1
|
Nasrin F, Nagar P, Islam M, Heeamoni S, Hasan M, Ohno K, Rahman M. SRSF6 and SRSF1 coordinately enhance the inclusion of human MUSK exon 10 to generate a Wnt-sensitive MuSK isoform. NAR MOLECULAR MEDICINE 2025; 2:ugaf007. [PMID: 40161265 PMCID: PMC11954543 DOI: 10.1093/narmme/ugaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Alternative splicing in genes associated with neuromuscular junction (NMJ) often compromises neuromuscular signal transmission and provokes pathological consequences. Muscle-specific receptor tyrosine kinase (MuSK) is an essential molecule in the NMJ. MUSK exon 10 encodes an important part of the frizzled-like cysteine-rich domain, which is necessary for Wnt-mediated acetylcholine receptors clustering at NMJ. MUSK exon 10 is alternatively spliced in humans but not in mice. We reported that humans acquired a unique exonic splicing silencer in exon 10 compared to mice, which promotes exon skipping coordinated by hnRNP C, YB-1, and hnRNP L. Here, we have dissected the underlying mechanisms of exon inclusion. We precisely characterized the exonic splicing enhancer (ESE) elements and determined the functional motifs. We demonstrated that SRSF6 and SRSF1 coordinately enhance exon inclusion through multiple functional motifs in the ESE. Remarkably, SRSF6 exerts a stronger effect than SRSF1, and SRSF6 alone can compensate the function of SRSF1. Interestingly, differentiated muscle reduces the expression of splicing suppressors, rather than enhancers, to generate a functional Wnt-sensitive MuSK isoform to promote neuromuscular signal transmission. Finally, we developed splice-switching antisense oligonucleotides, which could be used to selectively modulate the expression of MUSK isoforms toward a beneficial outcome for therapeutic intervention.
Collapse
Affiliation(s)
- Farhana Nasrin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 4668550 Aichi, Japan
| | - Preeti Nagar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Md Rafikul Islam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Shabiha Afroj Heeamoni
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Md Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, 4668550 Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, 4700196 Aichi, Japan
| | - Mohammad Alinoor Rahman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Wang KS, Smeyers J, Eggan K, Budnik B, Mordes DA. C9ORF72 poly-PR disrupts expression of ALS/FTD-implicated STMN2 through SRSF7. Acta Neuropathol Commun 2025; 13:67. [PMID: 40140908 PMCID: PMC11948778 DOI: 10.1186/s40478-025-01977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and combined ALS/FTD. The repeat is transcribed in the sense and the antisense directions to produce several dipeptide repeat proteins (DPRs) that have toxic gain-of-function effects; however, the mechanisms by which DPRs lead to neural dysfunction remain unresolved. Here, we observed that poly-proline-arginine (poly-PR) was sufficient to inhibit axonal regeneration of human induced pluripotent stem cell (iPSC)-derived neurons. Global phospho-proteomics revealed that poly-PR selectively perturbs nuclear RNA binding proteins (RBPs). In neurons, we found that depletion of one of these RBPs, SRSF7 (serine/arginine-rich splicing factor 7), resulted in decreased abundance of STMN2 (stathmin-2), though not TDP-43. STMN2 supports axon maintenance and repair and has been recently implicated in the pathogenesis of ALS/FTD. We observed that depletion of SRSF7 impaired axonal regeneration, a phenotype that could be rescued by exogenous STMN2. We propose that antisense repeat-encoded poly-PR perturbs RBPs, particularly SRSF7, resulting in reduced STMN2 and axonal repair defects in neurons. Hence, we provide a potential link between DPRs gain-of-function effects and STMN2 loss-of-function phenotypes in neurodegeneration.
Collapse
Affiliation(s)
- Karen S Wang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Julie Smeyers
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomic Laboratory, FAS Division of Science, Harvard University, Cambridge, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, CA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA. PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. eLife 2024; 13:RP98531. [PMID: 39630148 PMCID: PMC11616996 DOI: 10.7554/elife.98531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting and widespread alternative RNA splicing (AS) changes. Here, we demonstrated via enhanced UV-crosslinking and immunoprecipitation of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. We found that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.
Collapse
Affiliation(s)
- Thomas E Forman
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Marcin P Sajek
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
- Institute of Human Genetics, Polish Academy of SciencesPoznanPoland
| | - Eric D Larson
- Department of Otolaryngology – Head and Neck Surgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Basic and Translational Sciences, Penn Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
4
|
Fang Y, Liu X, Liu Y, Xu N. Insights into the Mode and Mechanism of Interactions Between RNA and RNA-Binding Proteins. Int J Mol Sci 2024; 25:11337. [PMID: 39518890 PMCID: PMC11545484 DOI: 10.3390/ijms252111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Both RNA and protein play important roles in the process of gene expression and regulation, and it has been widely discussed that the interactions between RNA and protein affect gene transcription, translation efficiency, and post-translational modification. As an important class of proteins, RNA-binding proteins bind to RNA and affect gene expression in various ways. Here, we review the structural and functional properties of RNA-binding proteins and illustrate the specific modes of interactions between RNA and RNA-binding proteins and describe the involvement of some representative RNA-binding protein families in this network of action. Furthermore, we also explore the association that exists between RNA-binding proteins and the onset of diseases, as well as their potential in terms of serving as a therapeutic tool for the treatment of diseases. The in-depth exploration of the interactions between RNA and RNA-binding proteins reveals the dynamic process of gene expression and regulation, as well as offering valuable insights to advance the progress in the dissection of disease mechanisms and research and discovery of drugs, which promote the development of molecular biology.
Collapse
Affiliation(s)
| | | | | | - Naiyi Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.F.); (X.L.); (Y.L.)
| |
Collapse
|
5
|
Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA. PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587975. [PMID: 38617350 PMCID: PMC11014628 DOI: 10.1101/2024.04.03.587975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development, as mutations in PDGFRA are associated with cleft lip/palate in humans and Pdgfra mutant mouse models display varying degrees of facial clefting. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during skeletal development in the mouse. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting, due to defects in proliferation and survival of cranial neural crest cells, and widespread alternative RNA splicing (AS) changes. Here, we sought to determine the molecular mechanisms by which Srsf3 activity is regulated downstream of PDGFRα signaling to control AS of transcripts necessary for craniofacial development. We demonstrated via enhanced UV-crosslinking and immunoprecipitation (eCLIP) of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. Moreover, we found that the subset of transcripts that are bound by Srsf3 and undergo AS upon PDGFRα signaling commonly encode regulators of PI3K signaling and early endosomal trafficking. Functional validation studies further confirmed that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.
Collapse
Affiliation(s)
- Thomas E. Forman
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marcin P. Sajek
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Eric D. Larson
- Department of Otolaryngology – Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Clarke BP, Angelos AE, Mei M, Hill PS, Xie Y, Ren Y. Cryo-EM structure of the CBC-ALYREF complex. eLife 2024; 12:RP91432. [PMID: 39282949 PMCID: PMC11405014 DOI: 10.7554/elife.91432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5' end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5' end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.
Collapse
Affiliation(s)
- Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
- Center for Structural Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| |
Collapse
|
7
|
Wu Y, Wang J, Zhao J, Su Y, Li X, Chen Z, Wu X, Huang S, He X, Liang L. LTR retrotransposon-derived LncRNA LINC01446 promotes hepatocellular carcinoma progression and angiogenesis by regulating the SRPK2/SRSF1/VEGF axis. Cancer Lett 2024; 598:217088. [PMID: 38945203 DOI: 10.1016/j.canlet.2024.217088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The causal link between long terminal repeat (LTR) retrotransposon-derived lncRNAs and hepatocellular carcinoma (HCC) remains elusive and whether these cancer-exclusive lncRNAs contribute to the effectiveness of current HCC therapies is yet to explore. Here, we investigated the activation of LTR retrotransposon-derived lncRNAs in a broad range of liver diseases. We found that LTR retrotransposon-derived lncRNAs are mainly activated in HCC and is correlated with the proliferation status of HCC. Furthermore, we discovered that an LTR retrotransposon-derived lncRNA, LINC01446, exhibits specific expression in HCC. HCC patients with higher LINC01446 expression had shorter overall survival times. In vitro and in vivo assays showed that LINC01446 promoted HCC growth and angiogenesis. Mechanistically, LINC01446 bound to serine/arginine protein kinase 2 (SRPK2) and activated its downstream target, serine/arginine splicing factor 1 (SRSF1). Furthermore, activation of the SRPK2-SRSF1 axis increased the splicing and expression of VEGF isoform A165 (VEGFA165). Notably, inhibiting LINC01446 expression dramatically impaired tumor growth in vivo and resulted in better therapeutic outcomes when combined with antiangiogenic agents. In addition, we found that the transcription factor MESI2 bound to the cryptic MLT2B3 LTR promoter and drove LINC01446 transcription in HCC cells. Taken together, our findings demonstrate that LTR retrotransposon-derived LINC01446 promotes the progression of HCC by activating the SRPK2/SRSF1/VEGFA165 axis and highlight targeting LINC01446 as a potential therapeutic strategy for HCC patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Retroelements/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Serine-Arginine Splicing Factors/genetics
- Serine-Arginine Splicing Factors/metabolism
- Signal Transduction
- Terminal Repeat Sequences/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yangjun Wu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Su
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Linhui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Clarke BP, Angelos AE, Mei M, Hill PS, Xie Y, Ren Y. Cryo-EM structure of the CBC-ALYREF complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.01.559959. [PMID: 37873070 PMCID: PMC10592852 DOI: 10.1101/2023.10.01.559959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5' end with a 7-methylguanosine (m 7 G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5' end of mRNA. However, the molecular mechanism for CBC mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.
Collapse
|
9
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Zhong X, Zhou Z, Yang G. The Functions of N-methyladenosine (m6A) Modification on HIV-1 mRNA. Cell Biochem Biophys 2024; 82:561-574. [PMID: 38753251 DOI: 10.1007/s12013-024-01280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 08/25/2024]
Abstract
In recent years, there has been a growing interest in the study of RNA modifications, with some researchers focusing specifically on the connection between these modifications and viruses, as well as the impact they have on viral mRNA and its functionality. The most common type of RNA chemical modification is m6A, which involves the addition of a methyl group covalently to the N6 position of adenosine. It is a widely observed and evolutionarily conserved RNA modification. The regulation of m6A modification primarily involves methyltransferases (writers) and demethylases (erasers) and is mediated by m6A-binding proteins (readers). In HIV-1, m6A sites are predominantly located in the 5' untranslated region (5'UTR) and 3' untranslated region (3'UTR). Additionally, m6A modifications are also present in the RRE RNA of HIV-1. This review provides a detailed account of the effects of these m6A modifications on HIV-1 functionality.
Collapse
Affiliation(s)
- XinYu Zhong
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China
| | - ZhuJiao Zhou
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
11
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Bei M, Xu J. SR proteins in cancer: function, regulation, and small inhibitor. Cell Mol Biol Lett 2024; 29:78. [PMID: 38778254 PMCID: PMC11110342 DOI: 10.1186/s11658-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing of pre-mRNAs is a fundamental step in RNA processing required for gene expression in most metazoans. Serine and arginine-rich proteins (SR proteins) comprise a family of multifunctional proteins that contain an RNA recognition motif (RRM) and the ultra-conserved arginine/serine-rich (RS) domain, and play an important role in precise alternative splicing. Increasing research supports SR proteins as also functioning in other RNA-processing-related mechanisms, such as polyadenylation, degradation, and translation. In addition, SR proteins interact with N6-methyladenosine (m6A) regulators to modulate the methylation of ncRNA and mRNA. Dysregulation of SR proteins causes the disruption of cell differentiation and contributes to cancer progression. Here, we review the distinct biological characteristics of SR proteins and their known functional mechanisms during carcinogenesis. We also summarize the current inhibitors that directly target SR proteins and could ultimately turn SR proteins into actionable therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Mingrong Bei
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
13
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
14
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Crespo R, Ne E, Reinders J, Meier JI, Li C, Jansen S, Górska A, Koçer S, Kan TW, Doff W, Dekkers D, Demmers J, Palstra RJ, Rao S, Mahmoudi T. PCID2 dysregulates transcription and viral RNA processing to promote HIV-1 latency. iScience 2024; 27:109152. [PMID: 38384833 PMCID: PMC10879814 DOI: 10.1016/j.isci.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Julian Reinders
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jenny I.J. Meier
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Chengcheng Li
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sanne Jansen
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wouter Doff
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
17
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
18
|
Cun Y, An S, Zheng H, Lan J, Chen W, Luo W, Yao C, Li X, Huang X, Sun X, Wu Z, Hu Y, Li Z, Zhang S, Wu G, Yang M, Tang M, Yu R, Liao X, Gao G, Zhao W, Wang J, Li J. Specific Regulation of m 6A by SRSF7 Promotes the Progression of Glioblastoma. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:707-728. [PMID: 34954129 PMCID: PMC10787126 DOI: 10.1016/j.gpb.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Serine/arginine-rich splicing factor 7 (SRSF7), a known splicing factor, has been revealed to play oncogenic roles in multiple cancers. However, the mechanisms underlying its oncogenic roles have not been well addressed. Here, based on N6-methyladenosine (m6A) co-methylation network analysis across diverse cell lines, we find that the gene expression of SRSF7 is positively correlated with glioblastoma (GBM) cell-specific m6A methylation. We then indicate that SRSF7 is a novel m6A regulator, which specifically facilitates the m6A methylation near its binding sites on the mRNAs involved in cell proliferation and migration, through recruiting the methyltransferase complex. Moreover, SRSF7 promotes the proliferation and migration of GBM cells largely dependent on the presence of the m6A methyltransferase. The two m6A sites on the mRNA for PDZ-binding kinase (PBK) are regulated by SRSF7 and partially mediate the effects of SRSF7 in GBM cells through recognition by insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Together, our discovery reveals a novel role of SRSF7 in regulating m6A and validates the presence and functional importance of temporal- and spatial-specific regulation of m6A mediated by RNA-binding proteins (RBPs).
Collapse
Affiliation(s)
- Yixian Cun
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Sanqi An
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Biosafety Level-3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning 530020, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenfang Chen
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanjun Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xincheng Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Huang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Sun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zehong Wu
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yameng Hu
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwen Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuxia Zhang
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Geyan Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Meisongzhu Yang
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruyuan Yu
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyi Liao
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guicheng Gao
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jun Li
- Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Jia R, Zheng ZM. Oncogenic SRSF3 in health and diseases. Int J Biol Sci 2023; 19:3057-3076. [PMID: 37416784 PMCID: PMC10321290 DOI: 10.7150/ijbs.83368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Serine/arginine rich splicing factor 3 (SRSF3) is an important multi-functional splicing factor, and has attracted increasing attentions in the past thirty years. The importance of SRSF3 is evidenced by its impressively conserved protein sequences in all animals and alternative exon 4 which represents an autoregulatory mechanism to maintain its proper cellular expression level. New functions of SRSF3 have been continuously discovered recently, especially its oncogenic function. SRSF3 plays essential roles in many cellular processes by regulating almost all aspects of RNA biogenesis and processing of many target genes, and thus, contributes to tumorigenesis when overexpressed or disregulated. This review updates and highlights the gene, mRNA, and protein structure of SRSF3, the regulatory mechanisms of SRSF3 expression, and the characteristics of SRSF3 targets and binding sequences that contribute to SRSF3's diverse molecular and cellular functions in tumorigenesis and human diseases.
Collapse
Affiliation(s)
- Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
20
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
21
|
Pacheco-Fiallos B, Vorländer MK, Riabov-Bassat D, Fin L, O'Reilly FJ, Ayala FI, Schellhaas U, Rappsilber J, Plaschka C. mRNA recognition and packaging by the human transcription-export complex. Nature 2023; 616:828-835. [PMID: 37020021 PMCID: PMC7614608 DOI: 10.1038/s41586-023-05904-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Newly made mRNAs are processed and packaged into mature ribonucleoprotein complexes (mRNPs) and are recognized by the essential transcription-export complex (TREX) for nuclear export1,2. However, the mechanisms of mRNP recognition and three-dimensional mRNP organization are poorly understood3. Here we report cryo-electron microscopy and tomography structures of reconstituted and endogenous human mRNPs bound to the 2-MDa TREX complex. We show that mRNPs are recognized through multivalent interactions between the TREX subunit ALYREF and mRNP-bound exon junction complexes. Exon junction complexes can multimerize through ALYREF, which suggests a mechanism for mRNP organization. Endogenous mRNPs form compact globules that are coated by multiple TREX complexes. These results reveal how TREX may simultaneously recognize, compact and protect mRNAs to promote their packaging for nuclear export. The organization of mRNP globules provides a framework to understand how mRNP architecture facilitates mRNA biogenesis and export.
Collapse
Affiliation(s)
- Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Daria Riabov-Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Laura Fin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Francis J O'Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Farja I Ayala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ulla Schellhaas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
22
|
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100495. [PMID: 36419364 PMCID: PMC10030365 DOI: 10.1016/j.xplc.2022.100495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.
Collapse
Affiliation(s)
- Rui Albuquerque-Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK.
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
23
|
Castelli LM, Lin YH, Sanchez-Martinez A, Gül A, Mohd Imran K, Higginbottom A, Upadhyay SK, Márkus NM, Rua Martins R, Cooper-Knock J, Montmasson C, Cohen R, Walton A, Bauer CS, De Vos KJ, Mead RJ, Azzouz M, Dominguez C, Ferraiuolo L, Shaw PJ, Whitworth AJ, Hautbergue GM. A cell-penetrant peptide blocking C9ORF72-repeat RNA nuclear export reduces the neurotoxic effects of dipeptide repeat proteins. Sci Transl Med 2023; 15:eabo3823. [PMID: 36857431 DOI: 10.1126/scitranslmed.abo3823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies have shown that the hexanucleotide expansions cause the noncanonical translation of C9ORF72 transcripts into neurotoxic dipeptide repeat proteins (DPRs) that contribute to neurodegeneration. We show that a cell-penetrant peptide blocked the nuclear export of C9ORF72-repeat transcripts in HEK293T cells by competing with the interaction between SR-rich splicing factor 1 (SRSF1) and nuclear export factor 1 (NXF1). The cell-penetrant peptide also blocked the translation of toxic DPRs in neurons differentiated from induced neural progenitor cells (iNPCs), which were derived from individuals carrying C9ORF72-linked ALS mutations. This peptide also increased survival of iNPC-differentiated C9ORF72-ALS motor neurons cocultured with astrocytes. Oral administration of the cell-penetrant peptide reduced DPR translation and rescued locomotor deficits in a Drosophila model of mutant C9ORF72-mediated ALS/FTD. Intrathecal injection of this peptide into the brains of ALS/FTD mice carrying a C9ORF72 mutation resulted in reduced expression of DPRs in mouse brains. These findings demonstrate that disrupting the production of DPRs in cellular and animal models of ALS/FTD might be a strategy to ameliorate neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aytaç Gül
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kamallia Mohd Imran
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Santosh Kumar Upadhyay
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nóra M Márkus
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Raquel Rua Martins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claire Montmasson
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Rebecca Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Amy Walton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
24
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
25
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
26
|
Sun M, Jin Y, Zhang Y, Gregorich ZR, Ren J, Ge Y, Guo W. SR Protein Kinases Regulate the Splicing of Cardiomyopathy-Relevant Genes via Phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 2022; 13:1526. [PMID: 36140694 PMCID: PMC9498672 DOI: 10.3390/genes13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Multiple Phosphorylations of SR Protein SRSF3 and Its Binding to m6A Reader YTHDC1 in Human Cells. Cells 2022; 11:cells11091461. [PMID: 35563766 PMCID: PMC9100204 DOI: 10.3390/cells11091461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known RNA modification and has various functions with its binding proteins. Nuclear m6A reader protein YTHDC1 plays a significant role in RNA metabolism including some non-coding RNA such as LINE or circRNA. It is also known to regulate mRNA splicing through recruiting SRSF3 to the targeted mRNAs, which then mediates export of YTHDC1-bound RNA to the cytoplasm. Additionally, it has been indicated that SRSF3 binding to YHTDC1 may be mediated by its dephosphorylated status. However, their binding mechanism, including the positions of dephosphorylated residues of SRSF3, has not been sufficiently investigated. Thus, we explored the mechanism of interaction between SRSF3 and YTHDC1 in human cells. We used co-immunoprecipitation to examine the binding of YTHDC1/SRSF3 through their N- and C-terminal amino-acid residues. Furthermore, dephosphorylation-mimic serine to alanine mutants of SRSF3 indicated the position of phosphorylated residues. Cumulatively, our results demonstrate that YTHDC1 binding to SRSF3 is regulated by not only hypo-phosphorylated residues of arginine/serine-rich (RS) domain of SRSF3 but also other parts of SRSF3 via YTHDC1 N- or C-terminal residues. Our results contribute to the understanding of the complex mechanism of binding between SR protein SRSF3 and the m6A reader YTHDC1 to regulate the expression of mRNA and non-coding RNAs.
Collapse
|
28
|
The Clinical Role of SRSF1 Expression in Cancer: A Review of the Current Literature. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: SFRS1 is a member of the splicing factor protein family. Through a specific sequence of alteration, SRSF1 can move from the cytoplasm to the nucleus where it can work autonomously as a splicing activator, or as a silencer when interacting with other regulators. Alternative splicing (AS) is a fundamental biological process that ensures protein diversity. In fact, different proteins, produced by alternative splicing, can gain different and even antagonistic biological functions. Methods: Our review is based on English articles published in the MEDLINE/PubMed medical library between 2000 and 2021. We retrieved articles that were specifically related to SRSF1 and cancers, and we excluded other reviews and meta-analyses. We included in vitro studies, animal studies and clinical studies, evaluated using the Medical Education Research Study Quality Instrument (MERSQI) and the Newcastle–Ottawa Scale-Education (NOSE). Result: SRSF1 is related to various genes and plays a role in cell cycle, ubiquitin-mediated proteolysis, nucleotide excision repair, p53 pathway, apoptosis, DNA replication and RNA degradation. In most cases, SRSF1 carries out its cancer-related function via abnormal alternative splicing (AS). However, according to the most recent literature, SRSF1 may also be involved in mRNA translation and cancer chemoresistance or radio-sensitivity. Conclusion: Our results showed that SRSF1 plays a key clinical role in tumorigenesis and tumor progression in several types of cancer (such as Prostate, Lung, Breast, Colon, Glioblastoma), through various mechanisms of action and different cellular pathways. This review could be a starting point for several studies regarding the biology of and therapies for cancer.
Collapse
|
29
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
30
|
Castelli LM, Cutillo L, Souza CDS, Sanchez-Martinez A, Granata I, Lin YH, Myszczynska MA, Heath PR, Livesey MR, Ning K, Azzouz M, Shaw PJ, Guarracino MR, Whitworth AJ, Ferraiuolo L, Milo M, Hautbergue GM. SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Mol Neurodegener 2021; 16:53. [PMID: 34376242 PMCID: PMC8353793 DOI: 10.1186/s13024-021-00475-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. Methods Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila, as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72-repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. Results Our study shows that manipulation of 362 transcripts out of 2257 pathological changes, in addition to inhibiting the nuclear export of repeat transcripts, is sufficient to confer neuroprotection in C9ORF72-ALS patient-derived neurons. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high neuroprotective potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1–3 (Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons and Drosophila motor deficits. Conclusions Strikingly, the partial depletion of SRSF1 leads to expression changes in only a small proportion of disease-altered transcripts, indicating that not all RNA alterations need normalization and that the gene therapeutic approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with transcripts modulated in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00475-y.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Luisa Cutillo
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Ilaria Granata
- National Research Council of Italy, High Performance Computing and Networking Institute (ICAR-CNR), 111 Via Pietro Castellino, 80131, Naples, Italy
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mario R Guarracino
- National Research Council of Italy, High Performance Computing and Networking Institute (ICAR-CNR), 111 Via Pietro Castellino, 80131, Naples, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Marta Milo
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,Present Address: AstraZeneca, Academy House, 136 Hills Road, Cambridge, CB2 8PA, UK.
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK. .,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
31
|
Bensidoun P, Zenklusen D, Oeffinger M. Choosing the right exit: How functional plasticity of the nuclear pore drives selective and efficient mRNA export. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1660. [PMID: 33938148 DOI: 10.1002/wrna.1660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
The nuclear pore complex (NPC) serves as a central gate for mRNAs to transit from the nucleus to the cytoplasm. The ability for mRNAs to get exported is linked to various upstream nuclear processes including co-transcriptional RNP assembly and processing, and only export competent mRNPs are thought to get access to the NPC. While the nuclear pore is generally viewed as a monolithic structure that serves as a mediator of transport driven by transport receptors, more recent evidence suggests that the NPC might be more heterogenous than previously believed, both in its composition or in the selective treatment of cargo that seek access to the pore, providing functional plasticity to mRNA export. In this review, we consider the interconnected processes of nuclear mRNA metabolism that contribute and mediate export competence. Furthermore, we examine different aspects of NPC heterogeneity, including the role of the nuclear basket and its associated complexes in regulating selective and/or efficient binding to and transport through the pore. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Systems Biology, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Marlene Oeffinger
- Systems Biology, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
32
|
Pisignano G, Ladomery M. Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Noncoding RNA 2021; 7:ncrna7010021. [PMID: 33799493 PMCID: PMC8005942 DOI: 10.3390/ncrna7010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing is a highly fine-tuned regulated process and one of the main drivers of proteomic diversity across eukaryotes. The vast majority of human multi-exon genes is alternatively spliced in a cell type- and tissue-specific manner, and defects in alternative splicing can dramatically alter RNA and protein functions and lead to disease. The eukaryotic genome is also intensively transcribed into long and short non-coding RNAs which account for up to 90% of the entire transcriptome. Over the years, lncRNAs have received considerable attention as important players in the regulation of cellular processes including alternative splicing. In this review, we focus on recent discoveries that show how lncRNAs contribute significantly to the regulation of alternative splicing and explore how they are able to shape the expression of a diverse set of splice isoforms through several mechanisms. With the increasing number of lncRNAs being discovered and characterized, the contribution of lncRNAs to the regulation of alternative splicing is likely to grow significantly.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Correspondence: (G.P.); (M.L.)
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
- Correspondence: (G.P.); (M.L.)
| |
Collapse
|
33
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
34
|
AMP-activated protein kinase regulates alternative pre-mRNA splicing by phosphorylation of SRSF1. Biochem J 2020; 477:2237-2248. [DOI: 10.1042/bcj20190894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023]
Abstract
AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic processes and activating catabolic processes. Recent studies have demonstrated that metformin, which is an AMPK activator, modifies alternative precursor mRNA (pre-mRNA) splicing. However, no direct substrate of AMPK for alternative pre-mRNA splicing has been reported. In the present study, we identified the splicing factor serine/arginine-rich splicing factor 1 (SRSF1) as a novel AMPK substrate. AMPK directly phosphorylated SRSF1 at Ser133 in an RNA recognition motif. Ser133 phosphorylation suppressed the interaction between SRSF1 and specific RNA sequences without altering the subcellular localization of SRSF1. Moreover, AMPK regulated the SRSF1-mediated alternative pre-mRNA splicing of Ron, which is a macrophage-stimulating protein receptor, by suppressing its interaction with exon 12 of Ron pre-mRNA. The findings of this study revealed that the AMPK-dependent phosphorylation of SRSF1 at Ser133 inhibited the ability of SRSF1 to bind RNA and regulated alternative pre-mRNA splicing.
Collapse
|
35
|
Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex. Mol Cell 2020; 79:251-267.e6. [PMID: 32504555 DOI: 10.1016/j.molcel.2020.05.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Collapse
|
36
|
Gosavi U, Srivastava A, Badjatia N, Günzl A. Rapid block of pre-mRNA splicing by chemical inhibition of analog-sensitive CRK9 in Trypanosoma brucei. Mol Microbiol 2020; 113:1225-1239. [PMID: 32068297 PMCID: PMC7299817 DOI: 10.1111/mmi.14489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Trypanosoma brucei CRK9 is an essential cyclin-dependent kinase for the parasite-specific mode of pre-mRNA processing. In trypanosomes, protein coding genes are arranged in directional arrays that are transcribed polycistronically, and individual mRNAs are generated by spliced leader trans-splicing and polyadenylation, processes that are functionally linked. Since CRK9 silencing caused a decline of mRNAs, a concomitant increase of unspliced pre-mRNAs and the disappearance of the trans-splicing Y structure intermediate, CRK9 is essential for the first step of splicing. CRK9 depletion also caused a loss of phosphorylation in RPB1, the largest subunit of RNA polymerase (pol) II. Here, we established cell lines that exclusively express analog-sensitive CRK9 (CRK9AS ). Inhibition of CRK9AS in these cells by the ATP-competitive inhibitor 1-NM-PP1 reproduced the splicing defects and proved that it is the CKR9 kinase activity that is required for pre-mRNA processing. Since defective trans-splicing was detected as early as 5 min after inhibitor addition, CRK9 presumably carries out reversible phosphorylation on the pre-mRNA processing machinery. Loss of RPB1 phosphorylation, however, took 12-24 hr. Surprisingly, RNA pol II-mediated RNA synthesis in 24 hr-treated cells was upregulated, indicating that, in contrast to other eukaryotes, RPB1 phosphorylation is not a prerequisite for transcription in trypanosomes.
Collapse
Affiliation(s)
- Ujwala Gosavi
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ankita Srivastava
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Nitika Badjatia
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
- Current address: Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arthur Günzl
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
37
|
Aubol BE, Fattet L, Adams JA. A conserved sequence motif bridges two protein kinases for enhanced phosphorylation and nuclear function of a splicing factor. FEBS J 2020; 288:566-581. [DOI: 10.1111/febs.15351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon E. Aubol
- Department of Pharmacology University of California San Diego La Jolla CA USA
| | - Laurent Fattet
- Department of Pharmacology University of California San Diego La Jolla CA USA
| | - Joseph A. Adams
- Department of Pharmacology University of California San Diego La Jolla CA USA
| |
Collapse
|
38
|
The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Curr Genet 2020; 66:607-619. [PMID: 32040734 DOI: 10.1007/s00294-020-01054-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Serine/arginine (SR) proteins play significant roles in pre-mRNA splicing in eukaryotes. To investigate how gene expression influences fungal development and pathogenicity in Fusarium graminearum, a causal agent of Fusarium head blight (FHB) of wheat and barley, our previous study identified a SR protein FgSrp1 in F. graminearum, and showed that it is important for conidiation, plant infection and pre-mRNA processing. In this study, we identified another SR protein FgSrp2 in F. graminearum, which is orthologous to Schizosaccharomyces pombe Srp2. Our data showed that, whereas yeast Srp2 is essential for growth, deletion of FgSRP2 resulted in only slight defects in vegetative growth and perithecia melanization. FgSrp2 localized to the nucleus and both its N- and C-terminal regions were important for the localization to the nucleus. FgSrp2 interacted with FgSrp1 to form a complex in vivo. Double deletion of FgSRP1 and FgSRP2 revealed that they had overlapping functions in vegetative growth and sexual reproduction. RNA-seq analysis revealed that, although deletion of FgSRP2 alone had minimal effects, deletion of both FgSRP1 and FgSRP2 caused significant changes in gene transcription and RNA splicing. Overall, our results indicated that FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1.
Collapse
|
39
|
Ninomiya K, Adachi S, Natsume T, Iwakiri J, Terai G, Asai K, Hirose T. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J 2020; 39:e102729. [PMID: 31782550 PMCID: PMC6996502 DOI: 10.15252/embj.2019102729] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.
Collapse
Grants
- JP26113002 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP16H06279 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP17H03630 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP17K19335 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K06478 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Tokyo Biochemical Research Foundation (TBRF)
- Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Tokyo Biochemical Research Foundation (TBRF)
Collapse
Affiliation(s)
| | - Shungo Adachi
- Molecular Profiling Research CenterNational Institute for Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Tohru Natsume
- Molecular Profiling Research CenterNational Institute for Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Junichi Iwakiri
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Goro Terai
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Kiyoshi Asai
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Tetsuro Hirose
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
40
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
41
|
Park S, Brugiolo M, Akerman M, Das S, Urbanski L, Geier A, Kesarwani AK, Fan M, Leclair N, Lin KT, Hu L, Hua I, George J, Muthuswamy SK, Krainer AR, Anczuków O. Differential Functions of Splicing Factors in Mammary Transformation and Breast Cancer Metastasis. Cell Rep 2019; 29:2672-2688.e7. [PMID: 31775037 PMCID: PMC6936330 DOI: 10.1016/j.celrep.2019.10.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Misregulation of alternative splicing is a hallmark of human tumors, yet to what extent and how it contributes to malignancy are only beginning to be unraveled. Here, we define which members of the splicing factor SR and SR-like families contribute to breast cancer and uncover differences and redundancies in their targets and biological functions. We identify splicing factors frequently altered in human breast tumors and assay their oncogenic functions using breast organoid models. We demonstrate that not all splicing factors affect mammary tumorigenesis in MCF-10A cells. Specifically, the upregulation of SRSF4, SRSF6, or TRA2β disrupts acinar morphogenesis and promotes cell proliferation and invasion in MCF-10A cells. By characterizing the targets of these oncogenic splicing factors, we identify shared spliced isoforms associated with well-established cancer hallmarks. Finally, we demonstrate that TRA2β is regulated by the MYC oncogene, plays a role in metastasis maintenance in vivo, and its levels correlate with breast cancer patient survival.
Collapse
Affiliation(s)
- SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Envisagenics Inc., New York, NY, USA,These authors contributed equally
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,These authors contributed equally
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | | | - Martin Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nathan Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leo Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ian Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Correspondence: (O.A.), (A.R.K.)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
42
|
Emerging Roles of Long Non-Coding RNAs as Drivers of Brain Evolution. Cells 2019; 8:cells8111399. [PMID: 31698782 PMCID: PMC6912723 DOI: 10.3390/cells8111399] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023] Open
Abstract
Mammalian genomes encode tens of thousands of long-noncoding RNAs (lncRNAs), which are capable of interactions with DNA, RNA and protein molecules, thereby enabling a variety of transcriptional and post-transcriptional regulatory activities. Strikingly, about 40% of lncRNAs are expressed specifically in the brain with precisely regulated temporal and spatial expression patterns. In stark contrast to the highly conserved repertoire of protein-coding genes, thousands of lncRNAs have newly appeared during primate nervous system evolution with hundreds of human-specific lncRNAs. Their evolvable nature and the myriad of potential functions make lncRNAs ideal candidates for drivers of human brain evolution. The human brain displays the largest relative volume of any animal species and the most remarkable cognitive abilities. In addition to brain size, structural reorganization and adaptive changes represent crucial hallmarks of human brain evolution. lncRNAs are increasingly reported to be involved in neurodevelopmental processes suggested to underlie human brain evolution, including proliferation, neurite outgrowth and synaptogenesis, as well as in neuroplasticity. Hence, evolutionary human brain adaptations are proposed to be essentially driven by lncRNAs, which will be discussed in this review.
Collapse
|
43
|
West KO, Scott HM, Torres-Odio S, West AP, Patrick KL, Watson RO. The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Rep 2019; 29:1594-1609.e5. [PMID: 31693898 PMCID: PMC6981299 DOI: 10.1016/j.celrep.2019.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
While transcriptional control of innate immune gene expression is well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, or are influenced by, macrophage activation. Here, we demonstrate that the splicing factor hnRNP M is a critical repressor of innate immune gene expression and that its function is regulated by pathogen sensing cascades. Loss of hnRNP M led to hyperinduction of a unique regulon of inflammatory and antimicrobial genes following diverse innate immune stimuli. While mutating specific serines on hnRNP M had little effect on its ability to control pre-mRNA splicing or transcript levels of housekeeping genes in resting macrophages, it greatly impacted the protein's ability to dampen induction of specific innate immune transcripts following pathogen sensing. These data reveal a previously unappreciated role for pattern recognition receptor signaling in controlling splicing factor phosphorylation and establish pre-mRNA splicing as a critical regulatory node in defining innate immune outcomes.
Collapse
Affiliation(s)
- Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
44
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
45
|
Soheilypour M, Mofrad MRK. Quality control of mRNAs at the entry of the nuclear pore: Cooperation in a complex molecular system. Nucleus 2019; 9:202-211. [PMID: 29431587 PMCID: PMC5973141 DOI: 10.1080/19491034.2018.1439304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite extensive research on how mRNAs are quality controlled prior to export into the cytoplasm, the exact underlying mechanisms are still under debate. Specifically, it is unclear how quality control proteins at the entry of the nuclear pore complex (NPC) distinguish normal and aberrant mRNAs. While some of the involved components are suggested to act as switches and recruit different factors to normal versus aberrant mRNAs, some experimental and computational evidence suggests that the combined effect of the regulated stochastic interactions between the involved components could potentially achieve an efficient quality control of mRNAs. In this review, we present a state-of-the-art portrait of the mRNA quality control research and discuss the current hypotheses proposed for dynamics of the cooperation between the involved components and how it leads to their shared goal: mRNA quality control prior to export into the cytoplasm.
Collapse
Affiliation(s)
- Mohammad Soheilypour
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| | - Mohammad R K Mofrad
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| |
Collapse
|
46
|
Dumont AA, Dumont L, Berthiaume J, Auger-Messier M. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118557. [PMID: 31505169 DOI: 10.1016/j.bbamcr.2019.118557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is essential for normal heart function. However, p38 also contributes to heart failure pathogenesis by affecting cardiomyocytes contractility and survival. To unravel part of the complex role of p38 in cardiac function, we performed an APEX2-based proximity assay in cultured neonatal rat ventricular myocytes and identified the protein interaction networks (interactomes) of two highly expressed p38 isoforms in the heart. We found that p38α and p38γ have distinct interactomes in cardiomyocytes under both basal and osmotic stress-activated states. Interestingly, the activated p38α interactome contains many RNA-binding proteins implicated in splicing, including the serine/arginine-rich splicing factor 3 (SRSF3). Its interaction with the activated p38α was validated by co-immunoprecipitation. The cytoplasmic abundance and alternative splicing function of SRSF3 are also both modulated by the p38 signaling pathway. Our findings reveal a new function for p38 as a specific regulator of SRSF3 in cardiomyocytes.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
47
|
Goos C, Dejung M, Wehman AM, M-Natus E, Schmidt J, Sunter J, Engstler M, Butter F, Kramer S. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res 2019; 47:266-282. [PMID: 30418648 PMCID: PMC6326799 DOI: 10.1093/nar/gky1136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023] Open
Abstract
The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.
Collapse
Affiliation(s)
- Carina Goos
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Elisabeth M-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Schmidt
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Susanne Kramer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
48
|
Artarini A, Meyer M, Shin YJ, Huber K, Hilz N, Bracher F, Eros D, Orfi L, Keri G, Goedert S, Neuenschwander M, von Kries J, Domovich-Eisenberg Y, Dekel N, Szabadkai I, Lebendiker M, Horváth Z, Danieli T, Livnah O, Moncorgé O, Frise R, Barclay W, Meyer TF, Karlas A. Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Res 2019; 168:187-196. [PMID: 31176694 DOI: 10.1016/j.antiviral.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Anita Artarini
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation, Center for Systems Biomedicine, 14612, Falkensee, Germany
| | - Yu Jin Shin
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Nikolaus Hilz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Daniel Eros
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Laszlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1092, Hungary
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Sigrid Goedert
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Jens von Kries
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Yael Domovich-Eisenberg
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Olivier Moncorgé
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Rebecca Frise
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Wendy Barclay
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Karlas
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
49
|
Morton M, AlTamimi N, Butt H, Reddy ASN, Mahfouz M. Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:127-134. [PMID: 31128682 DOI: 10.1016/j.plantsci.2019.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved RNA-binding proteins that play major roles in RNA metabolism. They function as molecular adaptors, facilitate spliceosome assembly and modulate constitutive and alternative splicing of pre-mRNAs. Pre-mRNAs encoding SR proteins and many other proteins involved in stress responses are extensively alternatively spliced in response to diverse stresses. Hence, it is proposed that stress-induced changes in splice isoforms contribute to the adaptation of plants to stress responses. However, functions of most SR genes and their splice isoforms in stress responses are not known. Lack of easy and robust tools hindered the progress in this area. Emerging technologies such as CRISPR/Cas9 will facilitate studies of SR function by enabling the generation of single and multiple knock-out mutants of SR subfamily members. Moreover, CRISPR/Cas13 allows targeted manipulation of splice isoforms from SR and other genes in a constitutive or tissue-specific manner to evaluate functions of individual splice variants. Identification of the in vivo targets of SR proteins and their splice variants using the recently developed TRIBE (Targets of RNA-binding proteins Identified By Editing) and other methods will help unravel their mode of action and splicing regulatory elements under various conditions. These new approaches are expected to provide significant new insights into the roles of SRs and splice isoforms in plants adaptation to diverse stresses.
Collapse
Affiliation(s)
- Mitchell Morton
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Nadia AlTamimi
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Anireddy S N Reddy
- Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Magdy Mahfouz
- Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
50
|
George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. J Biol Chem 2019; 294:9631-9641. [PMID: 31064840 DOI: 10.1074/jbc.ra119.008463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors that promote numerous steps associated with mRNA processing and whose biological function is tightly regulated through multi-site phosphorylation. In the nucleus, the cdc2-like kinases (CLKs) phosphorylate SR proteins on their intrinsically disordered Arg-Ser (RS) domains, mobilizing them from storage speckles to the splicing machinery. The CLKs have disordered N termini that bind tightly to RS domains, enhancing SR protein phosphorylation. The N termini also promote nuclear localization of CLKs, but their transport mechanism is presently unknown. To explore cytoplasmic-nuclear transitions, several classical nuclear localization sequences in the N terminus of the CLK1 isoform were identified, but their mutation had no effect on subcellular localization. Rather, we found that CLK1 amplifies its presence in the nucleus by forming a stable complex with the SR protein substrate and appropriating its NLS for transport. These findings indicate that, along with their well-established roles in mRNA splicing, SR proteins use disordered protein-protein interactions to carry their kinase regulator from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Athira George
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Brandon E Aubol
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Laurent Fattet
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Joseph A Adams
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| |
Collapse
|