1
|
Yuan W, Huang YC, LeBlanc C, Poulet A, De Luna Vitorino FN, Valsakumar D, Dean R, Garcia BA, van Wolfswinkel JC, Voigt P, Jacob Y. H3.1K27M-induced misregulation of the TONSOKU-H3.1 pathway causes genomic instability. Nat Commun 2025; 16:3547. [PMID: 40229276 PMCID: PMC11997104 DOI: 10.1038/s41467-025-58892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
The oncomutation lysine 27-to-methionine in histone H3 (H3K27M) is frequently identified in tumors of patients with diffuse midline glioma-H3K27 altered (DMG-H3K27a). H3K27M inhibits the deposition of the histone mark H3K27me3, which affects the maintenance of transcriptional programs and cell identity. Cells expressing H3K27M are also characterized by defects in genome integrity, but the mechanisms linking expression of the oncohistone to DNA damage remain mostly unknown. In this study, we demonstrate that expression of H3.1K27M in the model plant Arabidopsis thaliana interferes with post-replicative chromatin maturation mediated by the H3.1K27 methyltransferases ATXR5 and ATXR6. As a result, H3.1 variants on nascent chromatin remain unmethylated at K27 (H3.1K27me0), leading to ectopic activity of TONSOKU (TSK/TONSL), which induces DNA damage and genomic alterations. Elimination of TSK activity suppresses the genome stability defects associated with H3.1K27M expression, while inactivation of specific DNA repair pathways prevents survival of H3.1K27M-expressing plants. Overall, our results suggest that H3.1K27M disrupts the chromatin-based mechanisms regulating TSK activity, which causes genomic instability and may contribute to the etiology of DMG-H3K27a.
Collapse
Affiliation(s)
- Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yi-Chun Huang
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Francisca N De Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Renee Dean
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Josien C van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Zhu L, Dluzewska J, Fernández-Jiménez N, Ranjan R, Pelé A, Dziegielewski W, Szymanska-Lejman M, Hus K, Górna J, Pradillo M, Ziolkowski PA. The kinase ATR controls meiotic crossover distribution at the genome scale in Arabidopsis. THE PLANT CELL 2024; 37:koae292. [PMID: 39471331 DOI: 10.1093/plcell/koae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity. Crossover is initiated by the formation of programmed DNA double-strand breaks (DSBs). While the role of ATAXIA-TELANGIECTASIA AND RAD3-RELATED (ATR) kinase in DNA damage signaling is well-known, its impact on crossover formation remains understudied. Here, using measurements of recombination at chromosomal intervals and genome-wide crossover mapping, we showed that ATR inactivation in Arabidopsis (Arabidopsis thaliana) leads to dramatic crossover redistribution, with an increase in crossover frequency in chromosome arms and a decrease in pericentromeres. These global changes in crossover placement were not caused by alterations in DSB numbers, which we demonstrated by analyzing phosphorylated H2A.X foci in zygonema. Using the seed-typing technique, we found that hotspot usage remains mainly unchanged in atr mutants compared with wild-type individuals. Moreover, atr showed no change in the number of crossovers caused by two independent pathways, which implies no effect on crossover pathway choice. Analyses of genetic interaction indicate that while the effects of atr are independent of MMS AND UV SENSITIVE81 (MUS81), ZIPPER1 (ZYP1), FANCONI ANEMIA COMPLEMENTATION GROUP M (FANCM), and D2 (FANCD2), the underlying mechanism may be similar between ATR and FANCD2. This study extends our understanding of ATR's role in meiosis, uncovering functions in regulating crossover distribution.
Collapse
Affiliation(s)
- Longfei Zhu
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajeev Ranjan
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Karolina Hus
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Górna
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
3
|
Yuan W, Huang YC, LeBlanc C, Poulet A, Valsakumar D, van Wolfswinkel JC, Voigt P, Jacob Y. H3.1K27M-induced misregulation of the TSK/TONSL-H3.1 pathway causes genomic instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627617. [PMID: 39713323 PMCID: PMC11661185 DOI: 10.1101/2024.12.09.627617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The oncomutation lysine 27-to-methionine in histone H3 (H3K27M) is frequently identified in tumors of patients with diffuse midline glioma-H3K27 altered (DMG-H3K27a). H3K27M inhibits the deposition of the histone mark H3K27me3, which affects the maintenance of transcriptional programs and cell identity. Cells expressing H3K27M are also characterized by defects in genome integrity, but the mechanisms linking expression of the oncohistone to DNA damage remain mostly unknown. In this study, we demonstrate that expression of H3.1K27M in the model plant Arabidopsis thaliana interferes with post-replicative chromatin maturation mediated by the H3.1K27 methyltransferases ATXR5 and ATXR6. As a result, H3.1 variants on nascent chromatin remain unmethylated at K27 (H3.1K27me0), leading to ectopic activity of TONSOKU (TSK), which induces DNA damage and genomic alterations. Elimination of TSK activity suppresses the genome stability defects associated with H3.1K27M expression, while inactivation of specific DNA repair pathways prevents survival of H3.1K27M-expressing plants. Overall, our results suggest that H3.1K27M disrupts the chromatin-based mechanisms regulating TSK/TONSL activity, which causes genomic instability and may contribute to the etiology of DMG-H3K27a.
Collapse
Affiliation(s)
- Wenxin Yuan
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Yi-Chun Huang
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Josien C. van Wolfswinkel
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
4
|
Emmenecker C, Pakzad S, Ture F, Guerin J, Hurel A, Chambon A, Girard C, Mercier R, Kumar R. FIGL1 attenuates meiotic interhomolog repair and is counteracted by the RAD51 paralog XRCC2 and the chromosome axis protein ASY1 during meiosis. THE NEW PHYTOLOGIST 2024; 244:2442-2457. [PMID: 39420761 PMCID: PMC11579446 DOI: 10.1111/nph.20181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Two recombinases, RAD51 and DMC1, catalyze meiotic break repair to ensure crossovers (COs) between homologous chromosomes (interhomolog) rather than between sisters (intersister). FIDGETIN-LIKE-1 (FIGL1) downregulates both recombinases. However, the understanding of how FIGL1 functions in meiotic repair remains limited. Here, we discover new genetic interactions of Arabidopsis thaliana FIGL1 that are important in vivo determinants of meiotic repair outcome. In figl1 mutants, compromising RAD51-dependent repair, either through the loss of RAD51 paralogs (RAD51B or XRCC2) or RAD54 or by inhibiting RAD51 catalytic activity, results in either unrepaired breaks or meiotic CO defects. Further, XRCC2 physically interacts with FIGL1 and partially counteracts FIGL1 activity for RAD51 focus formation. Our data indicate that RAD51-mediated repair mechanisms compensate FIGL1 dysfunction. FIGL1 is not necessary for intersister repair in dmc1 but is essential for the completion of meiotic repair in mutants such as asy1 that have impaired DMC1 functions and interhomolog bias. We show that FIGL1 attenuates interhomolog repair, and ASY1 counteracts FIGL1 to promote interhomolog recombination. Altogether, this study underlines that multiple factors can counteract FIGL1 activity to promote accurate meiotic repair.
Collapse
Affiliation(s)
- Côme Emmenecker
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- University of Paris‐Sud, Université Paris‐Saclay91405OrsayFrance
| | - Simine Pakzad
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Fatou Ture
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Julie Guerin
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Aurélie Hurel
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Aurélie Chambon
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Chloé Girard
- Meiotic Recombination and Pairing Team, Université Paris‐Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC)91190Gif‐sur‐YvetteFrance
| | - Raphael Mercier
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10CologneGermany
| | - Rajeev Kumar
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| |
Collapse
|
5
|
De Jaeger-Braet J, Schnittger A. Heating up meiosis - Chromosome recombination and segregation under high temperatures. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102548. [PMID: 38749207 DOI: 10.1016/j.pbi.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress is one of the major constraints to plant growth and fertility. During the current climate crisis, heat waves have increased dramatically, and even more extreme conditions are predicted for the near future, considerably affecting ecosystems and seriously threatening world food security. Although heat is very well known to affect especially reproductive structures, little is known about how heat interferes with reproduction in comparison to somatic cells and tissues. Recently, the effect of heat on meiosis as a central process in sexual reproduction has been analyzed in molecular and cytological depth. Notably, these studies are not only important for applied research by laying the foundation for breeding heat-resilient crops, but also for fundamental research, revealing general regulatory mechanisms of recombination and chromosome segregation control.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Petiot V, White CI, Da Ines O. DNA-binding site II is required for RAD51 recombinogenic activity in Arabidopsis thaliana. Life Sci Alliance 2024; 7:e202402701. [PMID: 38803223 PMCID: PMC11106524 DOI: 10.26508/lsa.202402701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.
Collapse
Affiliation(s)
- Valentine Petiot
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
7
|
Kutashev K, Meschichi A, Reeck S, Fonseca A, Sartori K, White CI, Sicard A, Rosa S. Differences in RAD51 transcriptional response and cell cycle dynamics reveal varying sensitivity to DNA damage among Arabidopsis thaliana root cell types. THE NEW PHYTOLOGIST 2024; 243:966-980. [PMID: 38840557 DOI: 10.1111/nph.19875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.
Collapse
Affiliation(s)
- Konstantin Kutashev
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Anis Meschichi
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zürich, Zürich, 8092, Switzerland
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Research Park, Norwich, NR4 7UH, UK
| | - Alejandro Fonseca
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Kevin Sartori
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERM, Clermont-Ferrand, 63001, France
| | - Adrien Sicard
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| |
Collapse
|
8
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
9
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Gutierrez N, Pégard M, Solis I, Sokolovic D, Lloyd D, Howarth C, Torres AM. Genome-wide association study for yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1328690. [PMID: 38545396 PMCID: PMC10965552 DOI: 10.3389/fpls.2024.1328690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 11/11/2024]
Abstract
Yield is the most complex trait to improve crop production, and identifying the genetic determinants for high yield is a major issue in breeding new varieties. In faba bean (Vicia faba L.), quantitative trait loci (QTLs) have previously been detected in studies of biparental mapping populations, but the genes controlling the main trait components remain largely unknown. In this study, we investigated for the first time the genetic control of six faba bean yield-related traits: shattering (SH), pods per plant (PP), seeds per pod (SP), seeds per plant (SPL), 100-seed weight (HSW), and plot yield (PY), using a genome-wide association study (GWAS) on a worldwide collection of 352 homozygous faba bean accessions with the aim of identifying markers associated with them. Phenotyping was carried out in field trials at three locations (Spain, United Kingdom, and Serbia) over 2 years. The faba bean panel was genotyped with the Affymetrix faba bean SNP-chip yielding 22,867 SNP markers. The GWAS analysis identified 112 marker-trait associations (MTAs) in 97 candidate genes, distributed over the six faba bean chromosomes. Eight MTAs were detected in at least two environments, and five were associated with multiple traits. The next step will be to validate these candidates in different genetic backgrounds to provide resources for marker-assisted breeding of faba bean yield.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| | - Marie Pégard
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | | | | | - David Lloyd
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Catherine Howarth
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| |
Collapse
|
11
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
13
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Regulation of gene editing using T-DNA concatenation. NATURE PLANTS 2023; 9:1398-1408. [PMID: 37653336 PMCID: PMC11193869 DOI: 10.1038/s41477-023-01495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Transformation via Agrobacterium tumefaciens is the predominant method used to introduce exogenous DNA into plant genomes1,2. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in complex concatenated forms3,4, but the mechanisms affecting final T-DNA structure remain unknown. Here we demonstrate that inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase T-DNA copy number by more than 50-fold in Arabidopsis thaliana. These additional T-DNA copies are organized into large concatemers, an effect primarily induced by the long terminal repeats (LTRs) of RTs that can be replicated using non-LTR DNA repeats. We found that T-DNA concatenation is dependent on the activity of the DNA repair proteins MRE11, RAD17 and ATR. Finally, we show that T-DNA concatenation can be used to increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA concatenation for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Xu W, Yu Y, Jing J, Wu Z, Zhang X, You C, Ma H, Copenhaver GP, He Y, Wang Y. SCF RMF mediates degradation of the meiosis-specific recombinase DMC1. Nat Commun 2023; 14:5044. [PMID: 37598222 PMCID: PMC10439943 DOI: 10.1038/s41467-023-40799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Meiotic recombination requires the specific RecA homolog DMC1 recombinase to stabilize strand exchange intermediates in most eukaryotes. Normal DMC1 levels are crucial for its function, yet the regulatory mechanisms of DMC1 stability are unknown in any organism. Here, we show that the degradation of Arabidopsis DMC1 by the 26S proteasome depends on F-box proteins RMF1/2-mediated ubiquitination. Furthermore, RMF1/2 interact with the Skp1 ortholog ASK1 to form the ubiquitin ligase complex SCFRMF1/2. Genetic analyses demonstrate that RMF1/2, ASK1 and DMC1 act in the same pathway downstream of SPO11-1 dependent meiotic DNA double strand break formation and that the proper removal of DMC1 is crucial for meiotic crossover formation. Moreover, six DMC1 lysine residues were identified as important for its ubiquitination but not its interaction with RMF1/2. Our results reveal mechanistic insights into how the stability of a key meiotic recombinase that is broadly conserved in eukaryotes is regulated.
Collapse
Affiliation(s)
- Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juli Jing
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
- College of Life Sciences, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
15
|
Ahmadli U, Kalidass M, Khaitova LC, Fuchs J, Cuacos M, Demidov D, Zuo S, Pecinkova J, Mascher M, Ingouff M, Heckmann S, Houben A, Riha K, Lermontova I. High temperature increases centromere-mediated genome elimination frequency and enhances haploid induction in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100507. [PMID: 36540022 DOI: 10.1016/j.xplc.2022.100507] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.
Collapse
Affiliation(s)
- Ulkar Ahmadli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Lucie Crhak Khaitova
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Sheng Zuo
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Mathieu Ingouff
- CIRAD, DIADE, IRD, University of Montpellier, 34393 Montpellier, France
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany
| | - Karel Riha
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany.
| |
Collapse
|
16
|
Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:403-423. [PMID: 36786716 DOI: 10.1111/tpj.16145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.
Collapse
Affiliation(s)
- Jiayi Zhao
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Gui
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huiqi Fu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Wenyi Wang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Min Zhang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Bing Liu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
17
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Induction of T-DNA amplification by retrotransposon-derived sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531200. [PMID: 36945545 PMCID: PMC10028825 DOI: 10.1101/2023.03.05.531200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transformation via Agrobacterium tumefaciens (Agrobacterium) is the predominant method used to introduce exogenous DNA into plants. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in concatenated forms in plant genomes, but the mechanisms affecting final T-DNA structure remain unknown. In this study, we demonstrate that the inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase transgene copy number by more than 50-fold in Arabidopsis thaliana (Arabidopsis). RT-mediated amplification of T-DNA results in large concatemers in the Arabidopsis genome, which are primarily induced by the long terminal repeats (LTRs) of RTs. T-DNA amplification is dependent on the activity of DNA repair proteins associated with theta-mediated end joining (TMEJ). Finally, we show that T-DNA amplification can increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA amplification for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Wenxin Yuan
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Siyuan Wang
- Yale University, Department of Genetics, Yale School of Medicine; New Haven, Connecticut 06510, USA
- Yale University, Department of Cell Biology, Yale School of Medicine; New Haven, Connecticut 06510, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| |
Collapse
|
18
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
19
|
Hu Y, Rosado D, Lindbäck LN, Micko J, Pedmale UV. Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524001. [PMID: 36712126 PMCID: PMC9882212 DOI: 10.1101/2023.01.15.524001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants. Therefore, we evaluated the role of plant CRYs in DDR along with UBP12/13 deubiquitinases, which interact with and regulate the CRY2 protein. We found that cry1cry2 was hypersensitive, while ubp12ubp13 was hyposensitive to UVC-induced DNA damage. Elevated UV-induced cyclobutane pyrimidine dimers (CPDs) and the lack of DNA repair protein RAD51 accumulation in cry1cry2 plants indicate that CRYs are required for DNA repair. On the contrary, CPD levels diminished and RAD51 protein levels elevated in plants lacking UBP12 and UBP13, indicating their role in DDR repression. Temporal transcriptomic analysis revealed that DDR-induced transcriptional responses were subdued in cry1cry2, but elevated in ubp12ubp13 compared to WT. Through transcriptional modeling of the time-course transcriptome, we found that genes quickly induced by UVC (15 min) are targets of CAMTA 1-3 transcription factors, which we found are required for DDR. This transcriptional regulation seems, however, diminished in the cry1cry2 mutant, indicating that CAMTAs are required for CRY2-mediated DDR. Furthermore, we observed enhanced CRY2-UBP13 interaction and formation of CRY2 nuclear speckles under UVC, suggesting that UVC activates CRY2 similarly to blue light. Together, our data reveal the temporal dynamics of the transcriptional events underlying UVC-induced genotoxicity and expand our knowledge of the role of CRY and UBP12/13 in DDR.
Collapse
Affiliation(s)
- Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Louise N. Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Julie Micko
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
20
|
Wang C, Li X, Huang J, Ma H, Wang CJR, Wang Y. Isolation of Meiocytes and Cytological Analyses of Male Meiotic Chromosomes in Soybean, Lettuce, and Maize. Methods Mol Biol 2023; 2686:219-239. [PMID: 37540360 DOI: 10.1007/978-1-0716-3299-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes following a single round of DNA replication, thus leading to the generation of haploid gametes. It is essential for sexual reproduction in eukaryotes. Over the past several decades, with the well-developed molecular and cytogenetic methods, there have been great advances in understanding meiosis in plants such as Arabidopsis thaliana and maize, providing excellent references to study meiosis in other plants. A chapter in the previous edition described molecular cytological methods for studying Arabidopsis meiosis in detail. In this chapter, we focus on methods for studying meiosis in soybean (Glycine max), lettuce (Lactuca sativa), and maize (Zea mays). Moreover, we include the method that was recently developed for examination of epigenetic modifications, such as DNA methylation and histone modifications on meiotic chromosomes in plants.
Collapse
Affiliation(s)
- Cong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiyue Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Yingxiang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
21
|
DNA polymerase epsilon binds histone H3.1-H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proc Natl Acad Sci U S A 2022; 119:e2213540119. [PMID: 36260743 PMCID: PMC9618065 DOI: 10.1073/pnas.2213540119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is essential for genomic integrity and stability in eukaryotes. The mechanisms that regulate meiotic heterochromatin formation remain largely undefined. Here, we show that the catalytic subunit (POL2A) of Arabidopsis DNA polymerase epsilon (POL ε) is required for proper formation of meiotic heterochromatin. The POL2A N terminus interacts with the GHKL adenosine triphosphatase (ATPase) MORC1 (Microrchidia 1), and POL2A is required for MORC1's localization on meiotic heterochromatin. Mutations affecting the POL2A N terminus cause aberrant morphology of meiotic heterochromatin, which is also observed in morc1. Moreover, the POL2A C-terminal zinc finger domain (ZF1) specifically binds to histone H3.1-H4 dimer or tetramer and is important for meiotic heterochromatin condensation. Interestingly, we also found similar H3.1-binding specificity for the mouse counterpart. Together, our results show that two distinct domains of POL2A, ZF1 and N terminus bind H3.1-H4 and recruit MORC1, respectively, to induce a continuous process of meiotic heterochromatin organization. These activities expand the functional repertoire of POL ε beyond its classic role in DNA replication and appear to be conserved in animals and plants.
Collapse
|
22
|
Garcia N, Yin L, Dukowic-Schulze S, Milsted C, Kianian PMA, Kianian S, Pawlowski WP, Chen C. Comparison of meiotic transcriptomes of three maize inbreds with different origins reveals differences in cell cycle and recombination. BMC Genomics 2022; 23:702. [PMID: 36224518 PMCID: PMC9554999 DOI: 10.1186/s12864-022-08922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cellular events during meiosis can differ between inbred lines in maize. Substantial differences in the average numbers of chiasmata and double-strand breaks (DSBs) per meiotic cell have been documented among diverse inbred lines of maize: CML228, a tropical maize inbred line, B73 and Mo17, temperate maize lines. To determine if gene expression might explain these observed differences, an RNA-Seq experiment was performed on CML228 male meiocytes which was compared to B73 and Mo17 male meiocytes, where plants were grown in the same controlled environment. Results We found that a few DSB-repair/meiotic genes which promote class I crossovers (COs) and the Zyp1 gene which limits newly formed class I COs were up-regulated, whereas Mus81 homolog 2 which promotes class II COs was down-regulated in CML228. Although we did not find enriched gene ontology (GO) categories directly related to meiosis, we found that GO categories in membrane, localization, proteolysis, energy processes were up-regulated in CML228, while chromatin remodeling, epigenetic regulation, and cell cycle related processes including meiosis related cell cycle processes were down-regulated in CML228. The degree of similarity in expression patterns between the three maize lines reflect their genetic relatedness: B73 and Mo17 had similar meiotic expressions and CML228 had a more distinct expression profile. Conclusions We found that meiotic related genes were mostly conserved among the three maize inbreds except for a few DSB-repair/meiotic genes. The findings that the molecular players in limiting class I CO formation (once CO assurance is achieved) were up-regulated and those involved in promoting class II CO formation were down-regulated in CML228 agree with the lower chiasmata number observed in CML228 previously. In addition, epigenetics such as chromatin remodeling and histone modification might play a role. Transport and energy-related processes was up-regulated and Cyclin13 was down-regulated in CML228. The direction of gene expression of these processes agree with that previously found in meiotic tissues compared with vegetative tissues. In summary, we used different natural maize inbred lines from different climatic conditions and have shown their differences in expression landscape in male meiocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08922-w.
Collapse
Affiliation(s)
- Nelson Garcia
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA.,Present Address: Sound Agriculture, 5858 Horton St, Emeryville, CA, USA
| | - Lu Yin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA.,Microvascular Biology and Pathobiology, University of Heidelberg, Mannheim, Germany
| | - Claire Milsted
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Penny M A Kianian
- PepsiCo Inc., 210 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN, USA
| | - Shahryar Kianian
- Department of Agriculture - Agricultural Research Service, Cereal Disease Lab, U.S., Saint Paul, MN, USA
| | | | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
23
|
OsRAD51 Plays a Vital Role in Promoting Homologous Recombination in Rice Meiosis. Int J Mol Sci 2022; 23:ijms23179906. [PMID: 36077304 PMCID: PMC9456343 DOI: 10.3390/ijms23179906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Meiotic recombination plays a pivotal role in achieving accurate chromosomal segregation and increasing genetic diversity. In the homologous recombination pathway, the detailed mechanisms of how OsRAD51 and OsDMC1 work in rice meiosis remain to be explored. Here, we obtained different types of mutants for Osrad51a1, Osrad51a2, Osdmc1a, and Osdmc1b through CRISPR/Cas9. Both Osrad51a1 and Osrad51a2 exhibited normal vegetative growth and fertility. Osrad51 (Osrad51a1 Osrad51a2) mutant plants show normal vegetative growth but exhibit complete sterility, indicating that OsRAD51A1 and OsRAD51A2 are functionally redundant in rice fertility. In contrast to the wild type, Osrad51 chromosomes are not paired perfectly at pachytene and synaptonemal complex (SC) formation is deficient. Moreover, univalents and multivalent associations were observed at metaphase I, chromosome fragments presented at anaphase I, and crossover formation is basically suppressed in Osrad51 pollen mother cells (PMCs). OsRAD51 foci emerge at leptotene and disappear from late pachytene and chromosome localization of OsRAD51 depends on the formation of double-strand breaks (DSBs). Most OsRAD51 foci can co-localize with OsDMC1 signals. OsRAD51 is essential for the loading of OsDMC1 onto chromosomes, and vice versa. In addition, both OsRAD51 and OsDMC1 can interact with OsFIGL1 and OsBRCA2, two important components in rice meiosis. Moreover, the Osrad51 Osdmc1 (Osrad51a1 Osrad51a2 Osdmc1a Osdmc1b) quadruple mutant PMCs exhibited similar defective phenotypes as Osrad51 in homologous pairing, synapsis, and DSB repair. Taken together, our results suggest that the recombinases DMC1 and RAD51 may functionally depend on each other and play important roles in meiotic recombination during meiosis in rice.
Collapse
|
24
|
DMC1 attenuates RAD51-mediated recombination in Arabidopsis. PLoS Genet 2022; 18:e1010322. [PMID: 36007010 PMCID: PMC9451096 DOI: 10.1371/journal.pgen.1010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments. Essential for fertility and responsible for a major part of genetic variation in sexually reproducing species, meiotic recombination establishes the physical linkages between homologous chromosomes which ensure their balanced segregation in the production of gametes. These linkages, or chiasmata, result from DNA strand exchange catalyzed by the RAD51 and DMC1 recombinases and their numbers and distribution are tightly regulated. Essential for maintaining chromosomal integrity in mitotic cells, the strand-exchange activity of RAD51 is downregulated in meiosis, where it plays a supporting role to the activity of DMC1. Notwithstanding considerable attention from the genetics community, precisely why this is done and the mechanisms involved are far from being fully understood. We show here in the plant Arabidopsis that DMC1 can downregulate RAD51 strand-exchange activity and propose that this may be a general mechanism for suppression of RAD51-mediated recombination in meiosis.
Collapse
|
25
|
Multi-color dSTORM microscopy in Hormad1-/- spermatocytes reveals alterations in meiotic recombination intermediates and synaptonemal complex structure. PLoS Genet 2022; 18:e1010046. [PMID: 35857787 PMCID: PMC9342782 DOI: 10.1371/journal.pgen.1010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/01/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced. In order to correctly pair homologous chromosomes in the first meiotic prophase, repair of programmed double strand breaks (DSBs) is essential. By unravelling molecular details of the protein assemblies at single DSBs, using super-resolution microscopy, we aim to understand the dynamics of repair intermediates and their functions. We investigated the localization of the two recombinases RAD51 and DMC1 in wild type and HORMAD1-deficient cells. HORMAD1 is involved in multiple aspects of homologous chromosome association: it regulates formation and repair of DSBs, and it stimulates formation of the synaptonemal complex (SC), the macromolecular protein assembly that connects paired chromosomes. RAD51 and DMC1 enable chromosome pairing by promoting the invasions of the intact chromatids by single-stranded DNA ends that result from DSBs. We found that in absence of HORMAD1, RAD51 and DMC1 showed small but significant morphological and positional changes, combined with altered kinetics of specific RAD51/DMC1 configurations. We also determined that there is a generally preferred distance of ~900 nm between meiotic DSBs along the SC. Finally, we observed changes in the structure of the SC in Hormad1-/- spermatocytes. This study contributes to a better understanding of the molecular details of meiotic homologous recombination and the role of HORMAD1 in meiotic prophase.
Collapse
|
26
|
Qin J, Huang T, Wang J, Xu L, Dang Q, Xu X, Liu H, Liu Z, Shao C, Zhang X. RAD51 is essential for spermatogenesis and male fertility in mice. Cell Death Dis 2022; 8:118. [PMID: 35292640 PMCID: PMC8924220 DOI: 10.1038/s41420-022-00921-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The recombinase RAD51 catalyzes the DNA strand exchange reaction in homologous recombination (HR) during both mitosis and meiosis. However, the physiological role of RAD51 during spermatogenesis remains unclear since RAD51 null mutation is embryonic lethal in mice. In this study, we generated a conditional knockout mouse model to study the role of RAD51 in spermatogenesis. Conditional disruption of RAD51 in germ cells by Vasa-Cre led to spermatogonial loss and Sertoli cell-only syndrome. Furthermore, tamoxifen-inducible RAD51 knockout by UBC-CreERT2 confirmed that RAD51 deletion led to early spermatogenic cells loss and apoptosis. Notably, inducible knockout of RAD51 in adult mice caused defects in meiosis, with accumulated meiotic double-strand breaks (DSBs), reduced numbers of pachytene spermatocytes and less crossover formation. Our study revealed an essential role for Rad51 in the maintenance of spermatogonia as well as meiotic progression in mice.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei Xu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuhua Xu
- Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaojian Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
27
|
Milsted C, Dai B, Garcia N, Yin L, He Y, Kianian S, Pawlowski W, Chen C. Genome-wide investigation of maize RAD51 binding affinity through phage display. BMC Genomics 2022; 23:199. [PMID: 35279087 PMCID: PMC8917730 DOI: 10.1186/s12864-022-08419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RAD51 proteins, which are conserved in all eukaryotes, repair DNA double-strand breaks. This is critical to homologous chromosome pairing and recombination enabling successful reproduction. Work in Arabidopsis suggests that RAD51 also plays a role in plant defense; the Arabidopsis rad51 mutant is more susceptible to Pseudomonas syringae. However, the defense functions of RAD51 and the proteins interacting with RAD51 have not been thoroughly investigated in maize. Uncovering ligands of RAD51 would help to understand meiotic recombination and possibly the role of RAD51 in defense. This study used phage display, a tool for discovery of protein-protein interactions, to search for proteins interacting with maize RAD51A1. RESULTS Maize RAD51A1 was screened against a random phage library. Eleven short peptide sequences were recovered from 15 phages which bound ZmRAD51A1 in vitro; three sequences were found in multiple successfully binding phages. Nine of these phage interactions were verified in vitro through ELISA and/or dot blotting. BLAST searches did not reveal any maize proteins which contained the exact sequence of any of the selected phage peptides, although one of the selected phages had a strong alignment (E-value = 0.079) to a binding domain of maize BRCA2. Therefore, we designed 32 additional short peptides using amino acid sequences found in the predicted maize proteome. These peptides were not contained within phages. Of these synthesized peptides, 14 bound to ZmRAD51A1 in a dot blot experiment. These 14 sequences are found in known maize proteins including transcription factors putatively involved in defense. CONCLUSIONS These results reveal several peptides which bind ZmRAD51A1 and support a potential role for ZmRAD51A1 in transcriptional regulation and plant defense. This study also demonstrates the applicability of phage display to basic science questions, such as the search for binding partners of a known protein, and raises the possibility of an iterated approach to test peptide sequences that closely but imperfectly align with the selected phages.
Collapse
Affiliation(s)
- Claire Milsted
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Bo Dai
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Nelson Garcia
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
- Calyxt Inc, 2800 Mount Ridge Rd, Roseville, MN, 55113, USA
| | - Lu Yin
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Yan He
- School of Integrative Plant Science, Cornell University, 401 Bradfield Hall, Ithaca, NY, 14853, USA
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Shahryar Kianian
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA
- Cereal Disease Lab, USDA-ARS, St. Paul, MN, 55108, USA
| | - Wojciech Pawlowski
- School of Integrative Plant Science, Cornell University, 401 Bradfield Hall, Ithaca, NY, 14853, USA
| | - Changbin Chen
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA.
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN, 55108, USA.
| |
Collapse
|
28
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
29
|
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. THE PLANT CELL 2022; 34:433-454. [PMID: 34718750 PMCID: PMC8846176 DOI: 10.1093/plcell/koab257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 05/25/2023]
Abstract
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Buchholz
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
30
|
Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J Genet Genomics 2022; 49:624-635. [PMID: 35041992 DOI: 10.1016/j.jgg.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we used translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels were enriched in pollen and anther-related formation and development processes. These contained a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the first comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, Changsha 410119, Hunan, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Prusicki MA, Balboni M, Sofroni K, Hamamura Y, Schnittger A. Caught in the Act: Live-Cell Imaging of Plant Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:718346. [PMID: 34992616 PMCID: PMC8724559 DOI: 10.3389/fpls.2021.718346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Live-cell imaging is a powerful method to obtain insights into cellular processes, particularly with respect to their dynamics. This is especially true for meiosis, where chromosomes and other cellular components such as the cytoskeleton follow an elaborate choreography over a relatively short period of time. Making these dynamics visible expands understanding of the regulation of meiosis and its underlying molecular forces. However, the analysis of meiosis by live-cell imaging is challenging; specifically in plants, a temporally resolved understanding of chromosome segregation and recombination events is lacking. Recent advances in live-cell imaging now allow the analysis of meiotic events in plants in real time. These new microscopy methods rely on the generation of reporter lines for meiotic regulators and on the establishment of ex vivo culture and imaging conditions, which stabilize the specimen and keep it alive for several hours or even days. In this review, we combine an overview of the technical aspects of live-cell imaging in plants with a summary of outstanding questions that can now be addressed to promote live-cell imaging in Arabidopsis and other plant species and stimulate ideas on the topics that can be addressed in the context of plant meiotic recombination.
Collapse
Affiliation(s)
| | | | | | | | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Cao L, Wang S, Zhao L, Qin Y, Wang H, Cheng Y. The Inactivation of Arabidopsis UBC22 Results in Abnormal Chromosome Segregation in Female Meiosis, but Not in Male Meiosis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112418. [PMID: 34834780 PMCID: PMC8625819 DOI: 10.3390/plants10112418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.
Collapse
Affiliation(s)
- Ling Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| |
Collapse
|
33
|
Wolter F, Schindele P, Beying N, Scheben A, Puchta H. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. THE PLANT CELL 2021; 33:3454-3469. [PMID: 34375428 PMCID: PMC8566284 DOI: 10.1093/plcell/koab204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalja Beying
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Author for correspondence:
| |
Collapse
|
34
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
35
|
Chen H, He C, Wang C, Wang X, Ruan F, Yan J, Yin P, Wang Y, Yan S. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. THE PLANT CELL 2021; 33:2869-2882. [PMID: 34009315 PMCID: PMC8408460 DOI: 10.1093/plcell/koab136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/12/2021] [Indexed: 05/21/2023]
Abstract
Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1. We unexpectedly found that loss of the SMC5/6 partially suppresses the rad51 knockout mutant in terms of sterility, pollen inviability, and meiotic chromosome fragmentation in a DMC1-dependent manner in Arabidopsis thaliana. Biochemical and cytological studies revealed that the DMC1 localization in meiotic chromosomes is inhibited by the SMC5/6 complex, which is attenuated by RAD51 through physical interactions. This study not only identified the long-sought-after function of RAD51 in meiosis but also discovered the inhibition of SMC5/6 on DMC1 as a control mechanism during meiotic recombination.
Collapse
Affiliation(s)
- Hanchen Chen
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chongyang Wang
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanpeng Wang
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengyin Ruan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Author for correspondence: (S.Y.), (Y.W.)
| | - Shunping Yan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
- Author for correspondence: (S.Y.), (Y.W.)
| |
Collapse
|
36
|
Robert N, Yan C, Si-Jiu Y, Bo L, He H, Pengfei Z, Hongwei X, Jian Z, Shijie L, Qian Z. Expression of Rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021; 172:239-254. [PMID: 34298284 DOI: 10.1016/j.theriogenology.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is key to the repair of DNA double-strand break damage, provide a link between homologs for proper chromosome segregation as well as ensure genetic diversity in organisms. Defects in recombination often lead to sterility. The ubiquitously expressed Rad51 and the meiosis-specific DMC1 are two closely related recombinases that catalyze the key strand invasion and exchange step of meiotic recombination. This study cloned and sequenced the coding region of cattle-yak Rad51 and determined its mRNA and protein expression levels, evaluated its molecular and evolutionary relationship as well as evaluated the histo-morphological structure of testes in the yellow cattle, yak and the sterile cattle-yak hybrid. The Rad51 gene was amplified using PCR, cloned and sequenced using testicular cDNA from yak and cattle-yak. Real-time PCR was used to examine the expression levels of Rad51/DMC1 mRNA in the cattle, yak and cattle-yak testis while western blotting, immunofluorescence and immunohistochemistry were used to assess the protein expression and localization of Rad51/DMC1 protein in the testicular tissue sections. The results revealed that the mRNA and protein expression of Rad51 and DMC1 are extremely low in the male cattle-yak testis with a corresponding higher incidence of germ cell apoptosis. There was also thinning of the germinal epithelium possibly due to the depletion of the germ cells leading to the widening of the lumen area of the cattle-yak seminiferous tubule. Our findings provide support for the hypothesis that the low expression of Rad51 and DMC1 may contribute to the male hybrid sterility in the cattle-yak.
Collapse
Affiliation(s)
- Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Cui Yan
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China.
| | - Yu Si-Jiu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Liao Bo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Zhao Pengfei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xu Hongwei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Jian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li Shijie
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Qian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
37
|
Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis. PLoS Genet 2021; 17:e1008919. [PMID: 34003859 PMCID: PMC8162660 DOI: 10.1371/journal.pgen.1008919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/28/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
An essential component of the homologous recombination machinery in eukaryotes, the RAD54 protein is a member of the SWI2/SNF2 family of helicases with dsDNA-dependent ATPase, DNA translocase, DNA supercoiling and chromatin remodelling activities. It is a motor protein that translocates along dsDNA and performs multiple functions in homologous recombination. In particular, RAD54 is an essential cofactor for regulating RAD51 activity. It stabilizes the RAD51 nucleofilament, remodels nucleosomes, and stimulates the homology search and strand invasion activities of RAD51. Accordingly, deletion of RAD54 has dramatic consequences on DNA damage repair in mitotic cells. In contrast, its role in meiotic recombination is less clear. RAD54 is essential for meiotic recombination in Drosophila and C. elegans, but plays minor roles in yeast and mammals. We present here characterization of the roles of RAD54 in meiotic recombination in the model plant Arabidopsis thaliana. Absence of RAD54 has no detectable effect on meiotic recombination in otherwise wild-type plants but RAD54 becomes essential for meiotic DSB repair in absence of DMC1. In Arabidopsis, dmc1 mutants have an achiasmate meiosis, in which RAD51 repairs meiotic DSBs. Lack of RAD54 leads to meiotic chromosomal fragmentation in absence of DMC1. The action of RAD54 in meiotic RAD51 activity is thus mainly downstream of the role of RAD51 in supporting the activity of DMC1. Equivalent analyses show no effect on meiosis of combining dmc1 with the mutants of the RAD51-mediators RAD51B, RAD51D and XRCC2. RAD54 is thus required for repair of meiotic DSBs by RAD51 and the absence of meiotic phenotype in rad54 plants is a consequence of RAD51 playing a RAD54-independent supporting role to DMC1 in meiotic recombination. Homologous recombination is a universal pathway which repairs broken DNA molecules through the use of homologous DNA templates. It is both essential for maintenance of genome stability and for the generation of genetic diversity through sexual reproduction. A central step of the homologous recombination process is the search for and invasion of a homologous, intact DNA sequence that will be used as template. This key step is catalysed by the RAD51 recombinase in somatic cells and RAD51 and DMC1 in meiotic cells, assisted by a number of associated factors. Among these, the chromatin-remodelling protein RAD54 is a required cofactor for RAD51 in mitotic cells. Understanding of its role during meiotic recombination however remains elusive. We show here that RAD54 is required for repair of meiotic double strand breaks by RAD51 in the plant Arabidopsis thaliana, and this function is downstream of the meiotic role of RAD51 in supporting the activity of DMC1. These results provide new insights into the regulation of the central step of homologous recombination in plants and very probably also other multicellular eukaryotes.
Collapse
Affiliation(s)
- Miguel Hernandez Sanchez-Rebato
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Alida M Bouatta
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Maria E Gallego
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| |
Collapse
|
38
|
Sims J, Schlögelhofer P, Kurzbauer MT. From Microscopy to Nanoscopy: Defining an Arabidopsis thaliana Meiotic Atlas at the Nanometer Scale. FRONTIERS IN PLANT SCIENCE 2021; 12:672914. [PMID: 34084178 PMCID: PMC8167036 DOI: 10.3389/fpls.2021.672914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Visualization of meiotic chromosomes and the proteins involved in meiotic recombination have become essential to study meiosis in many systems including the model plant Arabidopsis thaliana. Recent advances in super-resolution technologies changed how microscopic images are acquired and analyzed. New technologies enable observation of cells and nuclei at a nanometer scale and hold great promise to the field since they allow observing complex meiotic molecular processes with unprecedented detail. Here, we provide an overview of classical and advanced sample preparation and microscopy techniques with an updated Arabidopsis meiotic atlas based on super-resolution microscopy. We review different techniques, focusing on stimulated emission depletion (STED) nanoscopy, to offer researchers guidance for selecting the optimal protocol and equipment to address their scientific question.
Collapse
|
39
|
Li X, Wang H, Wang Y, Zhang L, Wang Y. Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:73-89. [PMID: 36939799 PMCID: PMC9590573 DOI: 10.1007/s43657-021-00012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED With the rapid development of omics technologies during the last several decades, genomics, transcriptomics, and proteomics have been extensively used to characterize gene or protein functions in many organisms at the cell or tissue level. However, metabolomics has not been conducted in reproductive organs, with a focus on meiosis in plants. In this study, we adopted a nuclear magnetic resonance (NMR)-based metabolomics approach to reveal the metabolic profile of inflorescences from two Arabidopsis accessions, Columbia (Col) and Landsberg erecta (Ler), and several sterile mutants caused by meiosis defects. We identified 68 dominant metabolites in the samples. Col and Ler displayed distinct metabolite profiles. Interestingly, mutants with similar meiotic defects, such as Atrad51-3, Atrfc1-2, and Atpol2a-2, exhibited similar alterations in metabolites, including upregulation of energy metabolites and promotion of compounds related to maintenance of genomic stability, cytoplasmic homeostasis, and membrane integrity. The collective data reveal distinct changes in metabolites in Arabidopsis inflorescences between the Col and Ler wild type accessions. NMR-based metabolomics could be an effective tool for molecular phenotyping in studies of aspects of plant reproductive development such as meiosis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00012-3.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Wuhan, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
41
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
42
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
43
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A, Lu P. ATM Promotes RAD51-Mediated Meiotic DSB Repair by Inter-Sister-Chromatid Recombination in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:839. [PMID: 32670319 PMCID: PMC7329986 DOI: 10.3389/fpls.2020.00839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
Meiotic recombination ensures accurate homologous chromosome segregation during meiosis and generates novel allelic combinations among gametes. During meiosis, DNA double strand breaks (DSBs) are generated to facilitate recombination. To maintain genome integrity, meiotic DSBs must be repaired using appropriate DNA templates. Although the DNA damage response protein kinase Ataxia-telangiectasia mutated (ATM) has been shown to be involved in meiotic recombination in Arabidopsis, its mechanistic role is still unclear. In this study, we performed cytological analysis in Arabidopsis atm mutant, we show that there are fewer γH2AX foci, but more RAD51 and DMC1 foci on atm meiotic chromosomes. Furthermore, we observed an increase in meiotic Type I crossovers (COs) in atm. Our genetic analysis shows that the meiotic phenotype of atm rad51 double mutants is similar to the rad51 single mutant. Whereas, the atm dmc1 double mutant has a more severe chromosome fragmentation phenotype compared to both single mutants, suggesting that ATM functions in concert with RAD51, but in parallel to DMC1. Lastly, we show that atm asy1 double mutants also have more severe meiotic recombination defects. These data lead us to propose a model wherein ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid (IS) recombination in Arabidopsis.
Collapse
Affiliation(s)
- Yuan Yao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojing Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Wang H, Xu W, Sun Y, Lian Q, Wang C, Yu C, He C, Wang J, Ma H, Copenhaver GP, Wang Y. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genet 2020; 16:e1008849. [PMID: 32516352 PMCID: PMC7304647 DOI: 10.1371/journal.pgen.1008849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.
Collapse
Affiliation(s)
- Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yujin Sun
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Lei X, Ning Y, Eid Elesawi I, Yang K, Chen C, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1746985. [PMID: 32275182 PMCID: PMC7238882 DOI: 10.1080/15592324.2020.1746985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, male meiosis is a key process of microsporogenesis and is crucial for plant fertility. Male meiosis programs are prone to be influenced by altered temperature conditions. Studies have reported that an increased temperature (28°C) within a fertile threshold can affect the frequency of meiotic recombination in Arabidopsis. However, not much has been known how male meiosis responses to an extremely high temperature beyond the fertile threshold. To understand the impact of extremely high temperature on male meiosis in Arabidopsis, we treated flowering Arabidopsis plants with 36-38°C and found that the high-temperature condition significantly reduced pollen shed and plant fertility, and led to formation of pollen grains with varied sizes. The heat stress-induced unbalanced tetrads, polyad and meiotic restitution, suggesting that male meiosis was interfered. Fluorescence in situ hybridization (FISH) assay confirmed that both homologous chromosome separation and sister chromatids cohesion were influenced. Aniline blue staining of tetrad-stage pollen mother cells (PMCs) revealed that meiotic cytokinesis was severely disrupted by the heat stress. Supportively, immunolocalization of ɑ-tubulin showed that the construction of spindle and phragmoplast at both meiosis I and II were interfered. Overall, our findings demonstrate that an extremely high-temperature stress over the fertile threshold affects both chromosome segregation and cytokinesis during male meiosis by disturbing microtubular cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoning Lei
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chong Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
- Chong Wang Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- CONTACT Bing Liu College of Life Sciences, South-Central University for Nationalities, Wuhan China
| |
Collapse
|
47
|
Nibau C, Lloyd A, Dadarou D, Betekhtin A, Tsilimigka F, Phillips DW, Doonan JH. CDKG1 Is Required for Meiotic and Somatic Recombination Intermediate Processing in Arabidopsis. THE PLANT CELL 2020; 32:1308-1322. [PMID: 32047050 PMCID: PMC7145484 DOI: 10.1105/tpc.19.00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 05/12/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) cyclin-dependent kinase G1 (CDKG1) is necessary for recombination and synapsis during male meiosis at high ambient temperature. In the cdkg1-1 mutant, synapsis is impaired and there is a dramatic reduction in the number of class I crossovers, resulting in univalents at metaphase I and pollen sterility. Here, we demonstrate that CDKG1 is necessary for the processing of recombination intermediates in the canonical ZMM recombination pathway and that loss of CDKG1 results in increased class II crossovers. While synapsis and events associated with class I crossovers are severely compromised in a cdkg1-1 mutant, they can be restored by increasing the number of recombination intermediates in the double cdkg1-1 fancm-1 mutant. Despite this, recombination intermediates are not correctly resolved, leading to the formation of chromosome aggregates at metaphase I. Our results show that CDKG1 acts early in the recombination process and is necessary to stabilize recombination intermediates. Finally, we show that the effect on recombination is not restricted to meiosis and that CDKG1 is also required for normal levels of DNA damage-induced homologous recombination in somatic tissues.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Andrew Lloyd
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Despoina Dadarou
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Foteini Tsilimigka
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Dylan W Phillips
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - John H Doonan
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| |
Collapse
|
48
|
Lu J, Wang C, Wang H, Zheng H, Bai W, Lei D, Tian Y, Xiao Y, You S, Wang Q, Yu X, Liu S, Liu X, Chen L, Jang L, Wang C, Zhao Z, Wan J. OsMFS1/ OsHOP2 Complex Participates in Rice Male and Female Development. FRONTIERS IN PLANT SCIENCE 2020; 11:518. [PMID: 32499797 PMCID: PMC7243175 DOI: 10.3389/fpls.2020.00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 05/08/2023]
Abstract
Meiosis plays an essential role in the production of gametes and genetic diversity of posterities. The normal double-strand break (DSB) repair is vital to homologous recombination (HR) and occurrence of DNA fragment exchange, but the underlying molecular mechanism remain elusive. Here, we characterized a completely sterile Osmfs1 (male and female sterility 1) mutant which has its pollen and embryo sacs both aborted at the reproductive stage due to severe chromosome defection. Map-based cloning revealed that the OsMFS1 encodes a meiotic coiled-coil protein, and it is responsible for DSB repairing that acts as an important cofactor to stimulate the single strand invasion. Expression pattern analyses showed the OsMFS1 was preferentially expressed in meiosis stage. Subcellular localization analysis of OsMFS1 revealed its association with the nucleus exclusively. In addition, a yeast two-hybrid (Y2H) and pull-down assay showed that OsMFS1 could physically interact with OsHOP2 protein to form a stable complex to ensure faithful homologous recombination. Taken together, our results indicated that OsMFS1 is indispensable to the normal development of anther and embryo sacs in rice.
Collapse
Affiliation(s)
- Jiayu Lu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chaolong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Haiyu Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Hai Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Wenting Bai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Dekun Lei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yanjia Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shimin You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Qiming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Ling Jang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhigang Zhao,
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Jianmin Wan, ;
| |
Collapse
|
49
|
Boudichevskaia A, Houben A, Fiebig A, Prochazkova K, Pecinka A, Lermontova I. Depletion of KNL2 Results in Altered Expression of Genes Involved in Regulation of the Cell Cycle, Transcription, and Development in Arabidopsis. Int J Mol Sci 2019; 20:ijms20225726. [PMID: 31731608 PMCID: PMC6888302 DOI: 10.3390/ijms20225726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Centromeres contain specialized nucleosomes at which histone H3 is partially replaced by the centromeric histone H3 variant cenH3 that is required for the assembly, maintenance, and proper function of kinetochores during mitotic and meiotic divisions. Previously, we identified a KINETOCHORE NULL 2 (KNL2) of Arabidopsis thaliana that is involved in the licensing of centromeres for the cenH3 recruitment. We also demonstrated that a knockout mutant for KNL2 shows mitotic and meiotic defects, slower development, reduced growth rate, and fertility. To analyze an effect of KNL2 mutation on global gene transcription of Arabidopsis, we performed RNA-sequencing experiments using seedling and flower bud tissues of knl2 and wild-type plants. The transcriptome data analysis revealed a high number of differentially expressed genes (DEGs) in knl2 plants. The set was enriched in genes involved in the regulation of the cell cycle, transcription, development, and DNA damage repair. In addition to comprehensive information regarding the effects of KNL2 mutation on the global gene expression, physiological changes in plants are also presented, which provides an integrated understanding of the critical role played by KNL2 in plant growth and development.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
- Correspondence: (A.B.); (I.L.); Tel.: +49/39482 5477 (A.B.); +49/39482 5570 (I.L.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
| | - Klara Prochazkova
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (A.P.)
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (A.P.)
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
- Correspondence: (A.B.); (I.L.); Tel.: +49/39482 5477 (A.B.); +49/39482 5570 (I.L.)
| |
Collapse
|
50
|
Sims J, Copenhaver GP, Schlögelhofer P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. THE PLANT CELL 2019; 31:2259-2275. [PMID: 31266898 PMCID: PMC6751124 DOI: 10.1105/tpc.19.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 05/03/2023]
Abstract
Ribosomal RNA genes are arranged in large arrays with hundreds of rDNA units in tandem. These highly repetitive DNA elements pose a risk to genome stability since they can undergo nonallelic exchanges. During meiosis, DNA double-strand breaks (DSBs) are induced as part of the regular program to generate gametes. Meiotic DSBs initiate homologous recombination (HR), which subsequently ensures genetic exchange and chromosome disjunction. In Arabidopsis (Arabidopsis thaliana), we demonstrate that all 45S rDNA arrays become transcriptionally active and are recruited into the nucleolus early in meiosis. This shields the rDNA from acquiring canonical meiotic chromatin modifications and meiotic cohesin and allows only very limited meiosis-specific DSB formation. DNA lesions within the rDNA arrays are repaired in an RAD51-independent but LIG4-dependent manner, establishing that nonhomologous end-joining maintains rDNA integrity during meiosis. Utilizing ectopically integrated rDNA repeats, we validate our findings and demonstrate that the rDNA constitutes an HR-refractory genome environment.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|