1
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
2
|
Ebert MS, Bargmann CI. Evolution remodels olfactory and mating-receptive behaviors in the transition from female to hermaphrodite reproduction. Curr Biol 2024; 34:969-979.e4. [PMID: 38340714 DOI: 10.1016/j.cub.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Male/hermaphrodite species have arisen multiple times from a male/female ancestral state in nematodes, providing a model to study behavioral adaptations to different reproductive strategies. Here, we examined the mating behaviors of male/female (gonochoristic) Caenorhabditis species in comparison with male/hermaphrodite (androdiecious) close relatives. We find that females from two species in the Elegans group chemotax to volatile odor from males, but hermaphrodites do not. Females, but not hermaphrodites, also display known mating-receptive behaviors such as sedation when male reproductive structures contact the vulva. Focusing on the male/female species C. nigoni, we show that female chemotaxis to males is limited to adult females approaching adult or near-adult males and relies upon the AWA neuron-specific transcription factor ODR-7, as does male chemotaxis to female odor as previously shown in C. elegans. However, female receptivity during mating contact is odr-7 independent. All C. nigoni female behaviors are suppressed by mating and all are absent in young hermaphrodites from the sister species C. briggsae. However, latent receptivity during mating contact can be uncovered in mutant or aged C. briggsae hermaphrodites that lack self-sperm. These results reveal two mechanistically distinct components of the shift from female to hermaphrodite behavior: the loss of female-specific odr-7-dependent chemotaxis and a sperm-dependent state of reduced receptivity to mating contact. Hermaphrodites from a second androdioecious species, C. tropicalis, recover all female behaviors upon aging, including chemotaxis to males. Regaining mating receptivity after sperm depletion could maximize hermaphrodite fitness across their lifespan.
Collapse
Affiliation(s)
- Margaret S Ebert
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
3
|
Weng JW, Chen CH. Adult-specific collagen COL-19 is dispensable for contact-mediated mate recognition in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001141. [PMID: 38454951 PMCID: PMC10918475 DOI: 10.17912/micropub.biology.001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Mate recognition in C. elegans involves the integration of multiple sensory cues to facilitate the identification of suitable mates for reproductive behaviors. The cuticle, serving as the protective outer layer enveloping the entire body, has been implicated in eliciting contact responses essential for contact-mediated mate recognition in males. However, the specific constituents of cuticular cues have yet to be identified. In this study, we investigate the potential modulatory role of adult-specific collagen COL-19 in contact-mediated mate recognition. Our study shows that the expression of COL-19 ::GFP is adult-specific and not sexually dimorphic. Knockdown of col-19 via RNAi does not affect mate attractiveness of hermaphrodites in male retention assay, as corroborated by generating two independent col-19 putative null mutants via CRISPR/Cas9. These findings suggest that col-19 does not contribute to contact-mediated mate recognition, thereby advancing our mechanistic understanding of the intricate social interactions between sexes in C. elegans .
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Tran MV, Khuntsariya D, Fetter RD, Ferguson JW, Wang JT, Long AF, Cote LE, Wellard SR, Vázquez-Martínez N, Sallee MD, Genova M, Magiera MM, Eskinazi S, Lee JD, Peel N, Janke C, Stearns T, Shen K, Lansky Z, Magescas J, Feldman JL. MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement. Dev Cell 2024; 59:199-210.e11. [PMID: 38159567 PMCID: PMC11385174 DOI: 10.1016/j.devcel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.
Collapse
Affiliation(s)
- Michael V Tran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daria Khuntsariya
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Richard D Fetter
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - James W Ferguson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexandra F Long
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren E Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Maria D Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sani Eskinazi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Nina Peel
- The College of New Jersey, Ewing, NJ 08628, USA
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Jérémy Magescas
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Weng JW, Park H, Valotteau C, Chen RT, Essmann CL, Pujol N, Sternberg PW, Chen CH. Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Curr Biol 2023; 33:3585-3596.e5. [PMID: 37541249 PMCID: PMC10530406 DOI: 10.1016/j.cub.2023.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, CNRS, LAI, Turing Centre for Living Systems, 163 Avenue de Luminy, 13009 Marseille, France
| | - Rui-Tsung Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Clara L Essmann
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-University, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, case 906, 13009 Marseille, France
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
7
|
Chen L, Wang Y, Zhou X, Wang T, Zhan H, Wu F, Li H, Bian P, Xie Z. Investigation into the communication between unheated and heat-stressed Caenorhabditis elegans via volatile stress signals. Sci Rep 2023; 13:3225. [PMID: 36828837 PMCID: PMC9958180 DOI: 10.1038/s41598-022-26554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/16/2022] [Indexed: 02/26/2023] Open
Abstract
Our research group has recently found that radiation-induced airborne stress signals can be used for communication among Caenorhabditis elegans (C. elegans). This paper addresses the question of whether heat stress can also induce the emission of airborne stress signals to alert neighboring C. elegans and elicit their subsequent stress response. Here, we report that heat-stressed C. elegans produces volatile stress signals that trigger an increase in radiation resistance in neighboring unheated C. elegans. When several loss-of-function mutations affecting thermosensory neuron (AFD), heat shock factor-1, HSP-4, and small heat-shock proteins were used to test heat-stressed C. elegans, we found that the production of volatile stress signals was blocked, demonstrating that the heat shock response and ER pathway are involved in controlling the production of volatile stress signals. Our data further indicated that mutations affecting the DNA damage response (DDR) also inhibited the increase in radiation resistance in neighboring unheated C. elegans that might have received volatile stress signals, indicating that the DDR might contribute to radioadaptive responses induction by volatile stress signals. In addition, the regulatory pattern of signal production and action was preliminarily clarified. Together, the results of this study demonstrated that heat-stressed nematodes communicate with unheated nematodes via volatile stress signals.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yun Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Huimin Zhan
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Fei Wu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Haolan Li
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
8
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
9
|
Barmaver SN, Muthaiyan Shanmugam M, Chang Y, Bayansan O, Bhan P, Wu GH, Wagner OI. Loss of intermediate filament IFB-1 reduces mobility, density and physiological function of mitochondria in C. elegans sensory neurons. Traffic 2022; 23:270-286. [PMID: 35261124 DOI: 10.1111/tra.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In C. elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondria transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as FCCP treatment led to increased directional switching of mitochondria. Mitochondria colocalize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal intermediate filaments may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Syed Nooruzuha Barmaver
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Yen Chang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Odvogmed Bayansan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.).,Research Center for Healthy Aging, China Medical University, Taichung, Taiwan (R.O.C.)
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Oliver I Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| |
Collapse
|
10
|
Susoy V, Hung W, Witvliet D, Whitener JE, Wu M, Park CF, Graham BJ, Zhen M, Venkatachalam V, Samuel ADT. Natural sensory context drives diverse brain-wide activity during C. elegans mating. Cell 2021; 184:5122-5137.e17. [PMID: 34534446 PMCID: PMC8488019 DOI: 10.1016/j.cell.2021.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Witvliet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joshua E Whitener
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Core Francisco Park
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Brett J Graham
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Vivek Venkatachalam
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Loxterkamp E, Cha J, Wu K, Sullivan J, Holbrook O, Ghaith H, Srun L, Bauer DE. Behavioral Differences between Male and Hermaphrodite C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000431. [PMID: 34345807 PMCID: PMC8325061 DOI: 10.17912/micropub.biology.000431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022]
Abstract
C. elegans are microscopic nematodes used extensively as a model organism due to their simplicity, allowing researchers to study basic molecular processes in biology. Most C. elegans are hermaphrodites, possessing two X chromosomes and the ability to reproduce asexually, but approximately 0.1% are males, arising due to a spontaneous loss of an X chromosome. In order to evaluate the behavioral sex differences in C. elegans, we expanded upon existing literature and compared spontaneous movement, sensitivity to mechanosensation, and sensitivity to chemosensation between males and hermaphrodites. In our paradigms, we found that males and hermaphrodites exhibit similar spontaneous movement as well as similar slow and sustained behaviors such as chemotaxis, but differ in quick-response to mechanical and chemosensory stimuli.
Collapse
Affiliation(s)
- Elizabeth Loxterkamp
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA,
Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jaaram Cha
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Katharine Wu
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Janessa Sullivan
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Olivia Holbrook
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Hazar Ghaith
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Lena Srun
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA
| | - Deborah E. Bauer
- Department of Neuroscience, Wellesley College, Wellesley, Massachusetts, USA,
Correspondence to: Deborah E. Bauer ()
| |
Collapse
|
12
|
Wang J, Nikonorova IA, Silva M, Walsh JD, Tilton PE, Gu A, Akella JS, Barr MM. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr Biol 2021; 31:3943-3951.e3. [PMID: 34270950 DOI: 10.1016/j.cub.2021.06.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Ciliary extracellular vesicle (EV) shedding is evolutionarily conserved. In Chlamydomonas and C. elegans, ciliary EVs act as signaling devices.1-3 In cultured mammalian cells, ciliary EVs regulate ciliary disposal but also receptor abundance and signaling, ciliary length, and ciliary membrane dynamics.4-7 Mammalian cilia produce EVs from the tip and along the ciliary membrane.8,9 This study aimed to determine the functional significance of shedding at distinct locations and to explore ciliary EV biogenesis mechanisms. Using Airyscan super-resolution imaging in living C. elegans animals, we find that neuronal sensory cilia shed TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites: the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. A big unanswered question in the EV field is how cells sort EV cargo. Here, we show that two EV cargoes- CIL-7 and PKD-2-localized and trafficked differently along cilia and were sorted to different environmentally released EVs. In response to mating partners, C. elegans males modulate EV cargo composition by increasing the ratio of PKD-2 to CIL-7 EVs. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Dal Bello M, Pérez-Escudero A, Schroeder FC, Gore J. Inversion of pheromone preference optimizes foraging in C. elegans. eLife 2021; 10:58144. [PMID: 34227470 PMCID: PMC8260229 DOI: 10.7554/elife.58144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Foraging animals have to locate food sources that are usually patchily distributed and subject to competition. Deciding when to leave a food patch is challenging and requires the animal to integrate information about food availability with cues signaling the presence of other individuals (e.g., pheromones). To study how social information transmitted via pheromones can aid foraging decisions, we investigated the behavioral responses of the model animal Caenorhabditis elegans to food depletion and pheromone accumulation in food patches. We experimentally show that animals consuming a food patch leave it at different times and that the leaving time affects the animal preference for its pheromones. In particular, worms leaving early are attracted to their pheromones, while worms leaving later are repelled by them. We further demonstrate that the inversion from attraction to repulsion depends on associative learning and, by implementing a simple model, we highlight that it is an adaptive solution to optimize food intake during foraging.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alfonso Pérez-Escudero
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS; UPS, Toulouse, France
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Abstract
For the first 25 years after the landmark 1974 paper that launched the field, most C. elegans biologists were content to think of their subjects as solitary creatures. C. elegans presented no shortage of fascinating biological problems, but some of the features that led Brenner to settle on this species-in particular, its free-living, self-fertilizing lifestyle-also seemed to reduce its potential for interesting social behavior. That perspective soon changed, with the last two decades bringing remarkable progress in identifying and understanding the complex interactions between worms. The growing appreciation that C. elegans behavior can only be meaningfully understood in the context of its ecology and evolution ensures that the coming years will see similarly exciting progress.
Collapse
Affiliation(s)
- Douglas S Portman
- Departments of Biomedical Genetics, Neuroscience, and Biology, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
15
|
Baiocchi T, Anesko K, Mercado N, Park H, Kin K, Strickhouser-Monzon B, Robles P, Bowman C, Wang H, Sternberg PW, Dillman AR. Signaling by AWC Olfactory Neurons Is Necessary for Caenorhabditis elegans' Response to Prenol, an Odor Associated with Nematode-Infected Insects. Genetics 2020; 216:145-157. [PMID: 32680884 PMCID: PMC7463287 DOI: 10.1534/genetics.120.303280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology.
Collapse
Affiliation(s)
- Tiffany Baiocchi
- Department of Nematology, University of California, Riverside, California 92521
| | - Kyle Anesko
- Department of Nematology, University of California, Riverside, California 92521
| | - Nathan Mercado
- Department of Nematology, University of California, Riverside, California 92521
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Kassandra Kin
- Department of Nematology, University of California, Riverside, California 92521
| | | | - Priscila Robles
- Department of Nematology, University of California, Riverside, California 92521
| | - Christian Bowman
- Department of Nematology, University of California, Riverside, California 92521
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
The nematode Caenorhabditis elegans and the terrestrial isopod Porcellio scaber likely interact opportunistically. PLoS One 2020; 15:e0235000. [PMID: 32589676 PMCID: PMC7319334 DOI: 10.1371/journal.pone.0235000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
Phoresy is a behavior in which an organism, the phoront, travels from one location to another by 'hitching a ride' on the body of a host as it disperses. Some phoronts are generalists, taking advantage of any available host. Others are specialists and travel only when specific hosts are located using chemical cues to identify and move (chemotax) toward the preferred host. Free-living nematodes, like Caenorhabditis elegans, are often found in natural environments that contain terrestrial isopods and other invertebrates. Additionally, the C. elegans wild strain PB306 was isolated associated with the isopod Porcellio scaber. However, it is currently unclear if C. elegans is a phoront of terrestrial isopods, and if so, whether it is a specialist, generalist, or developmental stage-specific combination of both strategies. Because the relevant chemical stimuli might be secreted compounds or volatile odorants, we used different types of chemotaxis assays across diverse extractions of compounds or odorants to test whether C. elegans is attracted to P. scaber. We show that two different strains-the wild isolate PB306 and the laboratory-adapted strain N2 -are not attracted to P. scaber during either the dauer or adult life stages. Our results indicate that C. elegans was not attracted to chemical compounds or volatile odorants from P. scaber, providing valuable empirical evidence to suggest that any associations between these two species are likely opportunistic rather than specific phoresy.
Collapse
|
17
|
Gao M, Li Y, Zhang W, Wei P, Wang X, Feng Y, Zhang X. Bx-daf-22 Contributes to Mate Attraction in the Gonochoristic Nematode Bursaphelenchus xylophilus. Int J Mol Sci 2019; 20:E4316. [PMID: 31484427 PMCID: PMC6747337 DOI: 10.3390/ijms20174316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
Studying sex communication is necessary to develop new methods to control the population expansion of gonochoristic species Bursaphelenchus xylophilus, the pathogen of pine wilt disease (PWD). Small chemical signals called ascarosides have been reported to attract potential mates. However, they have not been studied in the sex attraction of B. xylophilus. Here, we confirmed the sex attraction of B. xylophilus using a chemotaxis assay. Then, we cloned the downstream ascaroside biosynthetic gene Bx-daf-22 and explored its function in the sex attraction of B. xylophilus through bioinformatics analysis and RNA interference. The secretions of females and males were the sources of sex attraction in B. xylophilus, and the attractiveness of females to males was stronger than that of males to females. Compared with daf-22 of Caenorhabditis elegans, Bx-daf-22 underwent gene duplication events, resulting in Bx-daf-22.1, Bx-daf-22.2, and Bx-daf-22.3. RNA interference revealed that the attractiveness of female secretions to males increased after all three Bx-daf-22 genes or Bx-daf-22.3 had been interfered. However, the reciprocal experiments had no effect on the attractiveness of male secretions to females. Thus, Bx-daf-22 genes, especially Bx-daf-22.3, may be crucial for the effectiveness of female sex attractants. Our studies provide fundamental information to help identify the specific components and signal pathways of sex attractants in B. xylophilus.
Collapse
Affiliation(s)
- Mengge Gao
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Wei Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Wei
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
19
|
Dolke F, Dong C, Bandi S, Paetz C, Glauser G, von Reuß SH. Ascaroside Signaling in the Bacterivorous Nematode Caenorhabditis remanei Encodes the Growth Phase of Its Bacterial Food Source. Org Lett 2019; 21:5832-5837. [PMID: 31305087 DOI: 10.1021/acs.orglett.9b01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of species-specific modular ascarosides that integrate additional fatty acid building blocks was characterized in the nematode Caenorhabditis remanei using a combination of HPLC-ESI-(-)-MS/MS precursor ion scanning, microreactions, HR-MS/MS, MSn, and NMR techniques. The structure of the dominating component carrying a cyclopropyl fatty acid moiety was established by total synthesis. Biogenesis of this female-produced male attractant depends on cyclopropyl fatty acid synthase (cfa), which is expressed in bacteria upon entering their stationary phase.
Collapse
Affiliation(s)
- Franziska Dolke
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Christian Paetz
- Research Group Biosynthesis/NMR , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Gaétan Glauser
- Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Stephan H von Reuß
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany.,Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland.,Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
20
|
Suo S, Harada K, Matsuda S, Kyo K, Wang M, Maruyama K, Awaji T, Tsuboi T. Sexually Dimorphic Regulation of Behavioral States by Dopamine in Caenorhabditis elegans. J Neurosci 2019; 39:4668-4683. [PMID: 30988167 PMCID: PMC6561698 DOI: 10.1523/jneurosci.2985-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Sex differences in behavior allow animals to effectively mate and reproduce. However, the mechanism by which biological sex regulates behavioral states, which underlie the regulation of sex-shared behaviors, such as locomotion, is largely unknown. In this study, we studied sex differences in the behavioral states of Caenorhabditis elegans and found that males spend less time in a low locomotor activity state than hermaphrodites and that dopamine generates this sex difference. In males, dopamine reduces the low activity state by acting in the same pathway as polycystic kidney disease-related genes that function in male-specific neurons. In hermaphrodites, dopamine increases the low activity state by suppression of octopamine signaling in the sex-shared SIA neurons, which have reduced responsiveness to octopamine in males. Furthermore, dopamine promotes exploration both inside and outside of bacterial lawn (the food source) in males and suppresses it in hermaphrodites. These results demonstrate that sexually dimorphic signaling allows the same neuromodulator to promote adaptive behavior for each sex.SIGNIFICANCE STATEMENT The mechanisms that generate sex differences in sex-shared behaviors, including locomotion, are not well understood. We show that there are sex differences in the regulation of behavioral states in the model animal Caenorhabditis elegans Dopamine promotes the high locomotor activity state in males, which must search for mates to reproduce, and suppresses it in self-fertilizing hermaphrodites through distinct molecular mechanisms. This study demonstrates that sex-specific signaling generates sex differences in the regulation of behavioral states, which in turn modulates the locomotor activity to suit reproduction for each sex.
Collapse
Affiliation(s)
- Satoshi Suo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan,
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | - Shogo Matsuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| | - Koki Kyo
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Min Wang
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan, and
| |
Collapse
|
21
|
Abstract
Several species of Caenorhabditis nematodes, including Caenorhabditis elegans, have recently evolved self-fertile hermaphrodites from female/male ancestors. These hermaphrodites can either self-fertilize or mate with males, and the extent of outcrossing determines subsequent male frequency. Using experimental evolution, the authors show that a gene family with a historical role in sperm competition plays a large role in regulating male frequency after self-fertility evolves. By reducing, but not completely eliminating outcrossing, loss of the mss genes contributes to adaptive tuning of the sex ratio in a newly self-fertile species. The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.
Collapse
|
22
|
Abstract
The recently determined connectome of the Caenorhabditis elegans adult male, together with the known connectome of the hermaphrodite, opens up the possibility for a comprehensive description of sexual dimorphism in this species and the identification and study of the neural circuits underlying sexual behaviors. The C. elegans nervous system consists of 294 neurons shared by both sexes plus neurons unique to each sex, 8 in the hermaphrodite and 91 in the male. The sex-specific neurons are well integrated within the remainder of the nervous system; in the male, 16% of the input to the shared component comes from male-specific neurons. Although sex-specific neurons are involved primarily, but not exclusively, in controlling sex-unique behavior—egg-laying in the hermaphrodite and copulation in the male—these neurons act together with shared neurons to make navigational choices that optimize reproductive success. Sex differences in general behaviors are underlain by considerable dimorphism within the shared component of the nervous system itself, including dimorphism in synaptic connectivity.
Collapse
Affiliation(s)
- Scott W. Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
23
|
Muthaiyan Shanmugam M, Bhan P, Huang HY, Hsieh J, Hua TE, Wu GH, Punjabi H, Lee Aplícano VD, Chen CW, Wagner OI. Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons. Mol Cell Biol 2018; 38:e00612-17. [PMID: 29378827 PMCID: PMC5854826 DOI: 10.1128/mcb.00612-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the presence of functional intraflagellar transport (IFT) machinery, and we hypothesized that various kinases and phosphatases might be involved in this regulatory process. A candidate screen revealed two kinases, PKG-1 (a cGMP-dependent protein kinase) and GCK-2 (a mitogen-activated protein kinase kinase kinase kinase 3 [MAP4K3] kinase involved in mTOR signaling), significantly affecting dye filling, chemotaxis, cilium morphology, and IFT component distribution. PKG-1 and GCK-2 show similar expression patterns in Caenorhabditis elegans cilia and colocalize with investigated IFT machinery components. In pkg-1 mutants, a high level of accumulation of kinesin-2 OSM-3 in distal segments was observed in conjunction with an overall reduction of anterograde and retrograde IFT particle A transport, likely as a function of reduced tubulin acetylation. In contrast, in gck-2 mutants, both kinesin-2 motility and IFT particle A motility were significantly elevated in the middle segments, in conjunction with increased tubulin acetylation, possibly the cause of longer cilium growth. Observed effects in mutants can be also seen in manipulating upstream and downstream effectors of the respective cGMP and mTOR pathways. Importantly, transmission electron microscopy (TEM) analysis revealed no structural changes in cilia of pkg-1 and gck-2 mutants.
Collapse
Affiliation(s)
- Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Hsin-Yi Huang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Jung Hsieh
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Tzu-En Hua
- Electron Microscopy Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Helly Punjabi
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Víctor Daniel Lee Aplícano
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Chih-Wei Chen
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Oliver Ingvar Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
24
|
Fagan KA, Luo J, Lagoy RC, Schroeder FC, Albrecht DR, Portman DS. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 2018; 28:902-914.e5. [PMID: 29526590 PMCID: PMC5862148 DOI: 10.1016/j.cub.2018.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Biological sex, a fundamental dimension of internal state, can modulate neural circuits to generate behavioral variation. Understanding how and why circuits are tuned by sex can provide important insights into neural and behavioral plasticity. Here we find that sexually dimorphic behavioral responses to C. elegans ascaroside sex pheromones are implemented by the functional modulation of shared chemosensory circuitry. In particular, the sexual state of a single sensory neuron pair, ADF, determines the nature of an animal's behavioral response regardless of the sex of the rest of the body. Genetic feminization of ADF causes males to be repelled by, rather than attracted to, ascarosides, whereas masculinization of ADF has the opposite effect in hermaphrodites. When ADF is ablated, both sexes are weakly repelled by ascarosides. Genetic sex modulates ADF function by tuning chemosensation: although ADF is functional in both sexes, it detects the ascaroside ascr#3 only in males, a consequence of cell-autonomous action of the master sexual regulator tra-1. This occurs in part through the conserved DM-domain gene mab-3, which promotes the male state of ADF. The sexual modulation of ADF has a key role in reproductive fitness, as feminization or ablation of ADF renders males unable to use ascarosides to locate mates. Our results reveal an economical mechanism in which sex-specific behavioral valence arises through the cell-autonomous regulation of a chemosensory switch by genetic sex, allowing a social cue with salience for both sexes to elicit navigational responses commensurate with the differing needs of each.
Collapse
Affiliation(s)
- Kelli A Fagan
- Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Jintao Luo
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Ross C Lagoy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | | | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | - Douglas S Portman
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Departments of Biomedical Genetics, Neuroscience, and Biology, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14610, USA.
| |
Collapse
|
25
|
Borne F, Kasimatis KR, Phillips PC. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS One 2017; 12:e0189679. [PMID: 29236762 PMCID: PMC5728554 DOI: 10.1371/journal.pone.0189679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 01/17/2023] Open
Abstract
Pheromone cues are an important component of intersexual communication, particularly in regards to mate choice. Caenorhabditis nematodes predominant rely on pheromone production for mate finding and mate choice. Here we describe a new microfluidic paradigm for studying mate choice in nematodes. Specifically, the Pheromone Arena allows for a constant flow of odorants, including pheromones and other small molecules, to be passed in real time from signaling worms to those making a choice without any physical contact. We validated this microfluidic paradigm by corroborating previous studies in showing that virgin C. remanei and C. elegans males have a strong preference for virgin females over mated ones. Moreover, our results suggest that the strength of attraction is an additive effect of male receptivity and female signal production. We also explicitly examine female choice and find that females are more attracted to virgin males. However, a female's mate choice is strongly dependent on her mating status.
Collapse
Affiliation(s)
- Flora Borne
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
26
|
Portman DS. Sexual modulation of sex-shared neurons and circuits in Caenorhabditis elegans. J Neurosci Res 2017; 95:527-538. [PMID: 27870393 DOI: 10.1002/jnr.23912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Studies using the nematode C. elegans have provided unique insights into the development and function of sex differences in the nervous system. Enabled by the relative simplicity of this species, comprehensive studies have solved the complete cellular neuroanatomy of both sexes as well as the complete neural connectomes of the entire adult hermaphrodite and the adult male tail. This work, together with detailed behavioral studies, has revealed three aspects of sex differences in the nervous system: sex-specific neurons and circuits; circuits with sexually dimorphic synaptic connectivity; and sex differences in the physiology and functions of shared neurons and circuits. At all of these levels, biological sex influences neural development and function through the activity of a well-defined genetic hierarchy that acts throughout the body to translate chromosomal sex into the state of a master autosomal regulator of sexual differentiation, the transcription factor TRA-1A. This Review focuses on the role of genetic sex in implementing sex differences in shared neurons and circuits, with an emphasis on linking the sexual modulation of specific neural properties to the specification and optimization of sexually divergent and dimorphic behaviors. An important and unexpected finding from these studies is that chemosensory neurons are a primary focus of sexual modulation, with genetic sex adaptively shaping chemosensory repertoire to guide behavioral choice. Importantly, hormone-independent functions of genetic sex are the principal drivers of all of these sex differences, making nematodes an excellent model for understanding similar but poorly understood mechanisms that likely act throughout the animal kingdom. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Douglas S Portman
- Center for Neural Development and Disease, Department of Biomedical Genetics, Neuroscience, and Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
27
|
Zhou Y, Loeza-Cabrera M, Liu Z, Aleman-Meza B, Nguyen JK, Jung SK, Choi Y, Shou Q, Butcher RA, Zhong W. Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans. Genetics 2017; 206:1469-1478. [PMID: 28495959 PMCID: PMC5500144 DOI: 10.1534/genetics.116.197293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023] Open
Abstract
It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury.
Collapse
Affiliation(s)
- Ying Zhou
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Zheng Liu
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Julie K Nguyen
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Sang-Kyu Jung
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Yuna Choi
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Qingyao Shou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Weiwei Zhong
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
28
|
Plesnar-Bielak A, Labocha MK, Kosztyła P, Woch KR, Banot WM, Sychta K, Skarboń M, Prus MA, Prokop ZM. Fitness Effects of Thermal Stress Differ Between Outcrossing and Selfing Populations in Caenorhabditis elegans. Evol Biol 2017; 44:356-364. [PMID: 28890581 PMCID: PMC5569660 DOI: 10.1007/s11692-017-9413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/23/2017] [Indexed: 11/03/2022]
Abstract
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans-a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)-to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta K. Labocha
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Kosztyła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna R. Woch
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Weronika M. Banot
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Sychta
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Skarboń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika A. Prus
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zofia M. Prokop
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
29
|
Zhu N, Bai L, Schütz S, Liu B, Liu Z, Zhang X, Yu H, Hu J. Observation and Quantification of Mating Behavior in the Pinewood Nematode, Bursaphelenchus xylophilus. J Vis Exp 2016:54842. [PMID: 28060317 PMCID: PMC5226466 DOI: 10.3791/54842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A method for observing and quantifying the mating behavior of the pinewood nematode, Bursaphelenchus xylophilus, was established under a stereomicroscope. To improve the mating efficiency of B. Xylophilus and to increase the chances of mating observation, virgin adults were cultured and used for the investigation. Eggs were obtained by keeping the nematodes in water and allowing the females to lay eggs for 10 min. The second-stage juveniles (J2) were synchronized by incubating the eggs for 24 h at 25 °C in the dark, and the early J4 were obtained by culturing the J2 with grey mold, Botrytis cinerea, for another 52 h. At this time point, most J4 nematodes could be clearly distinguished as being male or female using their genital morphology. The male and female J4 were collected and cultured separately in two different Petri dishes for 24 h to get virgin adult nematodes. A virgin male and a virgin female were paired in a drop of water in the well of a concave slide. The mating behavior was filmed with a video recorder under a stereomicroscope. The whole period of the mating process was 82.8 ±3.91 min (mean ±SE) and could be divided into 4 different phases: searching, contacting, copulating, and lingering. The mean minutes of duration were 21.8 ± 2.0, 28.0 ± 1.9, 25.8 ± 0.7 and 7.2 ± 0.5, respectively. Eleven sub-behaviors were described: cruising, approaching, encountering, touching, hooping, locating, attaching, ejaculating, separating, quiescence, and roaming. Interestingly, obvious intra-sexual competition was observed when one female was grouped with 3 males or one male with 3 females. This protocol is useful and valuable, not only in investigating the mating behavior of B. xylophilus, but also in acting as a reference for ethological studies of other nematodes.
Collapse
Affiliation(s)
- Najie Zhu
- Department of Forest Protection, Zhejiang Agricultural & Forestry University
| | - Liqun Bai
- Department of Forest Protection, Zhejiang Agricultural & Forestry University
| | - Stefan Schütz
- Institute of Forest Zoology and Forest Conservation, Georg-August University Göttingen
| | - Baojun Liu
- College of Plant Protection, Shandong Agricultural University
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University
| | - Xingyao Zhang
- Institute of Forest Protection, Chinese Academy of Forestry
| | - Hongshi Yu
- Department of Forest Protection, Zhejiang Agricultural & Forestry University
| | - Jiafu Hu
- Department of Forest Protection, Zhejiang Agricultural & Forestry University; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University;
| |
Collapse
|
30
|
Dong L, Cornaglia M, Lehnert T, Gijs MAM. On-chip microfluidic biocommunication assay for studying male-induced demise in C. elegans hermaphrodites. LAB ON A CHIP 2016; 16:4534-4545. [PMID: 27735953 DOI: 10.1039/c6lc01005a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Like other animals, C. elegans nematodes have the ability to socially interact and to communicate through exchange and sensing of small soluble signaling compounds that help them cope with complex environmental conditions. For the time being, worm biocommunication assays are being performed mainly on agar plates; however, microfluidic assays may provide significant advantages compared to traditional methods, such as control of signaling molecule concentrations and gradients or confinement of distinct worm populations in different microcompartments. Here, we propose a microfluidic device for studying signaling via diffusive secreted compounds between two specific C. elegans populations over prolonged durations. In particular, we designed a microfluidic assay to investigate the biological process of male-induced demise, i.e. lifespan shortening and accelerated age-related phenotype alterations, in C. elegans hermaphrodites in the presence of a physically separated male population. For this purpose, male and hermaphrodite worm populations were confined in adjacent microchambers on the chip, whereas molecules secreted by males could be exchanged between both populations by periodically activating the controlled fluidic transfer of μl-volume aliquots of male-conditioned medium. For male-conditioned hermaphrodites, we observed a reduction of 4 days in mean lifespan compared to the non-conditioned on-chip culture. We also observed an enhanced muscle decline, as expressed by a faster decrease in the thrashing frequency and the appearance of vacuolar-like structures indicative of accelerated aging. The chip was placed in an incubator at 20 °C for accurate control of the lifespan assay conditions. An on-demand bacteria feeding protocol was applied, and the worms were observed during long-term on-chip culture over the whole worm lifespan.
Collapse
Affiliation(s)
- Li Dong
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Matteo Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
31
|
Dong C, Dolke F, von Reuss SH. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling. Org Biomol Chem 2016; 14:7217-25. [PMID: 27381649 DOI: 10.1039/c6ob01230b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole ascarosides (icas) represent a highly potent class of nematode-derived modular signalling components that integrate structural inputs from amino acid, carbohydrate, and fatty acid metabolism. Comparative analysis of the crude exo-metabolome of hermaphroditic Caenorhabditis briggsae using a highly sensitive mass spectrometric screen reveals an indole ascaroside blend dominated by two new components. The structures of isolated icas#2 and icas#6.2 were determined by NMR spectroscopy and confirmed by total synthesis and chemical correlation. Low atto- to femtomolar amounts of icas#2 and icas#6.2 act in synergism to attract males indicating a function as sex pheromone. Comparative analysis of 14 Caenorhabditis species further demonstrates that species-specific indole ascaroside biosynthesis is highly conserved in the Elegans group. Functional characterization of the dominating indole ascarosides icas#2, icas#3, and icas#9 reveals a high degree of species-specificity and considerable variability with respect to gender-specificity, thus, confirming that indole ascarosides modulate different biological functions within the Elegans group. Although the nematode response was usually most pronounced towards conspecific signals, Caenorhabditis brenneri, the only species of the Elegans group that does not produce any indole ascarosides, exhibits a robust response to icas#2 suggesting the potential for interspecies interactions.
Collapse
Affiliation(s)
- Chuanfu Dong
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
32
|
Castillo DM, Delph LF. Male-female genotype interactions maintain variation in traits important for sexual interactions and reproductive isolation. Evolution 2016; 70:1667-73. [PMID: 27271732 DOI: 10.1111/evo.12964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Prezygotic reproductive isolation can evolve quickly when sexual selection drives divergence in traits important for sexual interactions between populations. It has been hypothesized that standing variation for male/female traits and preferences facilitates this rapid evolution and that variation in these traits is maintained by male-female genotype interactions in which specific female genotypes prefer specific male traits. This hypothesis can also explain patterns of speciation when ecological divergence is lacking, but this remains untested because it requires information about sexual interactions in ancestral lineages. Using a set of ancestral genotypes that previously had been identified as evolving reproductive isolation, we specifically asked whether there is segregating variation in female preference and whether segregating variation in sexual interactions is a product of male-female genotype interactions. Our results provide evidence for segregating variation in female preference and further that male-female genotype interactions are important for maintaining variation that selection can act on and that can lead to reproductive isolation.
Collapse
Affiliation(s)
- Dean M Castillo
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana, 47405.
| | - Lynda F Delph
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana, 47405
| |
Collapse
|
33
|
Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci Rep 2015; 5:17676. [PMID: 26631423 PMCID: PMC4668576 DOI: 10.1038/srep17676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother’s progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction.
Collapse
|
34
|
Castillo DM, Burger MK, Lively CM, Delph LF. Experimental evolution: Assortative mating and sexual selection, independent of local adaptation, lead to reproductive isolation in the nematodeCaenorhabditis remanei. Evolution 2015; 69:3141-55. [DOI: 10.1111/evo.12815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Dean M. Castillo
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| | - Melissa K. Burger
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
- Current Address: Department of Natural Resources Science; University of Rhode Island; Kingston Rhode Island 02881
| | - Curtis M. Lively
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| | - Lynda F. Delph
- Department of Biology; Indiana University; 1001 East Third Street Bloomington Indiana 47405
| |
Collapse
|
35
|
Abstract
Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward, while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and how innate and learned odor responses are related. Here, we review odors, receptors and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions.
Collapse
|
36
|
von Reuss SH, Schroeder FC. Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Nat Prod Rep 2015; 32:994-1006. [PMID: 26059053 PMCID: PMC4884655 DOI: 10.1039/c5np00042d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nematode Caenorhabditis elegans was the first animal to have its genome fully sequenced and has become an important model organism for biomedical research. However, like many other animal model systems, its metabolome remained largely uncharacterized, until recent investigations demonstrated the importance of small molecule-based signalling cascades for virtually every aspect of nematode biology. These studies have revealed that nematodes are amazingly skilled chemists: using simple building blocks from conserved primary metabolism and a strategy of modular assembly, C. elegans and other nematode species create complex molecular architectures to regulate their development and behaviour. These nematode-derived modular metabolites (NDMMs) are based on the dideoxysugars ascarylose or paratose, which serve as scaffolds for attachment of moieties from lipid, amino acid, carbohydrate, citrate, and nucleoside metabolism. Mutant screens and comparative metabolomics based on NMR spectroscopy and MS have so-far revealed several 100 different ascarylose ("ascarosides") and a few paratose ("paratosides") derivatives, many of which represent potent signalling molecules that can be active at femtomolar levels, regulating development, behaviour, body shape, and many other life history traits. NDMM biosynthesis appears to be carefully regulated as assembly of different modules proceeds with very high specificity. Preliminary biosynthetic studies have confirmed the primary metabolism origin of some NDMM building blocks, whereas the mechanisms that underlie their highly specific assembly are not understood. Considering their functions and biosynthetic origin, NDMMs represent a new class of natural products that cannot easily be classified as "primary" or "secondary". We believe that the identification of new variants of primary metabolism-derived structures that serve important signalling functions in C. elegans and other nematodes provides a strong incentive for a comprehensive re-analysis of metabolism in higher animals, including humans.
Collapse
Affiliation(s)
- Stephan H. von Reuss
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Schroeder FC. Modular assembly of primary metabolic building blocks: a chemical language in C. elegans. CHEMISTRY & BIOLOGY 2015; 22:7-16. [PMID: 25484238 PMCID: PMC4304883 DOI: 10.1016/j.chembiol.2014.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023]
Abstract
The metabolome of the nematode Caenorhabditis elegans, like that of other model organisms, remained largely uncharacterized until recent studies demonstrated the importance of small molecule-based signaling cascades for many aspects of nematode biology. These studies revealed that nematodes are amazingly skilled chemists: using simple building blocks from primary metabolism and a strategy of modular assembly, nematodes create complex molecular architectures that serve as signaling molecules. These nematode-derived modular metabolites (NDMMs) are based on the dideoxysugars ascarylose and paratose, which serve as scaffolds for the attachment of moieties from lipid, amino acid, neurotransmitter, and nucleoside metabolism. Although preliminary biosynthetic studies have confirmed the primary metabolism origin of some of the building blocks incorporated into NDMMs, the mechanisms that underlie their highly specific assembly are not understood. I argue that identification of new variants of primary metabolism-derived structures that serve important signaling functions in C. elegans and other nematodes provides a strong incentive for a comprehensive reanalysis of metabolism in higher animals, including humans.
Collapse
Affiliation(s)
- Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Theologidis I, Chelo IM, Goy C, Teotónio H. Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans. BMC Biol 2014; 12:93. [PMID: 25369737 PMCID: PMC4234830 DOI: 10.1186/s12915-014-0093-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of 'reproductive assurance' suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans. RESULTS We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance. CONCLUSIONS Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
Collapse
|
39
|
Emmons SW. The development of sexual dimorphism: studies of the Caenorhabditis elegans male. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:239-62. [PMID: 25262817 PMCID: PMC4181595 DOI: 10.1002/wdev.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Abstract
Studies of the development of the Caenorhabditis elegans male have been carried out with the aim of understanding the basis of sexual dimorphism. Postembryonic development of the two C. elegans sexes differs extensively. Development along either the hermaphrodite or male pathway is specified initially by the X to autosome ratio. The regulatory events initiated by this ratio include a male-determining paracrine intercellular signal. Expression of this signal leads to different consequences in three regions of the body: the nongonadal soma, the somatic parts of the gonad, and the germ line. In the nongonadal soma, activity of the key Zn-finger transcription factor TRA-1 determines hermaphrodite development; in its absence, the male pathway is followed. Only a few genes directly regulated by TRA-1 are currently known, including members of the evolutionarily conserved, male-determining DM domain Zn-finger transcription factors. In the somatic parts of the gonad and germ line, absence of TRA-1 activity is not sufficient for full expression of the male pathway. Several additional transcription factors involved have been identified. In the germ line, regulatory genes for sperm development that act at the level of RNA in the cytoplasm play a prominent role.
Collapse
Affiliation(s)
- Scott W. Emmons
- Albert Einstein College of Medicine 1300 Morris Park Ave. Bronx, New York 10461
| |
Collapse
|
40
|
Chute CD, Srinivasan J. Chemical mating cues in C. elegans. Semin Cell Dev Biol 2014; 33:18-24. [PMID: 24977334 DOI: 10.1016/j.semcdb.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/14/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
In the natural environment it is vital that organisms are capable of locating mates to reproduce and, consequently, increase the diversity of their gene pool. Many species make use of audio and visual communication for mate location. However, the more ancient form of chemical communication is used by all forms of life, from bacteria to mammals. In the past decade, much information has been discovered regarding pheromones in the nematode Caenorhabditis elegans. In this review, chemical signals that govern mating behavior in C. elegans will be discussed, from the existence and identification of mating cues, to the neurons involved in the behavioral response. Specifically, mate attraction is dictated by specific glycosides and side chains of the dideoxysugar ascarylose, a class of molecules known as ascarosides. Intriguingly, modifications of the ascarosides can dictate different behaviors such as male attraction, hermaphrodite attraction, and dauer formation. In general, interactions between core sensory neurons such as ASK and sex-specific neurons like CEM are critical for detecting these small molecules. These data reveal the existence of a complex, synergistic, chemical mating cue system between males and hermaphrodites in C. elegans, thereby highlighting the importance of mate attraction in a primarily hermaphroditic population.
Collapse
Affiliation(s)
- Christopher D Chute
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway, Park, 60 Prescott Street, Worcester, MA 01605, United States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway, Park, 60 Prescott Street, Worcester, MA 01605, United States.
| |
Collapse
|
41
|
Barrios A. Exploratory decisions of the Caenorhabditis elegans male: a conflict of two drives. Semin Cell Dev Biol 2014; 33:10-7. [PMID: 24970102 DOI: 10.1016/j.semcdb.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
The ability to generate behavioral plasticity according to ever-changing physiological demands and environmental conditions is a universal feature of decision-making circuits in all animals. Decision-making requires complex integration of internal states with sensory context. As a mate searching strategy, the Caenorhabditis elegans male modifies his exploratory behavior in relation to a source of food according to recent sensory experience with mates. Information about the reproductive and nutritional status of the male is also incorporated in his choice of exploratory behavior. The study of mate searching in the C. elegans male, a genetic model organism with a nervous system of only 383 neurons, provides the opportunity to elucidate the molecular and cellular mechanisms of state-dependent control of behavior and sensory integration. Here I review our progress in understanding the physiological and environmental regulation of the male's exploratory choices - to explore in search of mates or to exploit a source of food - and the neural circuits and neuromodulator pathways underlying this decision.
Collapse
Affiliation(s)
- Arantza Barrios
- Cell and Developmental Biology Department, University College London, 21 University St, London WC1E 6DE, United Kingdom.
| |
Collapse
|
42
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
43
|
Diaz SA, Brunet V, Lloyd-Jones GC, Spinner W, Wharam B, Viney M. Diverse and potentially manipulative signalling with ascarosides in the model nematode C. elegans. BMC Evol Biol 2014; 14:46. [PMID: 24618411 PMCID: PMC4007702 DOI: 10.1186/1471-2148-14-46] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/25/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Animals use environmental information to make developmental decisions to maximise their fitness. The nematode Caenorhabditis elegans measures its environment to decide between arresting development as dauer larvae or continuing to grow and reproduce. Worms are thought to use ascarosides as signals of population density and this signalling is thought to be a species-wide honest signal. We compared recently wild C. elegans lines' dauer larva arrest when presented with the same ascaroside signals and in different food environments. RESULTS We find that the hitherto canonical dauer larva response does not hold among these lines. Ascaroside molecules can, depending on the food environment, both promote and repress dauer larva formation. Further, these recently wild C. elegans lines also produce ascaroside mixtures that induce a wide diversity of dauer larva formation responses. We further find that the lines differ in the quantity and ratios of ascaroside molecules that they release. Some of the dauer larva formation responses are consistent with dishonest signalling. CONCLUSIONS Together, the results suggest that the idea that dauer larva formation is an honestly-signalled C. elegans-wide effect does not hold. Rather, the results suggest that ascaroside-based signalling is a public broadcast information system, but where the correct interpretation of that information depends on the worms' context, and is a system open to dishonest signalling.
Collapse
Affiliation(s)
- Sylvia Anaid Diaz
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
- Present Address: School of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Vincent Brunet
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - William Spinner
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Barney Wharam
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
44
|
Liu BJ, Hu JF, Liu ZY, Xu L, Lu Q, Li YX, Zhang XY. Behavioural features of Bursaphelenchus xylophilus in the mating process. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is able to produce hundreds of thousands of offspring in a short time. Its mating behaviour might play a basic role in this marked fecundity. We investigated the features of the mating behaviour of B. xylophilus using long-time microscope video and repeated observations. The mating behaviour of B. xylophilus could be separated into a series of sequential sub-behaviours, including cruising, approaching, encountering, touching, hooping, locating, attaching, ejaculating, separating, quiescence and roaming. Overall, the process of mating behaviour could be divided into four different phases, searching, contacting, copulating and lingering; the mean times for these different phases varied significantly with 21.8 ± 2.0 min, 28.0 ± 1.9 min, 23.6 ± 0.7 min and 7.2 ± 0.5 min for each of the four phases, respectively. Attraction between the sexes was observed, indicating that sex pheromone(s) might be involved in mating behaviour of B. xylophilus. In addition, when one female was placed with three males, male-male competition was observed, which might be caused by mating-choice pressure from the female. Intra-sexual competition of females was also occasionally observed.
Collapse
Affiliation(s)
- Bao-Jun Liu
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jia-Fu Hu
- College of Forestry, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang, P.R. China
| | - Zhen-Yu Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, P.R. China
| | - Liang Xu
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Quan Lu
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Yong-Xia Li
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Xing-Yao Zhang
- Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
45
|
Chatterjee I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A. Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 2013; 48:1156-66. [PMID: 23916839 PMCID: PMC4169024 DOI: 10.1016/j.exger.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Collapse
|
46
|
Chasnov JR. The evolutionary role of males in C. elegans. WORM 2013; 2:e21146. [PMID: 24058855 PMCID: PMC3670456 DOI: 10.4161/worm.21146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022]
Abstract
Although the nematode worm Caenorhabditis elegans reproduces primarily as a self-fertilizing hermaphrodite, males are maintained in natural populations at low frequency. In this commentary, I discuss the evolutionary forces that maintain males and the role males might play in this mating system.
Collapse
Affiliation(s)
- Jeffrey R Chasnov
- Department of Mathematics; Hong Kong University of Science and Technology; Kowloon, Hong Kong
| |
Collapse
|
47
|
Ihara S, Yoshikawa K, Touhara K. Chemosensory signals and their receptors in the olfactory neural system. Neuroscience 2013; 254:45-60. [PMID: 24045101 DOI: 10.1016/j.neuroscience.2013.08.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
Abstract
Chemical communication is widely used among various organisms to obtain essential information from their environment required for life. Although a large variety of molecules have been shown to act as chemical cues, the molecular and neural basis underlying the behaviors elicited by these molecules has been revealed for only a limited number of molecules. Here, we review the current knowledge regarding the signaling molecules whose flow from receptor to specific behavior has been characterized. Discussing the molecules utilized by mice, insects, and the worm, we focus on how each organism has optimized its reception system to suit its living style. We also highlight how the production of these signaling molecules is regulated, an area in which considerable progress has been recently made.
Collapse
Affiliation(s)
- S Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
48
|
Sakai N, Iwata R, Yokoi S, Butcher RA, Clardy J, Tomioka M, Iino Y. A sexually conditioned switch of chemosensory behavior in C. elegans. PLoS One 2013; 8:e68676. [PMID: 23861933 PMCID: PMC3701651 DOI: 10.1371/journal.pone.0068676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s). Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwata
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saori Yokoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
49
|
Markert M, García LR. Virgin Caenorhabditis remanei females are attracted to a coital pheromone released by con-specific copulating males. WORM 2013; 2:e24448. [PMID: 24058874 PMCID: PMC3704448 DOI: 10.4161/worm.24448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022]
Abstract
The gonochoristic soil nematode Caenorhabditis remanei strictly requires copulation for species propagation. Males of this species are sexually promiscuous with females of other species; therefore, we asked in this study whether virgin C. remanei females display evidence of mate choice. We digitally recorded and measured the locomotor behaviors of one or more virgin females in the presence of a single male on a 5 mm diameter mating lawn. We observed that initially only the male modifies his locomotor trajectory to another animal on the mating lawn; the virgin females showed no locomotor bias toward the mate-searching male. However, once a male started to copulate, females in the vicinity altered their movement trajectories toward the copulating couple. Newly inseminated females are refractive to the coital signal, but partially regain their attraction to copulating males after 24 h. We found only copulating males with an intact gonad can attract females, and that the coital signal can be broadcasted at least 1.5 mm through the air. Unlike males, which are also attracted to hetero-specific females, virgin C. remanei females will only crawl toward a copulating con-specific male. We suggest that Caenorhabditis females use the coital signal as a pheromone to identify a vigorous male of their own species.
Collapse
Affiliation(s)
- Mathew Markert
- Department of Biology; Texas A&M University; College Station, TX USA
| | | |
Collapse
|
50
|
Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc Natl Acad Sci U S A 2012; 109:20949-54. [PMID: 23213209 DOI: 10.1073/pnas.1218302109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.
Collapse
|