1
|
Schwärzler J, Verstockt B. Presenilins: the hidden guardians of gut health in Alzheimer's disease. Gut 2024; 73:1601-1602. [PMID: 38897732 DOI: 10.1136/gutjnl-2024-332677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Bram Verstockt
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yan K, Zhang C, Kang J, Montenegro P, Shen J. Cortical neurodegeneration caused by Psen1 mutations is independent of Aβ. Proc Natl Acad Sci U S A 2024; 121:e2409343121. [PMID: 39136994 PMCID: PMC11348310 DOI: 10.1073/pnas.2409343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in the PSEN genes are the major cause of familial Alzheimer's disease, and presenilin (PS) is the catalytic subunit of γ-secretase, which cleaves type I transmembrane proteins, including the amyloid precursor protein (APP) to release Aβ peptides. While PS plays an essential role in the protection of neuronal survival, PSEN mutations also increase the ratio of Aβ42/Aβ40. Thus, it remains unresolved whether PSEN mutations cause AD via a loss of its essential function or increases of Aβ42/Aβ40. Here, we test whether the knockin (KI) allele of Psen1 L435F, the most severe FAD mutation located closest to the active site of γ-secretase, causes age-dependent cortical neurodegeneration independent of Aβ by crossing various Psen mutant mice to the App-null background. We report that removing Aβ completely through APP deficiency has no impact on the age-dependent neurodegeneration in Psen mutant mice, as shown by the absence of effects on the reduced cortical volume and decreases of cortical neurons at the ages of 12 and 18 mo. The L435F KI allele increases Aβ42/Aβ40 in the cerebral cortex while decreasing de novo production and steady-state levels of Aβ42 and Aβ40 in the presence of APP. Furthermore, APP deficiency does not alleviate elevated apoptotic cell death in the cerebral cortex of Psen mutant mice at the ages of 2, 12, and 18 mo, nor does it affect the progressive microgliosis in these mice. Our findings demonstrate that Psen1 mutations cause age-dependent neurodegeneration independent of Aβ, providing further support for a loss-of-function pathogenic mechanism underlying PSEN mutations.
Collapse
Affiliation(s)
- Kuo Yan
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Chen Zhang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
3
|
Si Y, Meng B, Qi F. Age- and Genotype-Dependent Effects of Chronic Nicotine on Presenilin1/2 Double Knockout Mice: From Behavior to Molecular Pathways. Curr Alzheimer Res 2024; 21:817-832. [PMID: 39936411 DOI: 10.2174/0115672050363992250127072919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
Introduction The potential therapeutic role of nicotine in Alzheimer's disease (AD) remains controversial, particularly regarding its age-dependent effects and underlying mechanisms. Methods This study investigated the impact of chronic nicotine administration on cognitive function and molecular pathways in Presenilin 1/2 double knockout (DKO) mice, an amyloid-β: (Aβ:)- independent model of AD. Three-month-old and eight-month-old DKO and wild-type (WT) mice received oral nicotine treatment (100 μg/ml) for three months. Behavioral assessments revealed that while the 6-month-old cohort showed no significant differences between nicotine-treated and control groups regardless of genotype, nicotine improved contextual fear memory in 11-month- old DKO mice but impaired nest-building ability and cued fear memory in age-matched WT controls. Transcriptome analysis of the prefrontal cortex identified distinct molecular responses to nicotine between genotypes. Results In DKO mice, nicotine modulated neuropeptide signaling and reduced astrocyte activation, while in WT mice, it disrupted cytokine-cytokine receptor interaction and neuroactive ligand- receptor interaction pathways. Western blot analysis revealed that nicotine treatment significantly reduced tau hyperphosphorylation and Glial Fibrillary Acidic Protein (GFAP) expression in 11-month-old DKO mice, which was further confirmed by immunohistochemistry showing decreased astrocyte activation in multiple brain regions Conclusion These findings demonstrate that nicotine's effects on cognition and molecular pathways are both age- and genotype-dependent, suggesting its therapeutic potential may be limited to specific stages of neurodegeneration while potentially having adverse effects in healthy aging brains.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Feiyan Qi
- Joint Institute of Tobacco and Health, Yunnan Academy of Tobacco Agricultural Science, Kunming, China
| |
Collapse
|
4
|
Montenegro P, Chen P, Kang J, Lee SH, Leone S, Shen J. Human Presenilin-1 delivered by AAV9 rescues impaired γ-secretase activity, memory deficits, and neurodegeneration in Psen mutant mice. Proc Natl Acad Sci U S A 2023; 120:e2306714120. [PMID: 37816062 PMCID: PMC10589670 DOI: 10.1073/pnas.2306714120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Mutations in the Presenilin (PSEN1 and PSEN2) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD PSEN1 mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase. Here, we report that introduction of the codon-optimized wild-type human PSEN1 cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired γ-secretase activity in the cerebral cortex of Psen mutant mice either lacking PS or expressing the Psen1 L435F KI allele, as evaluated by endogenous γ-secretase substrates of APP and recombinant γ-secretase products of Notch intracellular domain and Aβ peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in Psen mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged Psen mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired γ-secretase activity, synaptic and memory deficits, and neurodegeneration caused by Psen mutations in mouse models.
Collapse
Affiliation(s)
- Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sang Hun Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sofia Leone
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Kurth V, Ogorek I, Münch C, Lopez-Rios J, Ousson S, Lehmann S, Nieweg K, Roebroek AJM, Pietrzik CU, Beher D, Weggen S. Pathogenic Aβ production by heterozygous PSEN1 mutations is intrinsic to the mutant protein and not mediated by conformational hindrance of wild-type PSEN1. J Biol Chem 2023; 299:104997. [PMID: 37394008 PMCID: PMC10413157 DOI: 10.1016/j.jbc.2023.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Presenilin-1 (PSEN1) is the catalytic subunit of the intramembrane protease γ-secretase and undergoes endoproteolysis during its maturation. Heterozygous mutations in the PSEN1 gene cause early-onset familial Alzheimer's disease (eFAD) and increase the proportion of longer aggregation-prone amyloid-β peptides (Aβ42 and/or Aβ43). Previous studies had suggested that PSEN1 mutants might act in a dominant-negative fashion by functional impediment of wild-type PSEN1, but the exact mechanism by which PSEN1 mutants promote pathogenic Aβ production remains controversial. Using dual recombinase-mediated cassette exchange (dRMCE), here we generated a panel of isogenic embryonic and neural stem cell lines with heterozygous, endogenous expression of PSEN1 mutations. When catalytically inactive PSEN1 was expressed alongside the wild-type protein, we found the mutant accumulated as a full-length protein, indicating that endoproteolytic cleavage occurred strictly as an intramolecular event. Heterozygous expression of eFAD-causing PSEN1 mutants increased the Aβ42/Aβ40 ratio. In contrast, catalytically inactive PSEN1 mutants were still incorporated into the γ-secretase complex but failed to change the Aβ42/Aβ40 ratio. Finally, interaction and enzyme activity assays demonstrated the binding of mutant PSEN1 to other γ-secretase subunits, but no interaction between mutant and wild-type PSEN1 was observed. These results establish that pathogenic Aβ production is an intrinsic property of PSEN1 mutants and strongly argue against a dominant-negative effect in which PSEN1 mutants would compromise the catalytic activity of wild-type PSEN1 through conformational effects.
Collapse
Affiliation(s)
- Vanessa Kurth
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany; Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carolina Münch
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucia, Sevilla, Spain
| | | | - Sandra Lehmann
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Nieweg
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany
| | | | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Si Y, Chen J, Shen Y, Kubra S, Mei B, Qin ZS, Pan B, Meng B. Circadian rhythm sleep disorders and time-of-day-dependent memory deficiency in Presenilin1/2 conditional knockout mice with long noncoding RNA expression profiling changes. Sleep Med 2023; 103:146-158. [PMID: 36805914 DOI: 10.1016/j.sleep.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) patients exhibit sleep and circadian disturbances prior to the onset of cognitive decline, and these disruptions worsen with disease severity. However, the molecular mechanisms behind sleep and circadian disruptions in AD patients are poorly understood. In this study, we investigated sleep pattern and circadian rhythms in Presenilin-1/2 conditional knockout (DKO) mice. Assessment of EEG and EMG recordings showed that DKO mice displayed increased NREM sleep time but not REM sleep during the dark phase compared to WT mice at the age of two months; at the age of six months, the DKO mice showed increased wakefulness periods and decreased total time spent in both NREM and REM sleep. WT exhibited time-of-day dependent modulation of contextual and cued memory. Compared with WT mice, 4-month-old DKO mice exhibited the deficiency regardless trained and tested in the same light/night phase or not. Particularly interesting was that DKO showed circadian modulation deficiency when trained in the resting period but not in the active period. Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides, and they have rhythmic expression in mammals. To date no study has investigated rhythmic lncRNA expression in Alzheimer's disease. We applied RNA-seq technology to profile hippocampus expression of lncRNAs in DKO mice during the light (/resting) and dark (/active) phases and performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the cis lncRNA targets. Expression alteration of lncRNAs associated with immune response and metallodipeptidase activity may contribute to the circadian disruptions of DKO mice. Especially we identified some LncRNAs which expression change oppositely between day and light in DKO mice compared to WT mice and are worthy to be studied further. Our results exhibited the circadian rhythm sleep disorders and a noteworthy time-of-day-dependent memory deficiency in AD model mice and provide a useful resource for studying the expression and function of lncRNAs during circadian disruptions in Alzheimer's disease.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jing Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yang Shen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Syeda Kubra
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States.
| | - Boxi Pan
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Alpha7 nicotinic acetylcholine receptor agonist PHA-543613 improves memory deficits in presenilin 1 and presenilin 2 conditional double knockout mice. Exp Neurol 2023; 359:114271. [PMID: 36370840 DOI: 10.1016/j.expneurol.2022.114271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Cholinergic system dysfunction has been considered as a critical feature of neurodegenerative progression in Alzheimer's disease (AD). The α7 nicotinic acetylcholine receptors (α7-nAChRs) are widely expressed in the hippocampus cortex and play an important role in memory formation, considered as potential therapeutic agents targets. However, underlying mechanisms have not been fully elucidated. Here, we combine behavioral, molecular biological methods with in vitro slice and in vivo multichannel electrophysiological recording techniques to investigate the molecular, cellular synaptic and neuronal mechanisms of activating α7-nAChR by PHA-543613 (a selective α7-nAChR agonist), which influences the impaired cognitive function using presenilin 1 (PS1) and presenilin 2 (PS2) conditional double knockout (cDKO) mice. Our results demonstrated that PHA-543613 treatment significantly improved the impaired hippocampus-related memory via recovering the reduced the hippocampal synaptic protein levels of α7-nAChR, NMADAR and AMPAR, thereby restoring the impaired post-tetanic potentiation (PTP), long-term potentiation (LTP), activation of molecular signaling pathway for neuronal protection, theta power and strength of theta-gamma phase-amplitude coupling (PAC) at hippocampus in 6-month-old cDKO mice. For the first time, we systematically reveal the mechanisms by which PHA-543613 improves memory deficits at different levels. Therefore, our findings may be significant for the development of therapeutic strategies for AD.
Collapse
|
8
|
Peng W, Xie Y, Liao C, Bai Y, Wang H, Li C. Spatiotemporal patterns of gliosis and neuroinflammation in presenilin 1/2 conditional double knockout mice. Front Aging Neurosci 2022; 14:966153. [PMID: 36185485 PMCID: PMC9521545 DOI: 10.3389/fnagi.2022.966153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that neuroinflammation contributes to and exacerbates the pathogenesis of Alzheimer’s disease (AD). Neuroinflammation is thought to be primarily driven by glial cells (microglia and astrocytes) and escalates with neurodegenerative progression in AD. However, the spatiotemporal change patterns of glial reactivity and neuroinflammatory response during different stages of neurodegeneration, especially early in disease, remain unknown. Here we found that gliosis and the up-regulation of substantial neuroinflammatory genes were primarily initiated in the cortex of presenilin 1/2 conditional double knockout (cDKO) mice, rather than in the hippocampus. Specifically, astrocyte activation preceding microglial activation was found in the somatosensory cortex (SS) of cDKO mice at 6 weeks of age. Over time, both astrocyte and microglial activation were found in the whole cortex, and age-related increases in gliosis activation were more pronounced in the cortex compared to hippocampus. Moreover, the age-associated increase in glial activation was accompanied by a gradual increase in the expression of cell chemokines Ccl3 and Ccl4, complement related factors C1qb, C3 and C4, and lysosomal proteases cathepsin S and Z. These findings suggest that astrocyte and microglial activation with a concurrent increase in inflammatory mediators such as chemokines might be an early event and contribute to the pathogenesis of neurodegeneration due to presenilin deficiency.
Collapse
Affiliation(s)
- Wenjun Peng
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuan Xie
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chongzheng Liao
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Huimin Wang,
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- *Correspondence: Chunxia Li,
| |
Collapse
|
9
|
Duan Y, Lv J, Zhang Z, Chen Z, Wu H, Chen J, Chen Z, Yang J, Wang D, Liu Y, Chen F, Tian Y, Cao X. Exogenous Aβ 1-42 monomers improve synaptic and cognitive function in Alzheimer's disease model mice. Neuropharmacology 2022; 209:109002. [PMID: 35196539 DOI: 10.1016/j.neuropharm.2022.109002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023]
Abstract
Growing evidence has suggested the poor correlation between brain amyloid plaque and Alzheimer's disease (AD). Presenilin1 (PS1) and presenilin2 (PS2) conditional double knockout (cDKO) mice exhibited the reduced 42-amino acid amyloid-β peptide (Aβ1-42) level and AD-like symptoms, indicating a different pathological mechanism from the amyloid cascade hypothesis for AD. Here we found that exogenous synthetic Aβ1-42 monomers could improve the impaired memory not only in cDKO mice without Aβ1-42 deposition but also in the APP/PS1/Tau triple transgenic 3 × Tg-AD mice with Aβ1-42 deposition, which were mediated by α7-nAChR. Our findings demonstrate for the first time that reduced soluble Aβ1-42 level is the main cause of cognitive dysfunction in cDKO mice, and support the opinions that low soluble Aβ1-42 level due to Aβ1-42 deposition may also cause cognitive deficits in 3 × Tg-AD mice. Therefore, "loss-of-function" of Aβ1-42 should be avoided when designing therapies aimed at reducing Aβ1-42 burden in AD.
Collapse
Affiliation(s)
- Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhenzhen Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Hao Wu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jinnan Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhidong Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jiarun Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
10
|
Bolin PK, Gosnell SN, Brandel-Ankrapp K, Srinivasan N, Castellanos A, Salas R. Decreased Brain Ventricular Volume in Psychiatric Inpatients with Serotonin Reuptake Inhibitor Treatment. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221111092. [PMID: 35859799 PMCID: PMC9290100 DOI: 10.1177/24705470221111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Background Brain ventricles have been reported to be enlarged in several neuropsychiatric disorders and in aging. Whether human cerebral ventricular volume can decrease over time with psychiatric treatment is not well-studied. The aim of this study was to examine whether inpatients taking serotonin reuptake inhibitors (SRI) exhibited reductions in cerebral ventricular volume. Methods Psychiatric inpatients, diagnosed mainly with depression, substance use, anxiety, and personality disorders, underwent two imaging sessions (Time 1 and Time 2, approximately 4 weeks apart). FreeSurfer was used to quantify volumetric features of the brain, and ANOVA was used to analyze ventricular volume differences between Time 1 and Time 2. Inpatients' brain ventricle volumes were normalized by dividing by estimated total intracranial volume (eTIV). Clinical features such as depression and anxiety levels were collected at Time 1, Time 1.5 (approximately 2 weeks apart), and Time 2. Results Inpatients consistently taking SRIs (SRI + , n = 44) showed statistically significant reductions of brain ventricular volumes particularly for their left and right lateral ventricular volumes. Reductions in their third ventricular volume were close to significance (p = .068). The inpatients that did not take SRIs (SRI-, n = 25) showed no statistically significant changes in brain ventricular volumes. The SRI + group also exhibited similar brain structural features to the healthy control group based on the 90% confidence interval comparsions on brain ventricular volume parameters, whereas the SRI- group still exhibited relatively enlarged brain ventricular volumes after treatment. Conclusions SRI treatment was associated with decreased brain ventricle volume over treatment.
Collapse
Affiliation(s)
- PK Bolin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery (CDD), Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - SN Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - K Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - A Castellanos
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - R Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
11
|
Salazar JL, Yang SA, Lin YQ, Li-Kroeger D, Marcogliese PC, Deal SL, Neely GG, Yamamoto S. TM2D genes regulate Notch signaling and neuronal function in Drosophila. PLoS Genet 2021; 17:e1009962. [PMID: 34905536 PMCID: PMC8714088 DOI: 10.1371/journal.pgen.1009962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/28/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neurology, BCM, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
| | - Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Samantha L. Deal
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Center for Alzheimer’s and Neurodegenerative Diseases, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
| |
Collapse
|
12
|
Si Y, Guo C, Xiao F, Mei B, Meng B. Noncognitive species-typical and home-cage behavioral alterations in conditional presenilin 1/presenilin 2 double knockout mice. Behav Brain Res 2021; 418:113652. [PMID: 34758364 DOI: 10.1016/j.bbr.2021.113652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Impairments in activities of daily living (ADL) are common clinical symptoms of human Alzheimer's disease (AD). Describing the ADL in AD animal models might provide more insights into the mechanism/treatment of the disease. Here, we demonstrated that the forebrain presenilin 1(Psen1)/presenilin 2 (Psen2) conditional double knockout (DKO) mice exhibited deficits in nest building, marble burying and food burrowing starting at 3 months old and worsening at later ages. At 4 months of age, spontaneous activities in the home cage were also impaired in DKO mice, including physically demanding activities, habituation-like behaviors, and nourishment behaviors during the first two hours in the dark phase. These results indicated that loss of function of Psen1 and Psen2 in mice impaired a series of noncognitive behaviors in the early phase of neurodegeneration. This observation suggests that DKO mice are an ideal model for further mechanistic studies of Psen1 and Psen2 functions in regulating noncognitive behaviors.
Collapse
Affiliation(s)
- Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Chao Guo
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegne, Netherlands
| | - Fan Xiao
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Bing Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
13
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
14
|
Gao J, Wang L, Zhao C, Wu Y, Lu Z, Gu Y, Ba Z, Wang X, Wang J, Xu Y. Peony seed oil ameliorates neuroinflammation-mediated cognitive deficits by suppressing microglial activation through inhibition of NF-κB pathway in presenilin 1/2 conditional double knockout mice. J Leukoc Biol 2021; 110:1005-1022. [PMID: 34494312 DOI: 10.1002/jlb.3ma0821-639rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic neuroinflammation has been shown to exert adverse influences on the pathology of Alzheimer's disease (AD), associated with the release of abundant proinflammatory mediators by excessively activated microglia, causing synaptic dysfunction, neuronal degeneration, and memory deficits. Thus, the prevention of microglial activation-associated neuroinflammation is important target for deterring neurodegenerative disorders. Peony seed oil (PSO) is a new food resource, rich in α-linolenic acid, the precursor of long chain omega-3 polyunsaturated fatty acids, including docosahexaenoic acid and eicosapentaenoic acid, which exhibit anti-inflammatory properties by altering cell membrane phospholipid fatty acid compositions, disrupting lipid rafts, and inhibiting the activation of the proinflammatory transcription factor NF-κB. However, few studies have examined the anti-neuroinflammatory effects of PSO in AD, and the relevant molecular mechanisms remain unclear. Presenilin1/2 conditional double knockout (PS cDKO) mice display obvious AD-like phenotypes, such as neuroinflammatory responses, synaptic dysfunction, and cognitive deficits. Here, we assessed the potential neuroprotective effects of PSO against neuroinflammation-mediated cognitive deficits in PS cDKO using behavioral tests and molecular biologic analyses. Our study demonstrated that PSO suppressed microglial activation and neuroinflammation through the down-regulation of proinflammatory mediators, such as inducible NOS, COX-2, IL-1β, and TNF-α, in the prefrontal cortex and hippocampus of PS cDKO mice. Further, PSO significantly lessened memory impairment by reversing hyperphosphorylated tau and synaptic proteins deficits in PS cDKO mice. Importantly, PSO's therapeutic effects on cognitive deficits were due to inhibiting neuroinflammatory responses mediated by NF-κB signaling pathway. Taken together, PSO may represent an effective dietary supplementation to restrain the neurodegenerative processes of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lijun Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyuan Lu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yining Gu
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Zongtao Ba
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyu Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Majumder A, Maiti T, Datta S. A Bayesian group lasso classification for ADNI volumetrics data. Stat Methods Med Res 2021; 30:2207-2220. [PMID: 34460337 DOI: 10.1177/09622802211022404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The primary objective of this paper is to develop a statistically valid classification procedure for analyzing brain image volumetrics data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in elderly subjects with cognitive impairments. The Bayesian group lasso method thereby proposed for logistic regression efficiently selects an optimal model with the use of a spike and slab type prior. This method selects groups of attributes of a brain subregion encouraged by the group lasso penalty. We conduct simulation studies for high- and low-dimensional scenarios where our method is always able to select the true parameters that are truly predictive among a large number of parameters. The method is then applied on dichotomous response ADNI data which selects predictive atrophied brain regions and classifies Alzheimer's disease patients from healthy controls. Our analysis is able to give an accuracy rate of 80% for classifying Alzheimer's disease. The suggested method selects 29 brain subregions. The medical literature indicates that all these regions are associated with Alzheimer's patients. The Bayesian method of model selection further helps selecting only the subregions that are statistically significant, thus obtaining an optimal model.
Collapse
Affiliation(s)
- Atreyee Majumder
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Subha Datta
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
16
|
Gao J, Zhou N, Wu Y, Lu M, Wang Q, Xia C, Zhou M, Xu Y. Urinary metabolomic changes and microbiotic alterations in presenilin1/2 conditional double knockout mice. J Transl Med 2021; 19:351. [PMID: 34399766 PMCID: PMC8365912 DOI: 10.1186/s12967-021-03032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer’s disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD. Materials and methods Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman’s correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota. Results In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites. Conclusions The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03032-9.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengna Lu
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qixue Wang
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
17
|
Electroacupuncture Ameliorates Neuroinflammation-Mediated Cognitive Deficits through Inhibition of NLRP3 in Presenilin1/2 Conditional Double Knockout Mice. Neural Plast 2021; 2021:8814616. [PMID: 33505459 PMCID: PMC7806385 DOI: 10.1155/2021/8814616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is considered as one of the crucial pathogenesis in promoting neurodegenerative progress of Alzheimer's disease (AD). As complementary and alternative therapy, electroacupuncture (EA) stimulation has been widely used in clinical practice for anti-inflammation. However, whether EA promotes the cognitive deficits resulting from neuroinflammation in AD remains unclear. In this study, the presenilin 1 and 2 conditional double knockout (PS cDKO) mice, exhibited a series of AD-like pathology, robust neuroinflammatory responses, and memory deficits, were used to evaluate the potential neuroprotective effect of EA at Baihui (GV 20) and Shenting (GV 24) by behavioral testing, electrophysiology recording, and molecular biology analyzing. First, we observed that EA improved memory deficits and impaired synaptic plasticity. Moreover, EA possesses an ability to suppress the hyperphosphorylated tau and robust elevated NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in PS cDKO mice. Importantly, MCC950, a potent and selective inhibitor of NLPR3 inflammasome, has similar effects on inhibiting the hyperphosphorylated tau and the robust elevated NLRP3 components and neuroinflammatory responses of PS cDKO mice as well as EA treatment. Furthermore, EA treatment is not able to further improve the AD-like phenotypes of PS cDKO mice in combination with the MCC950 administration. Therefore, EA stimulation at GV 20 and GV 24 acupoints may be a potential alternative therapy for deterring cognitive deficits in AD through suppression of NLRP3 inflammasome activation.
Collapse
|
18
|
Kang J, Shen J. Cell-autonomous role of Presenilin in age-dependent survival of cortical interneurons. Mol Neurodegener 2020; 15:72. [PMID: 33302995 PMCID: PMC7731773 DOI: 10.1186/s13024-020-00419-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mutations in the PSEN1 and PSEN2 genes are the major cause of familial Alzheimer's disease. Previous studies demonstrated that Presenilin (PS), the catalytic subunit of γ-secretase, is required for survival of excitatory neurons in the cerebral cortex during aging. However, the role of PS in inhibitory interneurons had not been explored. METHODS To determine PS function in GABAergic neurons, we generated inhibitory neuron-specific PS conditional double knockout (IN-PS cDKO) mice, in which PS is selectively inactivated by Cre recombinase expressed under the control of the endogenous GAD2 promoter. We then performed behavioral, biochemical, and histological analyses to evaluate the consequences of selective PS inactivation in inhibitory neurons. RESULTS IN-PS cDKO mice exhibit earlier mortality and lower body weight despite normal food intake and basal activity. Western analysis of protein lysates from various brain sub-regions of IN-PS cDKO mice showed significant reduction of PS1 levels and dramatic accumulation of γ-secretase substrates. Interestingly, IN-PS cDKO mice develop age-dependent loss of GABAergic neurons, as shown by normal number of GAD67-immunoreactive interneurons in the cerebral cortex at 2-3 months of age but reduced number of cortical interneurons at 9 months. Moreover, age-dependent reduction of Parvalbumin- and Somatostatin-immunoreactive interneurons is more pronounced in the neocortex and hippocampus of IN-PS cDKO mice. Consistent with these findings, the number of apoptotic cells is elevated in the cerebral cortex of IN-PS cDKO mice, and the enhanced apoptosis is due to dramatic increases of apoptotic interneurons, whereas the number of apoptotic excitatory neurons is unaffected. Furthermore, progressive loss of interneurons in the cerebral cortex of IN-PS cDKO mice is accompanied with astrogliosis and microgliosis. CONCLUSION Our results together support a cell-autonomous role of PS in the survival of cortical interneurons during aging. Together with earlier studies, these findings demonstrate a universal, essential requirement of PS in the survival of both excitatory and inhibitory neurons during aging.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
19
|
Dexamethasone does not ameliorate gliosis in a mouse model of neurodegenerative disease. Biochem Biophys Rep 2020; 24:100817. [PMID: 33015377 DOI: 10.1016/j.bbrep.2020.100817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.
Collapse
|
20
|
Bi HR, Zhou CH, Zhang YZ, Cai XD, Ji MH, Yang JJ, Chen GQ, Hu YM. Neuron-specific deletion of presenilin enhancer2 causes progressive astrogliosis and age-related neurodegeneration in the cortex independent of the Notch signaling. CNS Neurosci Ther 2020; 27:174-185. [PMID: 32961023 PMCID: PMC7816208 DOI: 10.1111/cns.13454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Presenilin enhancer2 (Pen‐2) is an essential subunit of γ‐secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen‐2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen‐2 regulates neuronal survival and neuroinflammation in the adult brain. Methods Forebrain neuron‐specific Pen‐2 conditional knockout (Pen‐2 cKO) mice were generated for this study. Pen‐2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. Results Loss of Pen‐2 causes astrogliosis followed by age‐dependent cortical atrophy and neuronal loss. Loss of Pen‐2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen‐2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. Conclusions Pen‐2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen‐2.
Collapse
Affiliation(s)
- Hui-Ru Bi
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Cui-Hua Zhou
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi-Zhi Zhang
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Xu-Dong Cai
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Quan Chen
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Yi-Min Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
21
|
Feng X, Li T, Song X, Zhu H. Bayesian Scalar on Image Regression With Nonignorable Nonresponse. J Am Stat Assoc 2019; 115:1574-1597. [PMID: 33627920 PMCID: PMC7901831 DOI: 10.1080/01621459.2019.1686391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Medical imaging has become an increasingly important tool in screening, diagnosis, prognosis, and treatment of various diseases given its information visualization and quantitative assessment. The aim of this article is to develop a Bayesian scalar-on-image regression model to integrate high-dimensional imaging data and clinical data to predict cognitive, behavioral, or emotional outcomes, while allowing for nonignorable missing outcomes. Such a nonignorable nonresponse consideration is motivated by examining the association between baseline characteristics and cognitive abilities for 802 Alzheimer patients enrolled in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1), for which data are partially missing. Ignoring such missing data may distort the accuracy of statistical inference and provoke misleading results. To address this issue, we propose an imaging exponential tilting model to delineate the data missing mechanism and incorporate an instrumental variable to facilitate model identifiability followed by a Bayesian framework with Markov chain Monte Carlo algorithms to conduct statistical inference. This approach is validated in simulation studies where both the finite sample performance and asymptotic properties are evaluated and compared with the model with fully observed data and that with a misspecified ignorable missing mechanism. Our proposed methods are finally carried out on the ADNI1 dataset, which turns out to capture both of those clinical risk factors and imaging regions consistent with the existing literature that exhibits clinical significance. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Collapse
Affiliation(s)
- Xiangnan Feng
- School of Economics and Management, Southwest Jiaotong University, Chengdu, China
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Xinyuan Song
- Department of Statistics, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
22
|
Trans-cinnamaldehyde improves neuroinflammation-mediated NMDA receptor dysfunction and memory deficits through blocking NF-κB pathway in presenilin1/2 conditional double knockout mice. Brain Behav Immun 2019; 82:45-62. [PMID: 31376499 DOI: 10.1016/j.bbi.2019.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
A chronic neuroinflammatory response has been considered as a critical pathogenesis promoting neurodegenerative progression in Alzheimer's disease (AD). During neuroinflammatory process, microglia are excessively activated and simultaneously release numerous pro-inflammatory mediators that cause synaptic dysfunction in the forebrain prior to neuronal degeneration and memory deficits in AD. Thus, prevention of neuroinflammation-mediated synaptic dysfunction may be a potential therapeutic approach against neurodegenerative disorders. Trans-cinnamaldehyde (TCA) is a primary bioactive component derived from the stem bark of Cinnamomum cassia, and it possesses potent anti-inflammatory and neuroprotective activities in in vivo and in vitro experiments. However, the in-depth molecular mechanisms of TCA underlying anti-neuroinflammatory and neuroprotective effects on memory deficits in AD are still unclear. The presenilin 1 and 2 conditional double knockout (PS cDKO) mice exhibit AD-like phenotypes including obvious neuroinflammatory responses and synaptic dysfunction and memory deficits. Here, PS cDKO were used to evaluate the potential neuroprotective effects of TCA against neuroinflammation-mediated dementia by performing behavioral tests, electrophysiological recordings and molecular biology analyses. We observed that TCA treatment reversed abnormal expression of synaptic proteins and tau hyperphosphorylation in the hippocampus and prefrontal cortex of PS cDKO mice. TCA treatment also ameliorated NMDA receptor (NMDAR) dysfunction including impaired NMDAR-mediated responses and long-term potentiation (LTP) induction in the hippocampus of PS cDKO mice. Moreover, TCA possesses an ability to suppress neuroinflammatory responses by diminishing microglial activation and levels of pro-inflammatory mediators in the hippocampus and prefrontal cortex of PS cDKO mice. Importantly, improving NMDAR dysfunction and memory deficits of PS cDKO mice was due to the inhibition of neuroinflammatory responses through TCA's interruptive effect on the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, TCA may be a potential anti-neuroinflammatory agent for deterring neurodegenerative progression of AD.
Collapse
|
23
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
24
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Zhang L, Dong H, Si Y, Wu N, Cao H, Mei B, Meng B. miR-125b promotes tau phosphorylation by targeting the neural cell adhesion molecule in neuropathological progression. Neurobiol Aging 2019; 73:41-49. [DOI: 10.1016/j.neurobiolaging.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
|
26
|
Cao T, Zhou X, Zheng X, Cui Y, Tsien JZ, Li C, Wang H. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice. Front Aging Neurosci 2018; 10:137. [PMID: 29867447 PMCID: PMC5962686 DOI: 10.3389/fnagi.2018.00137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022] Open
Abstract
Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC) inhibitor sodium butyrate (NaB) has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD) mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO) mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG). We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP) level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.
Collapse
Affiliation(s)
- Ting Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Xiaojuan Zhou
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Xianjie Zheng
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Yue Cui
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, United States
| | - Chunxia Li
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Psychology and Cognitive Science, East China Normal University Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai Shanghai, China.,Shanghai Changning-ECNU Mental Health Center Shanghai, China
| |
Collapse
|
27
|
Dai MH, Zheng H, Zeng LD, Zhang Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018; 9:15132-15143. [PMID: 29599933 PMCID: PMC5871104 DOI: 10.18632/oncotarget.23738] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia, which is characterized by the deposition of dense plaques of amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. The two main types of AD can be classified as early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years). Evidence from family and twin studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The first milestone with linkage analysis revealed the mutations in APP, PSEN1, and PSEN2 genes that cause EOAD. But pathogenic mutations in these three genes can only explain a small fraction of EOAD families. The additional disease-causing genes have not yet been identified. This review provides an overview of the genetic basis of EOAD and the relationship between the functions of these risk genes and the neuropathologic features of AD. A better understanding of genetic mechanisms underlying EOAD pathogenesis and the potentially molecular mechanisms of neurodegeneration will lead to the development of effective diagnosis and treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Meng-Hui Dai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Dan Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
28
|
Watanabe H, Shen J. Dominant negative mechanism of Presenilin-1 mutations in FAD. Proc Natl Acad Sci U S A 2017; 114:12635-12637. [PMID: 29142009 PMCID: PMC5715794 DOI: 10.1073/pnas.1717180114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
29
|
Xu C, Yu L, Hou J, Jackson RJ, Wang H, Huang C, Liu T, Wang Q, Zou X, Morris RG, Spires-Jones TL, Yang Z, Yin Z, Xu Y, Chen G. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development. Front Cell Neurosci 2017; 11:330. [PMID: 29104535 PMCID: PMC5655024 DOI: 10.3389/fncel.2017.00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.
Collapse
Affiliation(s)
- Congyu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Tingting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Instituto de Neurociencias, Alicante, Spain
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatrics, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Liu TT, Ye XL, Zhang JP, Yu TT, Cheng SS, Zou XC, Xu Y, Chen GQ, Yin ZY. Increased adult neurogenesis associated with reactive astrocytosis occurs prior to neuron loss in a mouse model of neurodegenerative disease. CNS Neurosci Ther 2017; 23:885-893. [PMID: 28960838 DOI: 10.1111/cns.12763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
AIMS This study was to investigate whether cell proliferation and adult neurogenesis are affected at early neurodegenerative stage when neuron loss has not begun to display. METHODS AND RESULTS Forebrain-specific nicastrin (NCT) conditional knockout (cKO) mice were generated by crossing NCTf/f with CaMKIIα-Cre Tg mice. BrdU was used as a lineage tracer to label proliferating neural progenitor cells (NPCs). Immunohistochemistry (IHC) on BrdU indicated that the total number of BrdU positive (+) cells was increased in NCT cKO mice. IHC on doublecortin (DCX) showed that the total number of DCX+ cells was also increased in NCT cKO mice. NCT cKO mice displayed significant astrogliosis as well. However, NCT cKO mice at 3 months did not show significant neuronal death or synaptic loss. CONCLUSIONS NCT-dependent γ-secretase activity plays an important role in cell proliferation and immature neuron generation. Enhanced neurogenesis and astrogliosis may be early cellular events prior to the occurrence of neuronal death in neurodegenerative disease.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Xiao-Lian Ye
- Department of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin-Ping Zhang
- Department of Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Medicament, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ting-Ting Yu
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shan-Shan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Xiao-Chuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Zhen-Yu Yin
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
31
|
Li Z, Jia K, Duan Y, Wang D, Zhou Z, Dong S. Xanomeline derivative EUK1001 attenuates Alzheimer's disease pathology in a triple transgenic mouse model. Mol Med Rep 2017; 16:7835-7840. [PMID: 28944835 DOI: 10.3892/mmr.2017.7502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Agonists of M1 muscarinic acetylcholine receptors are promising therapeutic agents for the treatment of Alzheimer's disease (AD). An example of one of these agents is xanomeline, which has been a leading candidate, however induces various unwanted adverse effects. 3‑[3‑(3‑florophenyl‑2‑propyn‑1‑ylthio)‑1,2,5‑thiadiazol-4-yl]-1,2,5,6-tetrahydro‑1‑methylpyridine oxalate (EUK1001), a fluorinated derivative of xanomeline, has been demonstrated to attenuate AD‑like neurodegenerative pathology in presenilin‑deficient mice, which has no β‑amyloid (Aβ) pathology. The present study assessed the effect of EUK1001 on the behavioral performance of the 3xTg‑AD model of AD. EUK1001 treatment decreased cognitive deficits in male and female AD mice in the Morris water maze test and novel object recognition tasks. EUK1001 also decreased Aβ42, however not Aβ40 in the cortex and hippocampus of AD mice. EUK1001 may also alter amyloid precursor protein processing to a nonamyloidgenic pathway in vitro. These results demonstrate that EUK1001 may ameliorate the cognitive dysfunction of AD mice, possibly by reducing Aβ production. Therefore, EUK1001 may be an effective treatment for AD.
Collapse
Affiliation(s)
- Ziyan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Kaili Jia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Yale Duan
- Key Lab of Brain Functional Genomics, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, P.R. China
| | - Dong Wang
- Key Lab of Brain Functional Genomics, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, P.R. China
| | - Zongli Zhou
- Key Lab of Brain Functional Genomics, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, P.R. China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
32
|
An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Drosophila Brain. Genetics 2017; 206:1479-1493. [PMID: 28495961 DOI: 10.1534/genetics.116.196881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in the Presenilin genes are the major genetic cause of Alzheimer's disease. Presenilin and Nicastrin are essential components of γ-secretase, a multi-subunit protease that cleaves Type I transmembrane proteins. Genetic studies in mice previously demonstrated that conditional inactivation of Presenilin or Nicastrin in excitatory neurons of the postnatal forebrain results in memory deficits, synaptic impairment, and age-dependent neurodegeneration. The roles of Drosophila Presenilin (Psn) and Nicastrin (Nct) in the adult fly brain, however, are unknown. To knockdown (KD) Psn or Nct selectively in neurons of the adult brain, we generated multiple shRNA lines. Using a ubiquitous driver, these shRNA lines resulted in 80-90% reduction of mRNA and pupal lethality-a phenotype that is shared with Psn and Nct mutants carrying nonsense mutations. Furthermore, expression of these shRNAs in the wing disc caused notching wing phenotypes, which are also shared with Psn and Nct mutants. Similar to Nct, neuron-specific Psn KD using two independent shRNA lines led to early mortality and rough eye phenotypes, which were rescued by a fly Psn transgene. Interestingly, conditional KD (cKD) of Psn or Nct in adult neurons using the elav-Gal4 and tubulin-Gal80ts system caused shortened lifespan, climbing defects, increases in apoptosis, and age-dependent neurodegeneration. Together, these findings demonstrate that, similar to their mammalian counterparts, Drosophila Psn and Nct are required for neuronal survival during aging and normal lifespan, highlighting an evolutionarily conserved role of Presenilin in neuronal protection in the aging brain.
Collapse
|
33
|
Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. SCIENCE CHINA-LIFE SCIENCES 2017; 60:189-201. [DOI: 10.1007/s11427-016-0347-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
|
34
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
35
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
36
|
Hou JX, Cheng SS, Chen L, Wang QH, Shi Y, Xu Y, Yin ZY, Chen GQ. Astroglial Activation and Tau Hyperphosphorylation Precede to Neuron Loss in a Neurodegenerative Mouse Model. CNS Neurosci Ther 2016; 22:244-7. [PMID: 26804055 DOI: 10.1111/cns.12509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jin-Xing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China.,School of Life Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shan-Shan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi-Hui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun Shi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zhen-Yu Yin
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
37
|
Loss of Presenilin 2 Function Is Associated with Defective LPS-Mediated Innate Immune Responsiveness. Mol Neurobiol 2015; 53:3428-3438. [PMID: 26081153 DOI: 10.1007/s12035-015-9285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
The importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling. We show that immortalized fibroblasts and bone marrow-derived macrophages from Psen2- but not Psen1-deficient mice display reduced responsiveness to lipopolysaccharide (LPS) with decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activity and diminished pro-inflammatory cytokine production. In whole animal in vivo responses, Psen2-deficient animals have abnormal systemic production of LPS-stimulated pro-inflammatory cytokines. Mechanistically, we demonstrate that Psen2 deficiency is paralleled by reduced transcription of tlr4 mRNA and loss of LPS-induced tlr4 mRNA transcription regulation. These observations illustrate a novel PS2-dependent means of modulating LPS-mediated immune responses and identify a functional distinction between PS1 and PS2 in innate immunity.
Collapse
|
38
|
Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep 2015; 5:10535. [PMID: 26000566 PMCID: PMC4441131 DOI: 10.1038/srep10535] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022] Open
Abstract
Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis.
Collapse
|
39
|
Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 2015; 77:556-68. [PMID: 25156700 PMCID: PMC4297754 DOI: 10.1016/j.biopsych.2014.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-methyl-D-aspartate receptor (NMDAR)-mediated inhibition from parvalbumin interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. METHODS In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neuron specific NMDA receptor 1 knockout mice. RESULTS The mice displayed increased baseline gamma power, as well as sociocognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increased neuronal excitability. CONCLUSIONS Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological, and behavioral changes related to SZ.
Collapse
|
40
|
Abstract
Mutations in the presenilin (PSEN1 and PSEN2) genes are linked to familial Alzheimer's disease (AD) and cause loss of its essential function. Complete inactivation of presenilins in excitatory neurons of the adult mouse cerebral cortex results in progressive memory impairment and age-dependent neurodegeneration, recapitulating key features of AD. In this study, we examine the effects of varying presenilin dosage on cortical neuron survival by generating presenilin-1 conditional knock-out (PS1 cKO) mice carrying two, one, or zero copies of the PS2 gene. We found that PS1 cKO;PS2(+/-) mice at 16 months exhibit marked neurodegeneration in the cerebral cortex with ∼17% reduction of cortical volume and neuron number, as well as astrogliosis and microgliosis compared with ∼50% reduction of cortical volume and neuron number in PS1 cKO;PS2(-/-) mice. Moreover, there are more apoptotic neurons labeled by activated caspase-3 immunoreactivity and TUNEL assay in PS1 cKO;PS2(+/-) mice at 16 months, whereas apoptotic neurons are increased in the PS1 cKO;PS2(-/-) cerebral cortex at 4 months. The accumulation of the C-terminal fragments of the amyloid precursor protein is inversely correlated with PS dosage. Interestingly, levels of PS2 are higher in the cerebral cortex of PS1 cKO mice, suggesting a compensatory upregulation that may provide protection against neurodegeneration in these mice. Together, our findings show that partial to complete loss of presenilin activity causes progressively more severe neurodegeneration in the mouse cerebral cortex during aging, suggesting that impaired presenilin function by PSEN mutations may lead to neurodegeneration and dementia in AD.
Collapse
|
41
|
Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations. PLoS One 2014; 9:e97851. [PMID: 24846136 PMCID: PMC4028278 DOI: 10.1371/journal.pone.0097851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Prostatic acid phosphatase (PAP), the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG), but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP) in the brain by utilizing mice deficient in TMPAP (PAP−/− mice). Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.
Collapse
|
42
|
Ludtmann MHR, Otto GP, Schilde C, Chen ZH, Allan CY, Brace S, Beesley PW, Kimmel AR, Fisher P, Killick R, Williams RSB. An ancestral non-proteolytic role for presenilin proteins in multicellular development of the social amoeba Dictyostelium discoideum. J Cell Sci 2014; 127:1576-84. [PMID: 24463814 PMCID: PMC3970561 DOI: 10.1242/jcs.140939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/29/2013] [Indexed: 11/20/2022] Open
Abstract
Mutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism Dictyostelium discoideum. We show that the block in Dictyostelium development caused by the ablation of both Dictyostelium presenilins is rescued by the expression of human presenilin 1, restoring the terminal differentiation of multiple cell types. This developmental role is independent of proteolytic activity, because the mutation of both catalytic aspartates does not affect presenilin ability to rescue development, and the ablation of nicastrin, a γ-secretase component that is crucial for proteolytic activity, does not block development. The role of presenilins during Dictyostelium development is therefore independent of their proteolytic activity. However, presenilin loss in Dictyostelium results in elevated cyclic AMP (cAMP) levels and enhanced stimulation-induced calcium release, suggesting that presenilins regulate these intracellular signalling pathways. Our data suggest that presenilin proteins perform an ancient non-proteolytic role in regulating intracellular signalling and development, and that Dictyostelium is a useful model for analysing human presenilin function.
Collapse
Affiliation(s)
- Marthe H. R. Ludtmann
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Grant P. Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | | | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Claire Y. Allan
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Selina Brace
- Centre for Ecology and Evolution, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Philip W. Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Alan R. Kimmel
- NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Fisher
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Richard Killick
- Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| |
Collapse
|
43
|
Dong Z, Yan L, Huang G, Zhang L, Mei B, Meng B. Ibuprofen partially attenuates neurodegenerative symptoms in presenilin conditional double-knockout mice. Neuroscience 2014; 270:58-68. [PMID: 24699228 DOI: 10.1016/j.neuroscience.2014.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/06/2014] [Accepted: 03/23/2014] [Indexed: 01/22/2023]
Abstract
Ibuprofen is a widely used nonsteroidal anti-inflammatory drug that reportedly reduces the risk of Alzheimer's disease (AD) development. The anti-inflammatory effect of ibuprofen occurred via inhibition of cyclooxygenases and anti-amyloidogenesis through modulation of γ-secretase. Presenilin 1 and 2 conditional double-knockout (cDKO) mice exhibited age-dependent memory impairment and forebrain degeneration without elevation of amyloid β deposition. Therefore, cDKO mice can be an ideal animal model on which to independently test the effects of ibuprofen anti-inflammatory properties on the prevention of AD. Three- and six-month-old cDKO mice were fed diet containing 375 ppm ibuprofen for six months. After multiple, well-validated behavioral tests, treatment with ibuprofen improved cognition-related behavioral performance, and drug efficacy was correlated with the timing of administration. Ibuprofen was more effective on six-month-old than on three-month-old cDKO mice. Biochemical analysis demonstrated that the effects of ibuprofen on glial fibrillary acidic protein and CD68 expression levels were uneven in different brain regions of cDKO mice and that age also influenced such effects. Tau hyperphosphorylation and the cleavage of caspase-3 decreased after ibuprofen treatment, and this effect was more significant in the older than the younger group of mice, which was consistent with the results of behavioral tests.
Collapse
Affiliation(s)
- Z Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - L Yan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - G Huang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - L Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - B Mei
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - B Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
44
|
Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G. Therapeutic options in Alzheimer’s disease. Expert Rev Neurother 2014; 6:897-910. [PMID: 16784412 DOI: 10.1586/14737175.6.6.897] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) places an enormous burden on individuals, families and society. Consequently, a tremendous effort is being devoted to the development of drugs that prevent or delay neurodegeneration. Current pharmacological treatments are based on the use of acetylcholinesterase inhibitors or memantine, a N-methyl-D-aspartate channel blocker. However, new therapeutic approaches, including those more closely targeted to the pathogenesis of the disease, are being developed. These potentially disease-modifying therapeutics include secretase inhibitors, cholesterol-lowering drugs, amyloid-beta immunotherapy, nonsteroidal anti-inflammatory drugs, hormonal modulation and the use of antioxidants. The possibility that oxidative stress is a primary event in AD indicates that antioxidant-based therapies are perhaps the most promising weapons against this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Paula I Moreira
- Case Western Reserve University, Department of Pathology, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
45
|
Su J, Gu J, Dong Z, Mei B. Ibuprofen rescues abnormalities in periodontal tissues in conditional presenilin 1 and presenilin 2 double knockout mice. Int J Mol Sci 2013; 14:18457-69. [PMID: 24018889 PMCID: PMC3794789 DOI: 10.3390/ijms140918457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022] Open
Abstract
We used forebrain-specific conditional presenilin 1 (PS1) and presenilin 2 (PS2) double knockout mice (dKO mice) that exhibit symptoms of neurodegenerative diseases, especially Alzheimer’s disease, to investigate whether ibuprofen can rescue brain and periodontal tissue abnormalities by attenuating the inflammatory response. Mandibles were dissected for alveolar bone-height analysis. Maxillae were fixed and decalcified for histological observation and osteoclast detection. ELISA measurements from the hippocampus, cortex, and gingiva of the mandibular incisor teeth were used to assay inflammatory mediators. We confirmed periodontal tissue abnormalities and inflammatory responses in brain and periodontal tissues in naive nine- and 12-month-old dKO mice. The other two groups of age-matched dKO mice that received 375-ppm ibuprofen treatment for six consecutive months exhibited significantly attenuated damage in periodontal tissues and reduction in several inflammation-related factors in brain and periodontal tissues. Our findings showed that the anti-inflammatory drug ibuprofen significantly decreased inflammation through the cyclooxygenase (COX) pathway in brain and periodontal tissues in dKO mice, and then attenuated abnormalities in periodontal tissues. This suggests that ibuprofen could be an ideal drug for preventing both nervous system and periodontal tissue damage caused by inflammatory responses.
Collapse
Affiliation(s)
- Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai 200072, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.S.); (B.M.); Tel.: +86-21-6631-1629 (J.S.); +86-21-6223-3967 (B.M.); Fax: +86-21-6652-4025 (J.S.); +86-21-6260-1953 (B.M.)
| | - Jiamei Gu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai 200072, China; E-Mail:
| | - Zhuo Dong
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, China; E-Mail:
| | - Bing Mei
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.S.); (B.M.); Tel.: +86-21-6631-1629 (J.S.); +86-21-6223-3967 (B.M.); Fax: +86-21-6652-4025 (J.S.); +86-21-6260-1953 (B.M.)
| |
Collapse
|
46
|
Riudavets MA, Bartoloni L, Troncoso JC, Pletnikova O, St. George‐Hyslop P, Schultz M, Sevlever G, Allegri RF. Familial dementia with frontotemporal features associated with M146V presenilin-1 mutation. Brain Pathol 2013; 23:595-600. [PMID: 23489366 PMCID: PMC4007155 DOI: 10.1111/bpa.12051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/02/2013] [Indexed: 12/28/2022] Open
Abstract
Most of the mutations in the presenilin-1 gene (PS-1) are associated with familial Alzheimer's disease (AD). However, certain examples can be associated with frontotemporal dementia (FTD). We performed a clinical evaluation of individuals belonging to a family with the FTD phenotype, and additional molecular studies and neuropathological assessment of the proband. The PS-1 M146V mutation was found in the 50-year-old subject (the proband) with family history of early-onset FTD. Neuropathological examination showed abundant amyloid plaques, widespread neurofibrillary pathology, Pick bodies in the hippocampus and cortex, cortical globose tangles and ubiquitin-positive nuclear inclusions in white matter oligodendrocytes. We report a kindred with clinical features of FTD, whose proband bore the PS-1 M146V mutation and showed diffuse Alzheimer's type pathology and Pick bodies on post-mortem neuropathological examination. As with other mutations within the same codon, this substitution may predispose to both diseases by affecting APP and/or tau processing.
Collapse
Affiliation(s)
| | - Leonardo Bartoloni
- Department of Internal MedicineHospital ZubizarretaBuenos AiresArgentina
| | - Juan C. Troncoso
- Neuropathology DivisionPathology DepartmentJohns Hopkins University School of MedicineBaltimoreMD
| | - Olga Pletnikova
- Neuropathology DivisionPathology DepartmentJohns Hopkins University School of MedicineBaltimoreMD
| | | | | | | | | |
Collapse
|
47
|
Yan L, Li L, Han W, Pan B, Xue X, Mei B. Age-related neuropsychiatric symptoms in presenilins conditional double knockout mice. Brain Res Bull 2013; 97:104-11. [PMID: 23792007 DOI: 10.1016/j.brainresbull.2013.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and causes impairments of memory, cognition and behavior. Remarkably, most AD patients exhibit personality changes that often precede other early clinical manifestations. Conditional presenilin1 (PS1) and presenilin2 (PS2) double knockout (DKO) mice have age-related forebrain atrophy, tau hyperphosphorylation, synaptic dysfunction, cognitive deficits and increased inflammatory responses in both the periphery and the brain. Whether these mice have age-related emotional changes have not yet been investigated. In the present study, we used 2-, 6- and 11-month-old DKO and littermate control (CON) mice to examine their age-related emotional conditions. Our results indicate that DKO mice have observable age-related neuropsychiatric symptoms, such as anxiety, irritability, depression, apathy, aggressivity, anhedonia and aberrant motor behavior when compared with other AD-like mouse models. In summary, our results not only indicate that DKO mice may be a valuable model for probing age-related AD diagnoses but also suggest a new pathogenesis of neurodegenerative diseases that is worth further investigation.
Collapse
Affiliation(s)
- Li Yan
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
48
|
Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 2012; 1:18. [PMID: 23210692 PMCID: PMC3526416 DOI: 10.1186/2047-9158-1-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease characterized clinically by progressive deterioration of memory, and pathologically by histopathological changes including extracellular deposits of amyloid-beta (A-beta) peptides forming senile plaques (SP) and the intracellular neurofibrillary tangles (NFT) of hyperphosphorylated tau in the brain. This review focused on the new developments of amyloid cascade hypothesis with details on the production, metabolism and clearance of A-beta, and the key roles of some important A-beta-related genes in the pathological processes of AD. The most recent research advances in genetics, neuropathology and pathogenesis of the disease were also discussed.
Collapse
Affiliation(s)
- Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road (N), Shanghai, 200062, China.
| | | | | | | |
Collapse
|
49
|
Wang Y, Cheng Z, Qin W, Jia J. Val97Leu mutant presenilin-1 induces tau hyperphosphorylation and spatial memory deficit in mice and the underlying mechanisms. J Neurochem 2012; 121:135-45. [PMID: 21929538 DOI: 10.1111/j.1471-4159.2011.07489.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the pathological role of presenilin-1 mutation in early onset familial Alzheimer's disease has been widely studied, few focused on how the presenilin-1 mutations result in memory impairment and tau hyperphosphorylation. In the present study, we expressed human Val97Leu mutant presenilin-1, which is reported in Chinese pedigrees by our group, in transgenic mice and found that the mutant presenilin-1 induced spatial memory deficit and tau hyperphosphorylation at PHF-1, pS199/202, pT231 and pS396 epitopes, but not at pS214 and pS422 epitopes. Pearson analysis showed that the memory deficit was only significantly correlated with tau phosphorylation level at PHF-1, pS199/202, pT231 and pS396 epitopes. Additionally, the hyperphosphorylated tau and tangle-like argentophilic structures were detected at CA3 and CA4, but not CA1, region of hippocampus, and we also found tangle-like structure and wizened degenerative neurons in frontal cortex. We demonstrated the tau hyperphosphorylation at the same epitopes in N2a cells expressing the mutant presenilin-1, which is caused by inhibition of phosphoinositol-3 kinase/Akt and activation of glycogen synthase kinase-3 specifically. Our data demonstrated that human Val97Leu mutant presenilin-1 causes spatial memory deficit in mice and increases tau phosphorylation level in glycogen synthase kinase-3-dependent manner.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
50
|
Ho A, Shen J. Presenilins in synaptic function and disease. Trends Mol Med 2011; 17:617-24. [PMID: 21795114 DOI: 10.1016/j.molmed.2011.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
The presenilin genes harbor approximately 90% of mutations linked to early-onset familial Alzheimer's disease (FAD), but how these mutations cause the disease is still being debated. Genetic analysis in Drosophila and mice demonstrate that presenilin plays essential roles in synaptic function, learning and memory, as well as neuronal survival in the adult brain, and the FAD-linked mutations alter the normal function of presenilin in these processes. Presenilin has also been reported to regulate the calcium homeostasis of intracellular stores, and presynaptic presenilin controls neurotransmitter release and long-term potentiation through modulation of calcium release from intracellular stores. In this review, we highlight recent advances in deciphering the role of presenilin in synaptic function, calcium regulation and disease, and pose key questions for future studies.
Collapse
Affiliation(s)
- Angela Ho
- Department of Biology, Boston University, 5 Cummington Street, Boston MA 02215, USA
| | | |
Collapse
|