tumor xenografts; use of RO + LQ significantly enhanced the effects observed with a single agent. CONCLUSION The ERβ ligand LQ significantly enhanced the inhibition of breast-cancer cell viability and tumor-xenograft growth by RO. The anti-tumor properties of RO may in part be due to an off-target effect that reduces ERα and increases ERβ, the latter of which can then interact with LQ to promote anti-proliferative effects. The RO + LQ combination may have value when considering novel treatment strategies for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | | - Salman M Hyder
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA. .,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
33
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
34
|
Song D, He H, Indukuri R, Huang Z, Stepanauskaite L, Sinha I, Haldosén LA, Zhao C, Williams C. ERα and ERβ Homodimers in the Same Cellular Context Regulate Distinct Transcriptomes and Functions. Front Endocrinol (Lausanne) 2022; 13:930227. [PMID: 35872983 PMCID: PMC9299245 DOI: 10.3389/fendo.2022.930227] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The two estrogen receptors ERα and ERβ are nuclear receptors that bind estrogen (E2) and function as ligand-inducible transcription factors. They are homologues and can form dimers with each other and bind to the same estrogen-response element motifs in the DNA. ERα drives breast cancer growth whereas ERβ has been reported to be anti-proliferative. However, they are rarely expressed in the same cells, and it is not fully investigated to which extent their functions are different because of inherent differences or because of different cellular context. To dissect their similarities and differences, we here generated a novel estrogen-dependent cell model where ERα homodimers can be directly compared to ERβ homodimers within the identical cellular context. By using CRISPR-cas9 to delete ERα in breast cancer MCF7 cells with Tet-Off-inducible ERβ expression, we generated MCF7 cells that express ERβ but not ERα. MCF7 (ERβ only) cells exhibited regulation of estrogen-responsive targets in a ligand-dependent manner. We demonstrated that either ER was required for MCF7 proliferation, but while E2 increased proliferation via ERα, it reduced proliferation through a G2/M arrest via ERβ. The two ERs also impacted migration differently. In absence of ligand, ERβ increased migration, but upon E2 treatment, ERβ reduced migration. E2 via ERα, on the other hand, had no significant impact on migration. RNA sequencing revealed that E2 regulated a transcriptome of around 800 genes via each receptor, but over half were specific for either ERα or ERβ (417 and 503 genes, respectively). Functional gene ontology enrichment analysis reinforced that E2 regulated cell proliferation in opposite directions depending on the ER, and that ERβ specifically impacted extracellular matrix organization. We corroborated that ERβ bound to cis-regulatory chromatin of its unique proposed migration-related direct targets ANXA9 and TFAP2C. In conclusion, we demonstrate that within the same cellular context, the two ERs regulate cell proliferation in the opposite manner, impact migration differently, and each receptor also regulates a distinct set of target genes in response to E2. The developed cell model provides a novel and valuable resource to further complement the mechanistic understanding of the two different ER isoforms.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan He
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Public Health, Jilin University, Changchun, China
| | - Rajitha Indukuri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaite
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Indranil Sinha
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
- *Correspondence: Cecilia Williams,
| |
Collapse
|
35
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
36
|
Flores VA, Pal L, Manson JE. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr Rev 2021; 42:720-752. [PMID: 33858012 DOI: 10.1210/endrev/bnab011] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Hormone therapy (HT) is an effective treatment for menopausal symptoms, including vasomotor symptoms and genitourinary syndrome of menopause. Randomized trials also demonstrate positive effects on bone health, and age-stratified analyses indicate more favorable effects on coronary heart disease and all-cause mortality in younger women (close proximity to menopause) than in women more than a decade past menopause. In the absence of contraindications or other major comorbidities, recently menopausal women with moderate or severe symptoms are appropriate candidates for HT. The Women's Health Initiative (WHI) hormone therapy trials-estrogen and progestin trial and the estrogen-alone trial-clarified the benefits and risks of HT, including how the results differed by age. A key lesson from the WHI trials, which was unfortunately lost in the posttrial cacophony, was that the risk:benefit ratio and safety profile of HT differed markedly by clinical characteristics of the participants, especially age, time since menopause, and comorbidity status. In the present review of the WHI and other recent HT trials, we aim to provide readers with an improved understanding of the importance of the timing of HT initiation, type and route of administration, and of patient-specific considerations that should be weighed when prescribing HT.
Collapse
Affiliation(s)
- Valerie A Flores
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Hirao-Suzuki M. Estrogen Receptor β as a Possible Double-Edged Sword Molecule in Breast Cancer: A Mechanism of Alteration of Its Role by Exposure to Endocrine-Disrupting Chemicals. Biol Pharm Bull 2021; 44:1594-1597. [PMID: 34719637 DOI: 10.1248/bpb.b21-00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen is essential for the growth and development of mammary glands and its signaling is associated with breast cancer growth. Estrogen can exert physiological actions via estrogen receptors α/β (ERα/β). There is experimental evidence suggesting that in ERα/β-positive breast cancer, ERα promotes tumor cell proliferation and ERβ inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth. Therefore, ERβ is attracting attention as a potential tumor suppressor, and as a biomarker and therapeutic target in the ERα/β-positive breast cancer. Based on this information, we have hypothesized that some endocrine-disrupting chemicals (EDCs) that can perturb the balance between ERα and ERβ expression levels in breast cancer cells might have effects on the breast cancer proliferation (i.e., down-regulation of the α-type of ER). We have recently reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, in ERα/β-positive human breast cancer significantly down-regulates ERα expression, yet stimulates cell proliferation through the activation of ERβ-mediated transcription. These results support our hypothesis by demonstrating that exposure to MBP altered the functional role of ERβ in breast cancer cells from suppressor to promoter. In contrast, some EDCs, such as Δ9-tetrahydrocannabinol and bisphenol AF, can exhibit anti-estrogenic effects through up-regulation of ERβ expression without affecting the ERα expression levels. However, there is no consensus on the correlation between ERβ expression levels and clinical prognosis, which might be due to differences in exposed chemicals. Therefore, elucidating the exposure effects of EDCs can reveal the reason for inconsistent functional role of ERβ in ERα/β-positive breast cancer.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
38
|
Kumar S, Freelander A, Lim E. Type 1 Nuclear Receptor Activity in Breast Cancer: Translating Preclinical Insights to the Clinic. Cancers (Basel) 2021; 13:4972. [PMID: 34638457 PMCID: PMC8507977 DOI: 10.3390/cancers13194972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The nuclear receptor (NR) family of transcription factors is intimately associated with the development, progression and treatment of breast cancer. They are used diagnostically and prognostically, and crosstalk between nuclear receptor pathways and growth factor signalling has been demonstrated in all major subtypes of breast cancer. The majority of breast cancers are driven by estrogen receptor α (ER), and anti-estrogenic therapies remain the backbone of treatment, leading to clinically impactful improvements in patient outcomes. This serves as a blueprint for the development of therapies targeting other nuclear receptors. More recently, pivotal findings into modulating the progesterone (PR) and androgen receptors (AR), with accompanying mechanistic insights into NR crosstalk and interactions with other proliferative pathways, have led to clinical trials in all of the major breast cancer subtypes. A growing body of evidence now supports targeting other Type 1 nuclear receptors such as the glucocorticoid receptor (GR), as well as Type 2 NRs such as the vitamin D receptor (VDR). Here, we reviewed the existing preclinical insights into nuclear receptor activity in breast cancer, with a focus on Type 1 NRs. We also discussed the potential to translate these findings into improving patient outcomes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| | - Allegra Freelander
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| | - Elgene Lim
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia; (A.F.); (E.L.)
- Garvan Institute of Medical Research, University of New South Wales, Darlinghurst 2010, Australia
| |
Collapse
|
39
|
Cao S, Lu S, Zhou J, Zhu Z, Li W, Su J, Yu H, Du W, Cui L, Dong Y, Qian Y, Wu M, Wei P. Association between dietary patterns and risk of breast cancer in Chinese female population: a latent class analysis. Public Health Nutr 2021; 24:4918-4928. [PMID: 33256868 PMCID: PMC11093712 DOI: 10.1017/s1368980020004826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine if specific dietary patterns are associated with breast cancer (BC) risk in Chinese women. DESIGN Latent class analysis (LCA) was performed to identify generic dietary patterns based on daily food-frequency data. SETTING The Chinese Wuxi Exposure and Breast Cancer Study (2013-2014). PARTICIPANTS A population-based case-control study (695 cases, 804 controls). RESULTS Four dietary patterns were identified, Prudent, Chinese traditional, Western and Picky; the proportion in the controls and cases was 0·30/0·32/0·16/0·23 and 0·29/0·26/0·11/0·33, respectively. Women in Picky class were characterised by higher extreme probabilities of non-consumption of specific foods, the highest probabilities of consumption of pickled foods and the lowest probabilities of consumption of cereals, soya foods and nuts. Compared with Prudent class, Picky class was associated with a higher risk (OR = 1·42, 95 % CI 1·06, 1·90), while the relevant association was only in post- (OR = 1·44, 95 % CI 1·01, 2·05) but not in premenopausal women. The Western class characterised by high-protein, high-fat and high-sugar foods, and the Chinese traditional class characterised by typical consumption of soya foods and white meat over red meat, both of them showed no difference in BC risk compared with Prudent class did. CONCLUSIONS LCA captures the heterogeneity of individuals embedded in the population and could be a useful approach in the study of dietary pattern and disease. Our results indicated that the Picky class might have a positive association with the risk of BC.
Collapse
Affiliation(s)
- Shang Cao
- Department of Epidemiology and Health Statistics, Southeast University, Dingjiaqiao Road 87, Nanjing210009, Jiangsu, China
| | - Shurong Lu
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jinyi Zhou
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zheng Zhu
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wei Li
- Department of Epidemiology and Health Statistics, Southeast University, Dingjiaqiao Road 87, Nanjing210009, Jiangsu, China
| | - Jian Su
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hao Yu
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wencong Du
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lan Cui
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yunqiu Dong
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Department of Health Promotion and Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yun Qian
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Department of Health Promotion and Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ming Wu
- Department of Epidemiology and Health Statistics, Southeast University, Dingjiaqiao Road 87, Nanjing210009, Jiangsu, China
- Department of Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, Southeast University, Dingjiaqiao Road 87, Nanjing210009, Jiangsu, China
| |
Collapse
|
40
|
Tan PY, Teng KT. Role of dietary fat on obesity-related postmenopausal breast cancer: insights from mouse models and methodological considerations. Breast Cancer 2021; 28:556-571. [PMID: 33687609 DOI: 10.1007/s12282-021-01233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The increasing incidence rate of breast cancer in the last few decades is known to be linked to the upward trend of obesity prevalence worldwide. The consumption of high-fat diet in particular has been correlated with postmenopausal breast cancer risk. The underlying mechanisms, using suitable and reliable experimental mouse model, however, is lacking. The current review aims to discuss the evidence available from mouse models on the effects of dietary fats intake on postmenopausal breast cancer. We will further discuss the biochemical mechanisms involved in the occurrence of postmenopausal breast cancer. In addition, the methodological considerations and their limitations in obesity-related postmenopausal breast cancer, such as choice of mouse models and breast cancer cell lines as well as the study duration will be reviewed. The current review will provide a platform for further development of new xenograft models which may offer the opportunity to investigate the mechanisms of postmenopausal breast cancer in a greater detail.
Collapse
Affiliation(s)
- Pei Yee Tan
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kim Tiu Teng
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
41
|
Pratap UP, Sareddy GR, Liu Z, Venkata PP, Liu J, Tang W, Altwegg KA, Ebrahimi B, Li X, Tekmal RR, Viswanadhapalli S, McHardy S, Brenner AJ, Vadlamudi RK. Histone deacetylase inhibitors enhance estrogen receptor beta expression and augment agonist-mediated tumor suppression in glioblastoma. Neurooncol Adv 2021; 3:vdab099. [PMID: 34485908 PMCID: PMC8412056 DOI: 10.1093/noajnl/vdab099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal primary brain tumors. Estrogen receptor β (ESR2/ERβ) function as a tumor suppressor in GBM, however, ERβ expression is commonly suppressed during glioma progression. In this study, we examined whether drugs that reverse epigenetic modifications will enhance ERβ expression and augment ERβ agonist-mediated tumor suppression. METHODS We tested the utility of epigenetic drugs which act as an inhibitor of histone deacetylases (HDACs), histone methylases, and BET enzymes. Mechanistic studies utilized RT-qPCR, chromatin immunoprecipitation (ChIP), and western blotting. Cell viability, apoptosis, colony formation, and invasion were measured using in vitro assays. An orthotopic GBM model was used to test the efficacy of in vivo. RESULTS Of all inhibitors tested, HDACi (panobinostat and romidepsin) showed the potential to increase the expression of ERβ in GBM cells. Treatment with HDACi uniquely upregulated ERβ isoform 1 expression that functions as a tumor suppressor but not ERβ isoform 5 that drives oncogenic functions. Further, combination therapy of HDACi with the ERβ agonist, LY500307, potently reduced cell viability, invasion, colony formation, and enhanced apoptosis. Mechanistic studies showed that HDACi induced ERβ is functional, as it enhanced ERβ reporter activities and ERβ target genes expression. ChIP analysis confirmed alterations in the histone acetylation at the ERβ and its target gene promoters. In orthotopic GBM model, combination therapy of panobinostat and LY500307 enhanced survival of tumor-bearing mice. CONCLUSIONS Our results suggest that the combination therapy of HDACi and LY500307 provides therapeutic utility in overcoming the suppression of ERβ expression that commonly occurs in GBM progression.
Collapse
Affiliation(s)
- Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Stanton McHardy
- Department of Chemistry, University of Texas San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
42
|
Selective activation of the estrogen receptor-β by the polysaccharide from Cynanchum wilfordii alleviates menopausal syndrome in ovariectomized mice. Int J Biol Macromol 2020; 165:1029-1037. [PMID: 32991896 DOI: 10.1016/j.ijbiomac.2020.09.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
The menopausal syndrome caused by rapid changes in hormone levels greatly influences the quality of life of women. Though hormone replacement therapy (HRT) is widely used to treat the menopausal syndrome, it exhibits many side effects, including the risk of thrombosis, cardiovascular diseases, and increased incidence of breast cancer; thus, diversifying the interest for phytotherapy-based materials as alternatives to HRT. Here, we isolated a crude polysaccharide fraction (CWPF) from Cynanchum wilfordii root that alleviated the ovariectomy-induced uterine atrophy and bone loss without changes in plasma estradiol concentration in mice. Increased plasma levels of follicle-stimulating hormone (FSH), alkaline phosphatase (ALP), osteocalcin (OC) in ovariectomized mice were also reduced to normal levels by CWPF administration. We found that the inhibitory effects of CWPF on menopausal symptoms were mediated by the estrogen receptor β (ER-β) specific activation, not ER-α. Moreover, CWPF treatment suppressed the phosphorylation of Akt, suggesting that CWPF alleviates post-menopausal symptoms by regulating ER-β related Akt signaling pathway. These results demonstrate that the polysaccharides corresponding to CWPF among the water-soluble extracts of CW could be used as a beneficial herbal alternative for the development of therapeutic agents to prevent menopausal syndrome in women.
Collapse
|
43
|
Estrogen receptor β regulates AKT activity through up-regulation of INPP4B and inhibits migration of prostate cancer cell line PC-3. Proc Natl Acad Sci U S A 2020; 117:26347-26355. [PMID: 33020300 DOI: 10.1073/pnas.2007160117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss of the tumor suppressor, PTEN, is one of the most common findings in prostate cancer (PCa). This loss leads to overactive Akt signaling, which is correlated with increased metastasis and androgen independence. However, another tumor suppressor, inositol-polyphosphate 4-phosphatase type II (INPP4B), can partially compensate for the loss of PTEN. INPP4B is up-regulated by androgens, and this suggests that androgen-deprivation therapy (ADT) would lead to hyperactivity of AKT. However, in the present study, we found that in PCa, samples from men treated with ADT, ERβ, and INPP4B expression were maintained in some samples. To investigate the role of ERβ1 in regulation of INPPB, we engineered the highly metastatic PCa cell line, PC3, to express ERβ1. In these cells, INPP4B was induced by ERβ ligands, and this induction was accompanied by inhibition of Akt activity and reduction in cell migration. These findings reveal that, in the absence of androgens, ERβ1 induces INPP4B to dampen AKT signaling. Since the endogenous ERβ ligand, 3β-Adiol, is lost upon long-term ADT, to obtain the beneficial effects of ERβ1 on AKT signaling, an ERβ agonist should be added along with ADT.
Collapse
|
44
|
Petrine JCP, Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 2020; 35:180-197. [PMID: 32780464 DOI: 10.1002/ptr.6816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Functional foods have nutritional properties and organic functions, which are beneficial to health. Certain types of functional food components are so-called phytoestrogens, non-steroidal compounds derived from the metabolism of precursors contained in plants, which originate secondary metabotypes known to induce biological responses and by mimicry or modulating the action of endogenous estrogen. These molecules are involved in several physiological and pathological processes related to reproduction, bone remodeling, skin, cardiovascular, nervous, immune systems, and metabolism. This review aimed to present an overview of phytoestrogens regarding their chemical structure, actions, and effects in the organism given several pathologies. Several studies have demonstrated beneficial phytoestrogen actions, such as lipid profile improvement, cognitive function, menopause, oxidative stress, among others. Phytoestrogens effects are not completely elucidated, being necessary future research to understand the exact action mechanisms, whether they are via estrogen receptor or whether other hidden mechanisms produce these effects. Thus, this review makes a general approach to the phytoestrogen actions, beneficial effects, risk and limitations. However, the complexities of biological effects after ingestion of phytoestrogens and the differences in their metabolism and bioavailability indicate that interpretation of either risk or benefits needs to be made with caution.
Collapse
Affiliation(s)
- Jéssica C P Petrine
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brasil
| | | |
Collapse
|
45
|
Roles of estrogen receptor α and β in the regulation of proliferation in endometrial carcinoma. Pathol Res Pract 2020; 216:153149. [PMID: 32853964 DOI: 10.1016/j.prp.2020.153149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Endometrial carcinoma (EC), an estrogen-dependent gynecological malignancy, is prevalent worldwide. Estrogen receptor α (ERα) and estrogen receptor β (ERβ) are two main estrogen receptor isoforms, which mediate estrogen-induced proliferation in EC. However, the dynamic changes of ERα and ERβ subtype expression and their functions on proliferation in EC remain elusive. In this study, we aimed to investigate the expression of ERα and ERβ in para-tumor eutopic endometrium, endometrial atypical hyperplasia and EC by immunohistochemistry and then analyse their clinical significance. Subsequently, Ishikawa cells with ERα or ERβ knockdown by lentivirus transfection were used to explore the relationship between ERα/ERβ and cell proliferation, and preliminarily evaluate whether metformin's inhibitory effect on estrogen-induced cell proliferation was mediated by ERα and ERβ. We found that the expression of ERα and ERβ were markedly changed in endometrial hyperplasia and EC compared with that in para-tumor eutopic endometrium and exhibited different expression trends. Through further analysis, we discovered that ERα presented higher expression in endometrial atypical hyperplasia and early stage of EC than that in para-tumor eutopic endometrium, while the expression of ERβ gradually decreased from para-tumor eutopic endometrium to EC. Additionally, the cell cycle-related protein, CyclinD1 was gradually increased but p21 decreased. Furthermore, knockdown of ERα and ERβ severally in Ishikawa cells either inhibited or promoted estrogen-induced cell proliferation through regulating CyclinD1 and p21 expression. Meanwhile, the inhibitory effect of metformin on estrogen-induced cell proliferation was respectively blunted or partly reversed by knockdown of ERα or ERβ. Altogether, ERα and ERβ have different expression patterns in the progression of EC either facilitating or suppressing cell proliferation through regulating the expression of CyclinD1 and p21 in EC cells, and may also mediate the inhibitory effect of metformin on estrogen-induced EC cells proliferation.
Collapse
|
46
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|
47
|
Hazarika J, Ganguly M, Borgohain G, Baruah I, Sarma S, Bhuyan P, Mahanta R. Endocrine disruption: molecular interactions of chlorpyrifos and its degradation products with estrogen receptor. Struct Chem 2020. [DOI: 10.1007/s11224-020-01562-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Bernardo C, Santos J, Costa C, Tavares A, Amaro T, Marques I, Gouveia MJ, Félix V, Afreixo V, Brindley PJ, Costa JM, Amado F, Helguero L, Santos LL. Estrogen receptors in urogenital schistosomiasis and bladder cancer: Estrogen receptor alpha-mediated cell proliferation. Urol Oncol 2020; 38:738.e23-738.e35. [PMID: 32507545 DOI: 10.1016/j.urolonc.2020.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023]
Abstract
Estrogen-like metabolites have been identified in S. haematobium, the helminth parasite that causes urogenital schistosomiasis (UGS) and in patients´ blood and urine during UGS. Estrogen receptor (ER) activation is enriched in the luminal molecular subtype bladder cancer (BlaCa). To date, the significance of ER to these diseases remains elusive. We evaluated ERα and ERβ expression in UGS-related BlaCa (n = 27), UGS-related non-malignant lesions (n = 35), and noninfected BlaCa (n = 80). We investigated the potential of ERα to recognize S. haematobium-derived metabolites by docking and molecular dynamics simulations and studied ERα modulation in vitro using 3 BlaCa cell lines, T24, 5637 and HT1376. ERα was expressed in tumor and stromal cells in approximately 20% noninfected cases and in 30% of UGS-related BlaCa, predominantly in the epithelial cells. Overall, ERα expression was associated with features of tumor aggressiveness such as high proliferation and p53 positive expression. ERα expression correlated with presence of schistosome eggs. ERβ was widely expressed in both cohorts but weaker in UGS-related cases. molecular dynamics simulations of the 4 most abundant S. haematobium-derived metabolites revealed that smaller metabolites have comparable affinity for the ERα active state than 17β-estradiol, while the larger metabolites present higher affinity. Our in vitro findings suggested that ERα activation promotes proliferation in ERα expressing BlaCa cells and that this can be reverted with anti-estrogenic therapy. In summary, we report differential ER expression between UGS-related BlaCa and noninfected BlaCa and provide evidence supporting a role of active ERα during UGS and UGS-induced carcinogenesis.
Collapse
Affiliation(s)
- Carina Bernardo
- Hormones and Cancer Lab, Department of Medical Sciences, Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Júlio Santos
- Urology Department, Hospital Américo Boavida, Luanda, Angola; Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal
| | - Céu Costa
- Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center (FP-ENAS/CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Igor Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria João Gouveia
- Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal; Department of Infectious Diseases, R&D Unit, INSA-National Health Institute Dr. Ricardo Jorge, Porto, Portugal
| | - Vítor Félix
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Vera Afreixo
- Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, Aveiro, Portugal
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - José Manuel Costa
- Center for the Study of Animal Science, CECA/ICETA, University of Porto, Porto, Portugal; Department of Infectious Diseases, R&D Unit, INSA-National Health Institute Dr. Ricardo Jorge, Porto, Portugal
| | - Francisco Amado
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luisa Helguero
- Hormones and Cancer Lab, Department of Medical Sciences, Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics, Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| |
Collapse
|
49
|
Chaurasiya S, Widmann S, Botero C, Lin CY, Gustafsson JÅ, Strom AM. Estrogen receptor β exerts tumor suppressive effects in prostate cancer through repression of androgen receptor activity. PLoS One 2020; 15:e0226057. [PMID: 32413024 PMCID: PMC7228066 DOI: 10.1371/journal.pone.0226057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor β (ERβ) was first identified in the rodent prostate and is abundantly expressed in human and rodent prostate epithelium, stroma, immune cells and endothelium of the blood vessels. In the prostates of mice with inactivated ERβ, mutant phenotypes include epithelial hyperplasia and increased expression of androgen receptor (AR)-regulated genes, most of which are also upregulated in prostate cancer (PCa). ERβ is expressed in both basal and luminal cells in the prostate while AR is expressed in luminal but not in the basal cell layer which harbors the prostate stem cells. To investigate the mechanisms of action of ERβ and its potential cross-talk with AR, we used RNA-seq to study the effects of estradiol or the synthetic ligand, LY3201, in AR-positive LNCaP PCa cells which had been engineered to express ERβ. Transcriptomic analysis indicated relatively few changes in gene expression with ERβ overexpression, but robust responses following ligand treatments. There is significant overlap of responsive genes between the two ligands, estradiol and LY3201 as well as ligand-specific alterations. Gene set analysis of down-regulated genes identified an enrichment of androgen-responsive genes, such as FKBP5, CAMKK2, and TBC1D4. Consistently, AR transcript, protein levels, and transcriptional activity were down-regulated following ERβ activation. In agreement with this, we find that the phosphorylation of the CAMKK2 target, AMPK, was repressed by ligand-activated ERβ. These findings suggest that ERβ-mediated signaling pathways are involved in the negative regulation of AR expression and activity, thus supporting a tumor suppressive role for ERβ in PCa.
Collapse
Affiliation(s)
- Surendra Chaurasiya
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Scott Widmann
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Cindy Botero
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Chin-Yo Lin
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- Department of BioSciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden
| | - Anders M. Strom
- Department of Biology and Biochemistry, University of Houston, Center for Nuclear Receptors and Cell Signaling, Science & Engineering Research Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Liu Y, Ma H, Wang Y, Du X, Yao J. Cystatin SN Affects Cell Proliferation by Regulating the ERα/PI3K/AKT/ERα Loopback Pathway in Breast Cancer. Onco Targets Ther 2019; 12:11359-11369. [PMID: 31920327 PMCID: PMC6934116 DOI: 10.2147/ott.s234328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023] Open
Abstract
Background Cystatin SN (CST1) has been reported to act as an oncogene in cancers, but its underlying mechanism remains unclear. Methods We performed Western blotting analyses to observe protein expression and conducted transwell invasion, wound healing, and colony formation assays to assess cell invasion, migration, and proliferation, respectively. We also performed cell cycle analyses by flow cytometry to determine the role of CST1 in the cell cycle. In vivo experiments used subcutaneous tumor models in BALB/c-nu athymic female mice to evaluate the effect of CST1 on tumor growth. Results Western blotting analyses showed that CST1 was upregulated in ER+ breast cancer cells such as MCF7, T47D, and BT474. CST1 knockdown led to slower cell growth and inhibited the G1 to S phase transition in ER+ breast cancer cells. In vivo experiments showed that CST1 deletion inhibited tumor growth, and led to decreased expression of estrogen receptor α (ERα) and p-AKT. In vitro experiments showed that the over-expression of CST1 led to the upregulation of ERα, and inhibition of CST1 inhibited the expression of ERα. Western blotting analyses showed that CST1 regulated the activity of the PI3K/AKT signaling pathway in breast cancer cells. We confirmed that CST1 acted as an oncogene in ER+ breast cancer by regulating the ERα/PI3K/AKT/ERα loopback pathway. Conclusion CST1 acts as an oncogene in ER+ breast cancer, and CST1 contributes to cancer development by regulating the ERα/PI3K/AKT/ERα loopback pathway in ER+ breast cancer. Our findings indicate that CST1 could be a significant therapeutic target for ER+ breast cancer patients. Our discovery should inspire further studies on the role of CST1 in cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|