1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
3
|
Pierpont CL, Baroch JJ, Church MJ, Miller SR. Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy. THE ISME JOURNAL 2024; 18:wrae184. [PMID: 39319368 PMCID: PMC11456837 DOI: 10.1093/ismejo/wrae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients. More thermotolerant strains do have smaller genomes, but genome reduction is associated with a decrease in community richness and metabolic diversity, rather than with cell size. Horizontal gene transfer played only a limited role during Synechococcus evolution, but, the most thermotolerant strains have acquired a Thermus tRNA modification enzyme that may stabilize translation at high temperatures. Although nucleotide base composition was not associated with thermotolerance, we found a general replacement of aspartate with glutamate, as well as a dramatic remodeling of amino acid composition at the highest temperatures that substantially differed from previous predictions. We conclude that Synechococcus A/B genome diversification largely does not conform to the standard view of temperature adaptation. In addition, carbon fixation was more thermolabile than photosynthetic oxygen evolution for the most thermotolerant strains compared with less tolerant lineages. This suggests that increased flow of reducing power generated during the light reactions to an electron sink(s) beyond carbon dioxide has emerged during temperature adaptation of these bacteria.
Collapse
Affiliation(s)
- C Logan Pierpont
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Jacob J Baroch
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Matthew J Church
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. #4824, Missoula, MT 59812, United States
| |
Collapse
|
4
|
Kurokawa M, Higashi K, Yoshida K, Sato T, Maruyama S, Mori H, Kurokawa K. Metagenomic Thermometer. DNA Res 2023; 30:dsad024. [PMID: 37940329 PMCID: PMC10660216 DOI: 10.1093/dnares/dsad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Various microorganisms exist in environments, and each of them has its optimal growth temperature (OGT). The relationship between genomic information and OGT of each species has long been studied, and one such study revealed that OGT of prokaryotes can be accurately predicted based on the fraction of seven amino acids (IVYWREL) among all encoded amino-acid sequences in its genome. Extending this discovery, we developed a 'Metagenomic Thermometer' as a means of predicting environmental temperature based on metagenomic sequences. Temperature prediction of diverse environments using publicly available metagenomic data revealed that the Metagenomic Thermometer can predict environmental temperatures with small temperature changes and little influx of microorganisms from other environments. The accuracy of the Metagenomic Thermometer was also confirmed by a demonstration experiment using an artificial hot water canal. The Metagenomic Thermometer was also applied to human gut metagenomic samples, yielding a reasonably accurate value for human body temperature. The result further suggests that deep body temperature determines the dominant lineage of the gut community. Metagenomic Thermometer provides a new insight into temperature-driven community assembly based on amino-acid composition rather than microbial taxa.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- Genome Evolution Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Higashi
- Genome Evolution Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Information, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Keisuke Yoshida
- Department of Biological Information, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tomohiko Sato
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shigenori Maruyama
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Genome Diversity Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Information, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Information, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
5
|
Lamolle G, Simón D, Iriarte A, Musto H. Main Factors Shaping Amino Acid Usage Across Evolution. J Mol Evol 2023:10.1007/s00239-023-10120-5. [PMID: 37264211 DOI: 10.1007/s00239-023-10120-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.
Collapse
Affiliation(s)
- Guillermo Lamolle
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Diego Simón
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Oldrieve GR, Malacart B, López-Vidal J, Matthews KR. The genomic basis of host and vector specificity in non-pathogenic trypanosomatids. Biol Open 2022; 11:bio059237. [PMID: 35373253 PMCID: PMC9099014 DOI: 10.1242/bio.059237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma theileri, a non-pathogenic parasite of bovines, has a predicted surface protein architecture that likely aids survival in its mammalian host. Their surface proteins are encoded by genes which account for ∼10% of their genome. A non-pathogenic parasite of sheep, Trypanosoma melophagium, is transmitted by the sheep ked and is closely related to T. theileri. To explore host and vector specificity between these species, we sequenced the T. melophagium genome and transcriptome and an annotated draft genome was assembled. T. melophagium was compared to 43 kinetoplastid genomes, including T. theileri. T. melophagium and T. theileri have an AT biased genome, the greatest bias of publicly available trypanosomatids. This trend may result from selection acting to decrease the genomic nucleotide cost. The T. melophagium genome is 6.3Mb smaller than T. theileri and large families of proteins, characteristic of the predicted surface of T. theileri, were found to be absent or greatly reduced in T. melophagium. Instead, T. melophagium has modestly expanded protein families associated with the avoidance of complement-mediated lysis. We propose that the contrasting genomic features of these species is linked to their mode of transmission from their insect vector to their mammalian host. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Guy R. Oldrieve
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | | | | |
Collapse
|
7
|
Arbab S, Ullah H, Khan MIU, Khattak MNK, Zhang J, Li K, Hassan IU. Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J Basic Microbiol 2021; 62:95-108. [PMID: 34878177 DOI: 10.1002/jobm.202100529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/07/2022]
Abstract
Hot springs ecosystem is the most ancient continuously inhabited ecosystem on earth which harbors diverse thermophilic bacteria and archaea distributed worldwide. Life in extreme environments is very challenging so there is a great potential biological dark matter and their adaptation to harsh environments eventually producing thermostable enzymes which are very vital for the welfare of mankind. There is an enormous need for a new generation of stable enzymes that can endure harsh conditions in industrial processes and can either substitute or complement conventional chemical processes. Here, we review at the variety and distribution of thermophilic microbes, as well as the different thermostable enzymes that help them survive at high temperatures, such as proteases, amylases, lipases, cellulases, pullulanase, xylanases, and DNA polymerases, as well as their special properties, such as high-temperature stability. We have documented the novel isolated thermophilic and hyperthermophilic microorganisms, as well as the discovery of their enzymes, demonstrating their immense potential in the scientific community and in industry.
Collapse
Affiliation(s)
- Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hanif Ullah
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad I U Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Muhammad N K Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ka Li
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University, Manshera, Pakistan
| |
Collapse
|
8
|
Mohsin I, Zhang LQ, Li DC, Papageorgiou AC. Crystal structure of a Cu,Zn superoxide dismutase from the thermophilic fungus Chaetomium thermophilum. Protein Pept Lett 2021; 28:1043-1053. [PMID: 33726638 DOI: 10.2174/0929866528666210316104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thermophilic fungi have recently emerged as a promising source of thermostable enzymes. Superoxide dismutases are key antioxidant metalloenzymes with promising therapeutic effects in various diseases, both acute and chronic. However, structural heterogeneity and low thermostability limit their therapeutic efficacy. OBJECTIVE Although several studies from hypethermophilic superoxide dismutases (SODs) have been reported, information about Cu,Zn-SODs from thermophilic fungi is scarce. Chaetomium thermophilum is a thermophilic fungus that could provide proteins with thermophilic properties. METHOD The enzyme was expressed in Pichia pastoris cells and crystallized using the vapor-diffusion method. X-ray data were collected, and the structure was determined and refined to 1.56 Å resolution. Structural analysis and comparisons were carried out. RESULTS The presence of 8 molecules (A through H) in the asymmetric unit resulted in four different interfaces. Molecules A and F form the typical homodimer which is also found in other Cu,Zn-SODs. Zinc was present in all subunits of the structure while copper was found in only four subunits with reduced occupancy (C, D, E and F). CONCLUSION The ability of the enzyme to form oligomers and the elevated Thr:Ser ratio may be contributing factors to its thermal stability. Two hydrophobic residues that participate in interface formation and are not present in other CuZn-SODs may play a role in the formation of new interfaces and the oligomerization process. The CtSOD crystal structure reported here is the first Cu,Zn-SOD structure from a thermophilic fungus.
Collapse
Affiliation(s)
- Imran Mohsin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20521. Finland
| | - Li-Qing Zhang
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018. China
| | - Duo-Chuan Li
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018. China
| | | |
Collapse
|
9
|
Wojciechowski JW, Kotulska M. PATH - Prediction of Amyloidogenicity by Threading and Machine Learning. Sci Rep 2020; 10:7721. [PMID: 32382058 PMCID: PMC7206081 DOI: 10.1038/s41598-020-64270-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Amyloids are protein aggregates observed in several diseases, for example in Alzheimer's and Parkinson's diseases. An aggregate has a very regular beta structure with a tightly packed core, which spontaneously assumes a steric zipper form. Experimental methods enable studying such peptides, however they are tedious and costly, therefore inappropriate for genomewide studies. Several bioinformatic methods have been proposed to evaluate protein propensity to form an amyloid. However, the knowledge of aggregate structures is usually not taken into account. We propose PATH (Prediction of Amyloidogenicity by THreading) - a novel structure-based method for predicting amyloidogenicity and show that involving available structures of amyloidogenic fragments enhances classification performance. Experimental aggregate structures were used in templatebased modeling to recognize the most stable representative structural class of a query peptide. Several machine learning methods were then applied on the structural models, using their energy terms. Finally, we identified the most important terms in classification of amyloidogenic peptides. The proposed method outperforms most of the currently available methods for predicting amyloidogenicity, with its area under ROC curve equal to 0.876. Furthermore, the method gave insight into significance of selected structural features and the potentially most stable structural class of a peptide fragment if subjected to crystallization.
Collapse
Affiliation(s)
- Jakub W Wojciechowski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370, Wrocław, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370, Wrocław, Poland.
| |
Collapse
|
10
|
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol 2019; 10:2708. [PMID: 31824470 PMCID: PMC6883915 DOI: 10.3389/fmicb.2019.02708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host–pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.
Collapse
Affiliation(s)
- Petter Langlete
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Kristian Krabberød
- Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Nasr MA, Dovbeshko GI, Bearne SL, El‐Badri N, Matta CF. Heat Shock Proteins in the “Hot” Mitochondrion: Identity and Putative Roles. Bioessays 2019; 41:e1900055. [DOI: 10.1002/bies.201900055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed A. Nasr
- Department of Chemistry and PhysicsMount Saint Vincent University Halifax Nova Scotia B3M 2J6 Canada
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC)Zewail City of Science and Technology 6th of October City 12588 Egypt
| | - Galina I. Dovbeshko
- Department of Physics of Biological SystemsInstitute of Physics of the National Academy of Sciences of Ukraine Prospekt Nauki 46 Kiev 03039 Ukraine
| | - Stephen L. Bearne
- Department of ChemistryDalhousie University Halifax Nova Scotia B3H 4R2 Canada
- Department of Biochemistry and Molecular BiologyDalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Nagwa El‐Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC)Zewail City of Science and Technology 6th of October City 12588 Egypt
| | - Chérif F. Matta
- Department of Chemistry and PhysicsMount Saint Vincent University Halifax Nova Scotia B3M 2J6 Canada
- Department of ChemistryDalhousie University Halifax Nova Scotia B3H 4R2 Canada
- Department of ChemistrySaint Mary's University Halifax Nova Scotia B3H 3C3 Canada
- Département de chimieUniversité Laval Québec Québec G1V 0A6 Canada
| |
Collapse
|
12
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Seward EA, Kelly S. Selection-driven cost-efficiency optimization of transcripts modulates gene evolutionary rate in bacteria. Genome Biol 2018; 19:102. [PMID: 30064467 PMCID: PMC6066932 DOI: 10.1186/s13059-018-1480-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Most amino acids are encoded by multiple synonymous codons. However, synonymous codons are not used equally, and this biased codon use varies between different organisms. It has previously been shown that both selection acting to increase codon translational efficiency and selection acting to decrease codon biosynthetic cost contribute to differences in codon bias. However, it is unknown how these two factors interact or how they affect molecular sequence evolution. RESULTS Through analysis of 1320 bacterial genomes, we show that bacterial genes are subject to multi-objective selection-driven optimization of codon use. Here, selection acts to simultaneously decrease transcript biosynthetic cost and increase transcript translational efficiency, with highly expressed genes under the greatest selection. This optimization is not simply a consequence of the more translationally efficient codons being less expensive to synthesize. Instead, we show that transfer RNA gene copy number alters the cost-efficiency trade-off of synonymous codons such that, for many species, selection acting on transcript biosynthetic cost and translational efficiency act in opposition. Finally, we show that genes highly optimized to reduce cost and increase efficiency show reduced rates of synonymous and non-synonymous mutation. CONCLUSIONS This analysis provides a simple mechanistic explanation for variation in evolutionary rate between genes that depends on selection-driven cost-efficiency optimization of the transcript. These findings reveal how optimization of resource allocation to messenger RNA synthesis is a critical factor that determines both the evolution and composition of genes.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
14
|
Abstract
Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Fontanillas E, Galzitskaya OV, Lecompte O, Lobanov MY, Tanguy A, Mary J, Girguis PR, Hourdez S, Jollivet D. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages. Genome Biol Evol 2017; 9:279-296. [PMID: 28082607 PMCID: PMC5381640 DOI: 10.1093/gbe/evw298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.
Collapse
Affiliation(s)
- Eric Fontanillas
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Oxana V Galzitskaya
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Odile Lecompte
- CSTB - ICUBE, UMR7357, Faculté de Médecine, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Mikhail Y Lobanov
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Arnaud Tanguy
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Jean Mary
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Peter R Girguis
- Department of Organismic & Evolutionary Biology, Harvard University Biological Laboratories, Cambridge, MA
| | - Stéphane Hourdez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| |
Collapse
|
16
|
Jegousse C, Yang Y, Zhan J, Wang J, Zhou Y. Structural signatures of thermal adaptation of bacterial ribosomal RNA, transfer RNA, and messenger RNA. PLoS One 2017; 12:e0184722. [PMID: 28910383 PMCID: PMC5598986 DOI: 10.1371/journal.pone.0184722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.
Collapse
MESH Headings
- Bacteria/genetics
- Databases, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- RNA Folding/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/drug effects
- RNA, Transfer/chemistry
- RNA, Transfer/drug effects
- Solvents/pharmacology
- Temperature
Collapse
Affiliation(s)
- Clara Jegousse
- UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, Nantes, France
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Yuedong Yang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Seward EA, Kelly S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol 2016; 17:226. [PMID: 27842572 PMCID: PMC5109750 DOI: 10.1186/s13059-016-1087-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. RESULTS Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. CONCLUSIONS Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
19
|
Abstract
The deconstruction of biomass is a pivotal process for the manufacture of target products using microbial cells and their enzymes. But the enzymes that possess a significant role in the breakdown of biomass remain relatively unexplored. Thermophilic microorganisms are of special interest as a source of novel thermostable enzymes. Many thermophilic microorganisms possess properties suitable for biotechnological and commercial use. There is, indeed, a considerable demand for a new generation of stable enzymes that are able to withstand severe conditions in industrial processes by replacing or supplementing traditional chemical processes. This manuscript reviews the pertinent role of thermophilic microorganisms as a source for production of thermostable enzymes, factors afftecting them, recent patents on thermophiles and moreso their wide spectrum applications for commercial and biotechnological use.
Collapse
|
20
|
Chargaff’s Cluster Rule. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
22
|
Xiong H, Yang Y, Hu XP, He YM, Ma BG. Sequence determinants of prokaryotic gene expression level under heat stress. Gene 2014; 551:92-102. [PMID: 25168890 DOI: 10.1016/j.gene.2014.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.
Collapse
Affiliation(s)
- Heng Xiong
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Yang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Pan Hu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Ming He
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Huang Y, Mrázek J. Assessing diversity of DNA structure-related sequence features in prokaryotic genomes. DNA Res 2014; 21:285-97. [PMID: 24408877 PMCID: PMC4060949 DOI: 10.1093/dnares/dst057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches.
Collapse
Affiliation(s)
- Yongjie Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jan Mrázek
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Prabha R, Singh DP, Gupta SK, de Farias ST, Rai A. Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium. Bioinformation 2013; 9:299-308. [PMID: 23559749 PMCID: PMC3607189 DOI: 10.6026/97320630009299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/22/2012] [Indexed: 11/23/2022] Open
Abstract
A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles- Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum growth temperature [OGT] of 55°C. Majority of genomic and proteomic characteristics for this cyanobacterium indicated contrasting features indicating its mesophilic behaviour while the role of mutational biasness and selection pressure is thought to be responsible for high OGT. Contradictory results were obtained for T. elongatus for synonymous codon usage, CvP-bias and amino acid composition with respect to thermophilic behaviour. Calculated J2 index is lowest among all cyanobacterial genomes. Except for proline and termination codons, T. elongatus showed synonymous codon usage pattern which is expected for mesophiles. Results indicated that among cyanobacterial genomes, majority of genomic and proteomic determinants put T. elongatus very close to mesophiles and the whole genome of this organism represents continuous gain of mesophilic rather than thermophilic behavior.
Collapse
Affiliation(s)
- Ratna Prabha
- National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, India
- Department of Biotechnology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Dhananjaya P Singh
- National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, India
| | - Shailendra K Gupta
- CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Kaisarbagh, Lucknow 226001, India
| | | | - Anil Rai
- Indian Agricultural Statistical Research Institute, Indian Council of Agricultural Research, Pusa, New Delhi 110 012, India
| |
Collapse
|
25
|
The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 2012; 7:e46463. [PMID: 23071576 PMCID: PMC3465335 DOI: 10.1371/journal.pone.0046463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022] Open
Abstract
Thermotoga maritima (T. maritima) is a typical thermophile, and its proteome response to environmental temperature changes has yet to be explored. This study aims to uncover the temperature-dependent proteins of T. maritima using comparative proteomic approach. T. maritima was cultured under four temperatures, 60°C, 70°C, 80°C and 90°C, and the bacterial proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, a total of 224 spots, either cytoplasm or membrane, were defined as temperature-dependent. Of these spots, 75 unique bacterial proteins were identified using MALDI TOF/TOF MS. As is well known, the chaperone proteins such as heat shock protein 60 and elongation factor Tu, were up-regulated in abundance due to increased temperature. However, several temperature-dependent proteins of T. maritima responded very differently when compared to responses of the thermophile T. tengcongensis. Intriguingly, a number of proteins involved in central carbohydrate metabolism were significantly up-regulated at higher temperature. Their corresponding mRNA levels were elevated accordingly. The increase in abundance of several key enzymes indicates that a number of central carbohydrate metabolism pathways of T. maritima are activated at higher temperatures.
Collapse
|
26
|
Liu L, Wang L, Zhang Z, Wang S, Chen H. Effect of codon message on xylanase thermal activity. J Biol Chem 2012; 287:27183-8. [PMID: 22707716 DOI: 10.1074/jbc.m111.327577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because the genetic codon is known for degeneracy, its effect on enzyme thermal property is seldom investigated. A dataset was constructed for GH10 xylanase coding sequences and optimal temperatures for activity (T(opt)). Codon contents and relative synonymous codon usages were calculated and respectively correlated with the enzyme T(opt) values, which were used to describe the xylanase thermophilic tendencies without dividing them into two thermophilic and mesophilic groups. After analyses of codon content and relative synonymous codon usages were checked by the Bonferroni correction, we found five codons, with three (AUA, AGA, and AGG) correlating positively and two (CGU and AGC) correlating negatively with the T(opt) value. The three positive codons are purine-rich codons, and the two negative codons have A-ends. The two negative codons are pyridine-rich codons, and one has a C-end. Comparable with the codon C- and A-ending features, C- and A-content within mRNA correlated negatively and positively with the T(opt) value, respectively. Thereby, codons have effects on enzyme thermal property. When the issue is analyzed at the residual level, the effect of codon message is lost. The codons relating to enzyme thermal property are selected by thermophilic force at nucleotide level.
Collapse
Affiliation(s)
- Liangwei Liu
- Life Science College, Henan Agricultural University, Zhengzhou 450002, China.
| | | | | | | | | |
Collapse
|
27
|
Dutta C, Paul S. Microbial lifestyle and genome signatures. Curr Genomics 2012; 13:153-62. [PMID: 23024607 PMCID: PMC3308326 DOI: 10.2174/138920212799860698] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/28/2011] [Indexed: 12/29/2022] Open
Abstract
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.
Collapse
Affiliation(s)
- Chitra Dutta
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
28
|
Jollivet D, Mary J, Gagnière N, Tanguy A, Fontanillas E, Boutet I, Hourdez S, Segurens B, Weissenbach J, Poch O, Lecompte O. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. PLoS One 2012; 7:e31150. [PMID: 22348046 PMCID: PMC3277501 DOI: 10.1371/journal.pone.0031150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/03/2012] [Indexed: 12/19/2022] Open
Abstract
Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.
Collapse
Affiliation(s)
- Didier Jollivet
- Adaptation & Diversité en Milieu Marin, CNRS UMR 7144, Roscoff, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mahale KN, Kempraj V, Dasgupta D. Does the growth temperature of a prokaryote influence the purine content of its mRNAs? Gene 2012; 497:83-9. [PMID: 22305982 DOI: 10.1016/j.gene.2012.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/19/2012] [Indexed: 11/20/2022]
Abstract
The formation and breaking of hydrogen bonds between nucleic acid bases are dependent on temperature. The high G+C content of organisms was surmised to be an adaptation for high temperature survival because of the thermal stability of G:C pairs. However, a survey of genomic GC% and optimum growth temperature (OGT) of several prokaryotes revoked any direct relation between them. Significantly high purine (R=A or G) content in mRNAs is also seen as a selective response for survival among thermophiles. Nevertheless, the biological relevance of thermophiles loading their unstable mRNAs with excess purines (purine-loading or R-loading) is not persuasive. Here, we analysed the mRNA sequences from the genomes of 168 prokaryotes (as obtained from NCBI Genome database) with their OGTs ranging from -5 °C to 100 °C to verify the relation between R-loading and OGT. Our analysis fails to demonstrate any correlation between R-loading of the mRNA pool and OGT of a prokaryote. The percentage of purine-loaded mRNAs in prokaryotes is found to be in a rough negative correlation with the genomic GC% (r(2)=0.655, slope=-1.478, P<000.1). We conclude that genomic GC% and bias against certain combinations of nucleotides drive the mRNA-synonymous (sense) strands of DNA towards variations in R-loading.
Collapse
|
30
|
Abstract
To detect positive Darwinian selection it is thought essential to compare two sequences. Despite its defects, "the comparative method rules." However, genes evolving rapidly under positive selection conflict more with internal forces (the genome phenotype) than genes evolving slowly under negative selection. In particular, there is conflict with stem-loop potential. The conflict between protein-encoding potential (primary information) and stem-loop potential (secondary information) permits detection of positive selection in a single sequence. The degree to which secondary information is compromised provides a measure of the speed of transmission of primary information. Thus, the sovereignty of the comparative method is challenged not only by its own defects, but also by the availability of a single-sequence method. However, while of limited utility for positive selection, the comparative method casts new light on Darwin's great question — the origin of species. Comparison of rates of synonymous and non-synonymous mutation suggests that branching into new species begins with synonymous mutations.
Collapse
Affiliation(s)
- DONALD R. FORSDYKE
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L3N6, Canada
| |
Collapse
|
31
|
Nakashima H, Kuroda Y. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins. J Zhejiang Univ Sci B 2011; 12:419-27. [PMID: 21634034 DOI: 10.1631/jzus.b1000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, Ile, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Clinical Laboratory Science, Graduate Course of Medical Science and Technology, School of Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan.
| | | |
Collapse
|
32
|
Maity S, Kumar P, Haldar D. An amyloid-like fibril-forming supramolecular cross-β-structure of a model peptide: a crystallographic insight. Org Biomol Chem 2011; 9:3787-91. [DOI: 10.1039/c0ob01033b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Satapathy SS, Dutta M, Ray SK. Higher tRNA diversity in thermophilic bacteria: A possible adaptation to growth at high temperature. Microbiol Res 2010; 165:609-16. [DOI: 10.1016/j.micres.2009.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/31/2009] [Accepted: 12/20/2009] [Indexed: 10/19/2022]
|
34
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
35
|
Bohlin J, Hardy SP, Ussery DW. Stretches of alternating pyrimidine/purines and purines are respectively linked with pathogenicity and growth temperature in prokaryotes. BMC Genomics 2009; 10:346. [PMID: 19646265 PMCID: PMC2728739 DOI: 10.1186/1471-2164-10-346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/31/2009] [Indexed: 02/02/2023] Open
Abstract
Background The genomic fractions of purine (RR) and alternating pyrimidine/purine (YR) stretches of 10 base pairs or more, have been linked to genomic AT content, the formation of different DNA helices, strand-biased gene distribution, DNA structure, and more. Although some of these factors are a consequence of the chemical properties of purines and pyrimidines, a thorough statistical examination of the distributions of YR/RR stretches in sequenced prokaryotic chromosomes has to the best of our knowledge, not been undertaken. The aim of this study is to expand upon previous research by using regression analysis to investigate how AT content, habitat, growth temperature, pathogenicity, phyla, oxygen requirement and halotolerance correlated with the distribution of RR and YR stretches in prokaryotes. Results Our results indicate that RR and YR-stretches are differently distributed in prokaryotic phyla. RR stretches are overrepresented in all phyla except for the Actinobacteria and β-Proteobacteria. In contrast, YR tracts are underrepresented in all phyla except for the β-Proteobacterial group. YR-stretches are associated with phylum, pathogenicity and habitat, whilst RR-tracts are associated with phylum, AT content, oxygen requirement, growth temperature and halotolerance. All associations described were statistically significant with p < 0.001. Conclusion Analysis of chromosomal distributions of RR/YR sequences in prokaryotes reveals a set of associations with environmental factors not observed with mono- and oligonucleotide frequencies. This implies that important information can be found in the distribution of RR/YR stretches that is more difficult to obtain from genomic mono- and oligonucleotide frequencies. The association between pathogenicity and fractions of YR stretches is assumed to be linked to recombination and horizontal transfer.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | |
Collapse
|
36
|
Darwinian selection for sites of Asn-linked glycosylation in phylogenetically disparate eukaryotes and viruses. Proc Natl Acad Sci U S A 2009; 106:13421-6. [PMID: 19666543 DOI: 10.1073/pnas.0905818106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous protists and rare fungi have truncated Asn-linked glycan precursors and lack N-glycan-dependent quality control (QC) systems for glycoprotein folding in the endoplasmic reticulum. Here, we show that the abundance of sequons (NXT or NXS), which are sites for N-glycosylation of secreted and membrane proteins, varies by more than a factor of 4 among phylogenetically diverse eukaryotes, based on a few variables. There is positive correlation between the density of sequons and the AT content of coding regions, although no causality can be inferred. In contrast, there appears to be Darwinian selection for sequons containing Thr, but not Ser, in eukaryotes that have N-glycan-dependent QC systems. Selection for sequons with Thr, which nearly doubles the sequon density in human secreted and membrane proteins, occurs by an increased conditional probability that Asn and Thr are present in sequons rather than elsewhere. Increasing sequon densities of the hemagglutinin (HA) of influenza viruses A/H3N2 and A/H1N1 during the past few decades of human infection also result from an increased conditional probability that Asn, Thr, and Ser are present in sequons rather than elsewhere. In contrast, there is no selection on sequons by this mechanism in HA of A/H5N1 or 2009 A/H1N1 (Swine flu). Very strong selection for sequons with both Thr and Ser in glycoprotein of M(r) 120,000 (gp120) of HIV and related retroviruses results from this same mechanism, as well as amino acid composition bias and increases in AT content. We conclude that there is Darwinian selection for sequons in phylogenetically disparate eukaryotes and viruses.
Collapse
|
37
|
Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:159-67. [PMID: 19054742 DOI: 10.1155/2008/829730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.
Collapse
|
38
|
Mizanur RM, Pohl NL. A thermostable promiscuous glucose-1-phosphate uridyltransferase from Helicobacter pylori for the synthesis of nucleotide sugars. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Affiliation(s)
- Claire Torchet
- Institut Jacques-Monod, Biochimie de l'Evolution et Adaptabilité Moléculaire, Université Paris VI, Tour 43, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
40
|
Kirzhner V, Paz A, Volkovich Z, Nevo E, Korol A. Different clustering of genomes across life using the A-T-C-G and degenerate R-Y alphabets: early and late signaling on genome evolution? J Mol Evol 2007; 64:448-56. [PMID: 17479343 DOI: 10.1007/s00239-006-0178-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In this study, we have calculated distances between genomes based on our previously developed compositional spectra (CS) analysis. The study was conducted using genomes of 39 species of Eukarya, Eubacteria, and Archaea. Based on CS distances, we produced two different consensus dendrograms for four- and two-letter (purine-pyrimidine) alphabets. A comparison of the obtained structure using purine-pyrimidine alphabet with the standard three-kingdom (3K) scheme reveals substantial similarity. Surprisingly, this is not the case when the same procedure is based on the four-letter alphabet. In this situation, we also found three main clusters-but different from those in the 3K scheme. In particular, one of the clusters includes Eukarya and thermophilic bacteria and a part of the considered Archaea species. We speculate that the key factor in the last classification (based on the A-T-G-C alphabet) is related to ecology: two ecological parameters, temperature and oxygen, distinctly explain the clustering revealed by compositional spectra in the four-letter alphabet. Therefore, we assume that this result reflects two interdependent processes: evolutionary divergence and superimposed ecological convergence of the genomes, albeit another process, horizontal transfer, cannot be excluded as an important contributing factor.
Collapse
Affiliation(s)
- V Kirzhner
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | | | | | | |
Collapse
|
41
|
Han D, Hu Z. Mutations Stabilize Small Subunit Ribosomal RNA in Desiccation-Tolerant Cyanobacteria Nostoc. Curr Microbiol 2007; 54:254-9. [PMID: 17334839 DOI: 10.1007/s00284-006-0095-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/19/2006] [Indexed: 10/23/2022]
Abstract
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 16S rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress.
Collapse
Affiliation(s)
- D Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | |
Collapse
|
42
|
Paz A, Mester D, Nevo E, Korol A. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs. J Mol Evol 2007; 64:248-60. [PMID: 17211550 DOI: 10.1007/s00239-006-0135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/19/2006] [Indexed: 01/05/2023]
Abstract
We analyzed precursor messenger RNAs (pre-mRNAs) of 12 eukaryotic species. In each species, three groups of highly expressed genes, ribosomal proteins, heat shock proteins, and amino-acyl tRNA synthetases, were compared with a control group (randomly selected genes). The purine-pyrimidine (R-Y) composition of pre-mRNAs of the three targeted gene groups proved to differ significantly from the control. The exons of the three groups tested have higher purine contents and R-tract abundance and lower abundance of Y-tracts compared to the control (R-tract-tract of sequential purines with Rn>or=5; Y-tract-tract of sequential pyrimidines with Yn>or=5). In species widely employing "intron definition" in the splicing process, the Y content of introns of the three targeted groups appeared to be higher compared to the control group. Furthermore, in all examined species, the introns of the targeted genes have a lower abundance of R-tracts compared to the control. We hypothesized that the R-Y composition of the targeted gene groups contributes to high rate and efficiency of both splicing and translation, in addition to the mRNA coding role. This is presumably achieved by (1) reducing the possibility of the formation of secondary structures in the mRNA, (2) using the R-tracts and R-biased sequences as exonic splicing enhancers, (3) lowering the amount of targets for pyrimidine tract binding protein in the exons, and (4) reducing the amount of target sequences for binding of serine/arginine-rich (SR) proteins in the introns, thereby allowing SR proteins to bind to proper (exonic) targets.
Collapse
Affiliation(s)
- A Paz
- Institute of Evolution, Haifa University, Mount Carmel, Haifa, 31905, Israel
| | | | | | | |
Collapse
|
43
|
Lin FH, Forsdyke DR. Prokaryotes that grow optimally in acid have purine-poor codons in long open reading frames. Extremophiles 2006; 11:9-18. [PMID: 16957882 DOI: 10.1007/s00792-006-0005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
In nucleic acids the N-glycosyl bonds between purines and their ribose sugar moities are broken under acid conditions. If one strand of a duplex DNA segment were more vulnerable to mutation than the other, then the archaeon Picrophilus torridus, with an optimum growth pH near zero, could have adapted by decreasing the purine content of that strand. Yet, P. torridus has an optimum growth temperature near 60 degrees C, and thermophiles prefer purine-rich codons. We found that, as in other thermophiles, high growth temperature correlates with the use of purine-rich codons. The extra purines are often in third, non-amino acid determining, codon positions. However, as in other acidophiles, as open reading frame lengths increase, there is increased use of purine-poor codons, particularly those without purines in second, amino acid-determining, codon positions. Thus, P. torridus can be seen as adapting (a) to temperature by increasing its purines in all open reading frames without greatly impacting protein amino acid compositions, and (b) to pH by decreasing purines in longer open reading frames, thereby potentially impacting protein amino acid compositions. It is proposed that longer open reading frames, being larger mutational targets, have become less vulnerable to depurination by virtue of pyrimidine for purine substitutions.
Collapse
Affiliation(s)
- Feng-Hsu Lin
- Department of Biochemistry, Queen's University, K7L3N6, Kingston, ON, Canada
| | | |
Collapse
|
44
|
Synonymous codon usage and its potential link with optimal growth temperature in prokaryotes. Gene 2006; 385:128-36. [PMID: 16989961 DOI: 10.1016/j.gene.2006.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 05/29/2006] [Indexed: 12/01/2022]
Abstract
The relationship between codon usage in prokaryotes and their ability to grow at extreme temperatures has been given much attention over the past years. Previous studies have suggested that the difference in synonymous codon usage between (hyper)thermophiles and mesophiles is a consequence of a selective pressure linked to growth temperature. Here, we performed an updated analysis of the variation in synonymous codon usage with growth temperature; our study includes a large number of species from a wide taxonomic and growth temperature range. The presence of psychrophilic species in our study allowed us to test whether the same selective pressure acts on synonymous codon usage at very low growth temperature. Our results show that the synonymous codon usage for Arg (through the AGG, AGA and CGT codons) is the most discriminating factor between (hyper)thermophilic and non-thermophilic species, thus confirming previous studies. We report the unusual clustering of an Archaeal psychrophile with the thermophilic and hyperthermophilic species on the synonymous codon usage factorial map; the other psychrophiles in our study cluster with the mesophilic species. Our conclusion is that the difference in synonymous codon usage between (hyper)thermophilic and non-thermophilic species cannot be clearly attributed to a selective pressure linked to growth at high temperatures.
Collapse
|
45
|
Das S, Paul S, Bag SK, Dutta C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 2006; 7:186. [PMID: 16869956 PMCID: PMC1574309 DOI: 10.1186/1471-2164-7-186] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/25/2006] [Indexed: 11/24/2022] Open
Abstract
Background Nanoarchaeum equitans, the only known hyperthermophilic archaeon exhibiting parasitic life style, has raised some new questions about the evolution of the Archaea and provided a model of choice to study the genome landmarks correlated with thermo-parasitic adaptation. In this context, we have analyzed the genome and proteome composition of N. equitans and compared the same with those of other mesophiles, hyperthermophiles and obligatory host-associated organisms. Results Analysis of nucleotide, codon and amino acid usage patterns in N. equitans indicates the presence of distinct selective constraints, probably due to its adaptation to a thermo-parasitic life-style. Among the conspicuous characteristics featuring its hyperthermophilic adaptation are overrepresentation of purine bases in protein coding sequences, higher GC-content in tRNA/rRNA sequences, distinct synonymous codon usage, enhanced usage of aromatic and positively charged residues, and decreased frequencies of polar uncharged residues, as compared to those in mesophilic organisms. Positively charged amino acid residues are relatively abundant in the encoded gene-products of N. equitans and other hyperthermophiles, which is reflected in their isoelectric point distribution. Pairwise comparison of 105 orthologous protein sequences shows a strong bias towards replacement of uncharged polar residues of mesophilic proteins by Lys/Arg, Tyr and some hydrophobic residues in their Nanoarchaeal orthologs. The traits potentially attributable to the symbiotic/parasitic life-style of the organism include the presence of apparently weak translational selection in synonymous codon usage and a marked heterogeneity in membrane-associated proteins, which may be important for N. equitans to interact with the host and hence, may help the organism to adapt to the strictly host-associated life style. Despite being strictly host-dependent, N. equitans follows cost minimization hypothesis. Conclusion The present study reveals that the genome and proteome composition of N. equitans are marked with the signatures of dual adaptation – one to high temperature and the other to obligatory parasitism. While the analysis of nucleotide/amino acid preferences in N. equitans offers an insight into the molecular strategies taken by the archaeon for thermo-parasitic adaptation, the comparative study of the compositional characteristics of mesophiles, hyperthermophiles and obligatory host-associated organisms demonstrates the generality of such strategies in the microbial world.
Collapse
Affiliation(s)
- Sabyasachi Das
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sandip Paul
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sumit K Bag
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Chitra Dutta
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
- Human Genetics & Genomics Division, Indian Institute of Chemical Biology, Kolkata–700032, India
| |
Collapse
|
46
|
Abstract
Twenty-one complete eukaryotic genomes are compared for codon signature biases. The codon signature refers to the dinucleotide relative abundance values at codon sites {1, 2}, {2, 3}, and {3, 4} (4 = 1 of the next codon site). The genomes under study include human, mouse, chicken, three invertebrates, one plant species, eight fungi, and six protists. The dinucleotide CpG is significantly underrepresented at all contiguous codon sites and drastically suppressed in noncoding regions in mammalian species, in yeast-like genomes, in the dicotArabidopsis thaliana, but not in the filamentous fungiNeurospora crassaandAsperigillus fumigatus, and in the protistEntamoeba histolytica.The dinucleotide TpA, probably due to DNA structural weaknesses, is underrepresented genome-wide and significantly underrepresented in the codon signature for all contiguous codon sites in mammals, inverterbrates, plants, and fungi, but somewhat restricted to codon sites {1, 2} among protists helping in avoidance of stop codons. The amino acid Ser, not of abundance in bacterial genomes, generally ranks among the two most used amino acids among eukaryotes ostensibly resulting from greater activity in the nucleus. The observed differences are linked to specifics of methylation, context-dependent mutation, DNA repair, and replication. For example, the amino acid Leu is broadly abundant in all life domains generally resulting from extra occurrences of the codon TTR, R purine. The malarial protistPlasmodium falciparumshows many codon signature extremes.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford
| | - Dorit Carmelli
- Department of Mathematics, Stanford University, Stanford
| |
Collapse
|
47
|
Wang HC, Susko E, Roger AJ. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 2006; 342:681-4. [PMID: 16499870 DOI: 10.1016/j.bbrc.2006.02.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/08/2006] [Indexed: 11/30/2022]
Abstract
The correlation between genomic G+C content and optimal growth temperature in prokaryotes has gained renewed interest after Musto et al. [H. Musto, H. Naya, A. Zavala, H. Romero, F. Alvarex-Valin, G. Bernardi, Correlations between genomic GC levels and optimal growth temperatures in prokaryotes, FEBS Lett. 573 (2004) 73-77], reported that positive correlations exist in 15 families studied. We have reanalyzed their data and found that when genome size and data quality were adjusted for, there was no significant evidence of relationship between optimal temperature and GC content for two of the families that had previously shown strongly significant correlations. Using updated temperature optima for Halobacteriaceae species we found the correlation is insignificant in this family. For the family Enterobacteriaceae when genome size and optimal temperature are included in a multiple linear regression, only genome size is significant as a predictor of GC content. We showed that more profound statistical methods than simple two factor correlation analysis should be used for analyzing complex intrinsic and extrinsic factors that affect genomic GC content. We further found that a positive correlation between temperature and genomic GC is only evident in free-living species of low optimal growth temperatures.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada B3H 3J5.
| | | | | |
Collapse
|
48
|
Foerstner KU, von Mering C, Hooper SD, Bork P. Environments shape the nucleotide composition of genomes. EMBO Rep 2006; 6:1208-13. [PMID: 16200051 PMCID: PMC1369203 DOI: 10.1038/sj.embor.7400538] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/15/2005] [Accepted: 08/19/2005] [Indexed: 11/09/2022] Open
Abstract
To test the impact of environments on genome evolution, we analysed the relative abundance of the nucleotides guanine and cytosine ('GC content') of large numbers of sequences from four distinct environmental samples (ocean surface water, farm soil, an acidophilic mine drainage biofilm and deep-sea whale carcasses). We show that the GC content of complex microbial communities seems to be globally and actively influenced by the environment. The observed nucleotide compositions cannot be easily explained by distinct phylogenetic origins of the species in the environments; the genomic GC content may change faster than was previously thought, and is also reflected in the amino-acid composition of the proteins in these habitats.
Collapse
Affiliation(s)
- Konrad U Foerstner
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian von Mering
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sean D Hooper
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Max-Delbrück Centre for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
- Tel: +49 6221 387 8526; Fax: +49 6221 387 517; E-mail:
| |
Collapse
|
49
|
Forsdyke DR. Chargaff’s Cluster Rule. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Lee SJ, Mortimer JR, Forsdyke DR. Genomic conflict settled in favour of the species rather than the gene at extreme GC percentage values. ACTA ACUST UNITED AC 2005; 3:219-28. [PMID: 15702952 DOI: 10.2165/00822942-200403040-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wada and colleagues have shown that, whether prokaryotic or eukaryotic, each gene has a "homostabilising propensity" to adopt a relatively uniform GC percentage (GC%). Accordingly, each gene can be viewed as a "microisochore" occupying a discrete GC% niche of relatively uniform base composition amongst its fellow genes. Although first, second and third codon positions usually differ in GC%, each position tends to maintain a uniform, gene-specific GC% value. Thus, within a genome, genic GC% values can cover a wide range. This is most evident at third codon positions, which are least constrained by amino acid encoding needs. In 1991, Wada and colleagues further noted that, within a phylogenetic group, genomic GC% values can also cover a wide range. This is again most evident at third codon positions. Thus, the dispersion of GC% values among genes within a genome matches the dispersion of GC% values among genomes within a phylogenetic group. Wada described the context-independence of plots of different codon position GC% values against total GC% as a "universal" characteristic. Several studies relate this to recombination. We have confirmed that third codon positions usually relate more to the genes that contain them than to the species. However, in genomes with extreme GC% values (low or high), third codon positions tend to maintain a constant GC%, thus relating more to the species than to the genes that contain them. Genes in an extreme-GC% genome collectively span a smaller GC% range, and mainly rely on first and second codon positions for differentiation as "microisochores". Our results are consistent with the view that differences in GC% serve to recombinationally isolate both genome sectors (facilitating gene duplication) and genomes (facilitating genome duplication, e.g. speciation). In intermediate-GC% genomes, conflict between the needs of the species and the needs of individual genes within that species is minimal. However, in extreme-GC% genomes there is a conflict, which is settled in favour of the species (i.e. group selection) rather than in favour of the gene (genic selection).
Collapse
Affiliation(s)
- Shang-Jung Lee
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|