1
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
2
|
Zhao Q, Yu C, Xu X, Jin W, Zhang Z, Huang H, Gao Y, Pan D. Phosphorylated YBX2 is stabilized to promote glycolysis in brown adipocytes. iScience 2023; 26:108091. [PMID: 37860762 PMCID: PMC10583057 DOI: 10.1016/j.isci.2023.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Y-box binding protein 2 (YBX2) is an essential modulator of brown adipose tissue activation, yet the regulation on its own expression and the involved mechanism remains largely unknown. Herein, we report the YBX2 protein level, but not mRNA level, is induced in response to acute β-adrenergic signaling. In this context, YBX2 is a dual substrate for both AMPK and Akt2. The phosphorylation at Thr115 by AMPK or at Ser137 by Akt2 facilitates YBX2 accumulation in brown adipocytes by decreasing ubiquitination-mediated degradation. Beyond stabilizing PGC1α mRNA, increased YBX2 upon thermogenic activation assists the expression of glycolytic enzymes, promotes glucose utilization and lactate production. Mechanistically, YBX2 modulates translation of glycolytic genes via direct binding to 5'-UTRs of these genes. Together these findings suggest YBX2 is responsive to thermogenic stimuli by phosphorylation modification, and stabilized YBX2 helps to boost glycolysis and thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Yu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Takada H, Sasagawa Y, Yoshimura M, Tanaka K, Iwayama Y, Hayashi T, Isomura-Matoba A, Nikaido I, Kurisaki A. Single-cell transcriptomics uncovers EGFR signaling-mediated gastric progenitor cell differentiation in stomach homeostasis. Nat Commun 2023; 14:3750. [PMID: 37386010 PMCID: PMC10310803 DOI: 10.1038/s41467-023-39113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Defects in gastric progenitor cell differentiation are associated with various gastric disorders, including atrophic gastritis, intestinal metaplasia, and gastric cancer. However, the mechanisms underlying the multilineage differentiation of gastric progenitor cells during healthy homeostasis remain poorly understood. Here, using a single-cell RNA sequencing method, Quartz-Seq2, we analyzed the gene expression dynamics of progenitor cell differentiation toward pit cell, neck cell, and parietal cell lineages in healthy adult mouse corpus tissues. Enrichment analysis of pseudotime-dependent genes and a gastric organoid assay revealed that EGFR-ERK signaling promotes pit cell differentiation, whereas NF-κB signaling maintains gastric progenitor cells in an undifferentiated state. In addition, pharmacological inhibition of EGFR in vivo resulted in a decreased number of pit cells. Although activation of EGFR signaling in gastric progenitor cells has been suggested as one of the major inducers of gastric cancers, our findings unexpectedly identified that EGFR signaling exerts a differentiation-promoting function, not a mitogenic function, in normal gastric homeostasis.
Collapse
Affiliation(s)
- Hitomi Takada
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Kaori Tanaka
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan.
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
- Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Akira Kurisaki
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan.
| |
Collapse
|
4
|
Italiya JM, Patel MR, Golaviya AV, Patel SS, Thakkar BK, Jakhesara SJ, Joshi CG, Koringa PG. RNA-sequencing attest increased sperm motility in bovine spermatozoa treated with ethanolic extract of Putranjiva roxburghii. 3 Biotech 2023; 13:33. [PMID: 36619823 PMCID: PMC9810775 DOI: 10.1007/s13205-022-03452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023] Open
Abstract
In the course of time, scientific communities have a growing interest in understanding ethano medicines. The Putranjiva roxburghii, a native plant of the Indian Subcontinent is described as a "Child amulet tree" in Ayurveda. Based on the fact that this herbal medicine has an indispensable component of integrative medicine, the present study was planned to assess the effect of ethanolic dried extract of Putranjiva seeds on the motility of X and Y-bearing bovine spermatozoa. The in-vitro effect of seed extract diluted in S-TALP medium on bull semen has been evaluated by Computer Assisted Semen Analysis (CASA) shows a marked increase in the motility of spermatozoa. Motile and non-motile spermatozoa have been separated by glass wool column from the control as well as treated group. The X and Y-bearing sperm quantification have been carried out by droplet digital polymerase chain reaction (ddPCR). The extract didn't exert any differential effect on the motility and viability of X and Y chromosome-bearing spermatozoa. The transcriptome profiling (RNA-Seq) identified 93 differentially expressed genes between the extract treated and control group. It unveils the up-regulation of CATSPER, AKAP3, SPAG, ADAM1B, ADAM2 and ADAM32 genes that are involved in increasing sperm motility. Transcriptome profile also unveil the expression of ZAR1, CYP17A1, APPL2, HOXB4 and SP9 genes involved with embryonic development processes in Putranjiva extract-treated motile spermatozoa. The results envisaged the medicinal value of Putranjiva herb on increased fertility due to combinatory effect like increased sperm motility and favourableness on embryogenesis. The study ruled out the possibility of herbs having any biased effect on the selection of either male or female-bearing spermatozoa in the bull. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03452-4.
Collapse
Affiliation(s)
- Jignesh M. Italiya
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Mayank R. Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| | - Akash V. Golaviya
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| | - Shiven S. Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| | - Bhumi K. Thakkar
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| | - Subhash J. Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| | - Chaitanya G. Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382010 India
| | - Prakash G. Koringa
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat India
| |
Collapse
|
5
|
Wang X, Wang M, Dai X, Han X, Zhou Y, Lai W, Zhang L, Yang Y, Chen Y, Wang H, Zhao YL, Shen B, Zhang Y, Huang Y, Yang YG. RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. FUNDAMENTAL RESEARCH 2022; 2:48-55. [PMID: 38933916 PMCID: PMC11197489 DOI: 10.1016/j.fmre.2021.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
5-Methylcytosine (m5C) is one of the most prevalent internal modifications of messenger RNA (mRNA) in higher eukaryotes. Here we report that Y box protein 2 (YBX2) serves as a novel mammalian m5C binding protein to undergo liquid-liquid phase separation (LLPS) both in vivo and in vitro, and this YBX2-dependent LLPS is enhanced by m5C marked RNA. Furthermore, the crystal structure assay revealed that W100, as a distinct m5C binding site of YBX2, is critical in mediating YBX2 phase separation. Our study resolved the relationship between RNA m5C and phase separation, providing a clue for a new regulatory layer of epigenetics.
Collapse
Affiliation(s)
- Xiuzhi Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Weiyi Lai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liyuan Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
7
|
Forouhari S, Mahmoudi E, Safdarian E, Beygi Z, Gheibihayat SM. MicroRNA: A Potential Diagnosis for Male Infertility. Mini Rev Med Chem 2021; 21:1226-1236. [PMID: 33302836 DOI: 10.2174/1389557520999201209213319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Male infertility is one of the major global health problems, in particular, in more than half of the affected men. Genetic factors are important for identifying men with idiopathic infertility along with semen analysis. Valid and useful information can be obtained through non-invasive molecular research. Among these, small single-stranded non-coding RNA molecules of microRNAs (abbreviated miRNAs) are non-invasive biomarkers with a diagnostic value by regulating the post-transcriptional gene silence through repression and prevention of the translation process. The association between various types of male infertility and miRNA regulation changes has been evaluated to understand the biological function of miRNA and gene targets. Accordingly, further study of the function of miRNAs associated with reproductive disorders could lead researchers to further understand the molecular mechanisms of male infertility in order to find effective biomarkers and therapeutic strategies. Therefore, the present review article aimed at scrutinizing those researches investigating the altered miRNA expression in testicles, epididymis, and spermatozoa.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research center of Quran, Hadith and medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Mahmoudi
- Vali Asr Educational Hospital Arsanjan, University of Medical science's Shiraz, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Beygi
- Department of Midwifery, School of Nursing and Midwifery, Islamic Azad University Meybod Branch, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Wang X, Wen Y, Zhang J, Swanson G, Guo S, Cao C, Krawetz SA, Zhang Z, Yuan S. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development 2021; 148:dev.196295. [PMID: 33674260 DOI: 10.1242/dev.196295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Grace Swanson
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.,Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
9
|
Ruthig VA, Yokonishi T, Friedersdorf MB, Batchvarova S, Hardy J, Garness JA, Keene JD, Capel B. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Biol Reprod 2021; 104:861-874. [PMID: 33394034 PMCID: PMC8324984 DOI: 10.1093/biolre/ioaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sofia Batchvarova
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
11
|
Hale BJ, Fernandez RF, Kim SQ, Diaz VD, Jackson SN, Liu L, Brenna JT, Hermann BP, Geyer CB, Ellis JM. Acyl-CoA synthetase 6 enriches seminiferous tubules with the ω-3 fatty acid docosahexaenoic acid and is required for male fertility in the mouse. J Biol Chem 2019; 294:14394-14405. [PMID: 31399511 PMCID: PMC6768642 DOI: 10.1074/jbc.ra119.009972] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/01/2019] [Indexed: 12/31/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility. Acsl6-/- males were severely subfertile with smaller testes, reduced cauda epididymal sperm counts, germ cell loss, and disorganization of the seminiferous epithelium. Total fatty acid profiling of Acsl6-/- testes revealed reduced DHA and increased ω-6 arachidonic acid, a fatty acid profile also reflected in phospholipid composition. Strikingly, lipid imaging demonstrated spatial redistribution of phospholipids in Acsl6-/- testes. Arachidonic acid-containing phospholipids were predominantly interstitial in control testes but diffusely localized across Acsl6-/- testes. In control testes, DHA-containing phospholipids were predominantly within seminiferous tubules, which contain Sertoli cells and spermatogenic cells but relocalized to the interstitium in Acsl6-/- testes. Taken together, these data demonstrate that ACSL6 is an initial driving force for germ cell DHA enrichment and is required for normal spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Benjamin J Hale
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Regina F Fernandez
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Sora Q Kim
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907
| | - Victoria D Diaz
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Shelley N Jackson
- National Institute on Drug Abuse, Intramural Research Program, Structural Biology Core, Baltimore, Maryland 21224
| | - Lei Liu
- Departments of Pediatrics, Chemistry, and Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas 78723
- Department of Veterinary Sciences, Hunan Agricultural University, Changsha 410128, China
| | - J Thomas Brenna
- Departments of Pediatrics, Chemistry, and Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas 78723
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
12
|
He Y, Lin Y, Zhu Y, Ping P, Wang G, Sun F. Murine PAIP1 stimulates translation of spermiogenic mRNAs stored by YBX2 via its interaction with YBX2†. Biol Reprod 2018; 100:561-572. [PMID: 30295753 DOI: 10.1093/biolre/ioy213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/23/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yue He
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Yu Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Ping Ping
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, 226021 Nantong, Jiangsu, China
| | - Fei Sun
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, 200030 Shanghai, China
| |
Collapse
|
13
|
von Schalburg KR, Rondeau EB, Leong JS, Davidson WS, Koop BF. Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Res Notes 2018; 11:639. [PMID: 30176937 PMCID: PMC6122464 DOI: 10.1186/s13104-018-3749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
Objective Various stages of mRNA processing are necessary for functionally important genes required during late-stage sperm differentiation. Protein–RNA complexes form that edit, stabilize, store, deliver, localize and regulate translation of sperm mRNAs. These regulatory processes are often directed by recognition sequence elements and the particular composition of the proteins associated with the mRNAs. Previous work has shown that the cAMP response element modulator (CREM), estrogen receptor-alpha (ERα) and forkhead box L2A (FOXL2A) proteins are present in late-stage salmon sperm. Here we investigate whether these and other regulatory proteins might control processing of mRNAs not expressed until the haploid stage of development. We also examine regulatory processes that prepare and present mRNAs that generate unique products essential for differentiating sperm (i.e. for flagellar assembly and function). Results We provide evidence for potential sperm-specific recognition elements in 5′-untranslated regions (utrs) that may bind CREM, ERα, FOXL2A, Y-box and other proteins. We show that changes within the 5′-utrs and open reading frames of some sperm genes lead to distinct protein termini that may provide specific interfaces necessary for localization and function within the paternal gamete. Electronic supplementary material The online version of this article (10.1186/s13104-018-3749-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben F Koop
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
14
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
15
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
16
|
Moghbelinejad S, Mozdarani H, Ghoraeian P, Asadi R. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: A review. Int J Reprod Biomed 2018; 16:131-148. [PMID: 29766145 PMCID: PMC5944436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 10/09/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
The male factor contributes to 50% of infertility. The cause of male infertility is idiopathic and could be congenital or acquired. Among different factors which are involved in idiopathic male infertility, genetic factors are the most prevalent causes of the disease. Considering, the high prevalence of male infertility in Iran and the importance of genetic factors in the accession of it, in this article we reviewed the various studies which have been published during the last 17 yr on the genetic basis of male infertility in Iran. To do this, the PubMed and Scientific information database (SID) were regarded for the most relevant papers published in the last 17 yr referring to the genetics of male factor infertility using the keywords ''genetics'', "cytogenetic", ''male infertility", and "Iranian population". Literatures showed that among the Iranian infertile men Yq microdeletion and chromosomal aberrations are two main factors that intervene in the genetics of male infertility. Also, protamine deficiency (especially P2) is shown to have an influence on fertilization rate and pregnancy outcomes. The highest rate of sperm DNA damages has been found among the asthenospermia patients. In several papers, the relation between other important factors such as single gene mutations and polymorphisms with male infertility has also been reported. Recognition of the genetic factors that influence the fertility of Iranian men will shed light on the creation of guidelines for the diagnosis, consultation, and treatment of the patients."
Collapse
Affiliation(s)
- Sahar Moghbelinejad
- Department of Genetics, School of Sciences, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Pegah Ghoraeian
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Reihaneh Asadi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY, Fuller MT. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 2017; 6:e26116. [PMID: 29087293 PMCID: PMC5703642 DOI: 10.7554/elife.26116] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn homolog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.
Collapse
Affiliation(s)
- Alexis S Bailey
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Pedro J Batista
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Rebecca S Gold
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Y Grace Chen
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Dirk G de Rooij
- Center for Reproductive MedicineAcademic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Howard Y Chang
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Margaret T Fuller
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| |
Collapse
|
18
|
Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; 7:42392. [PMID: 28276431 PMCID: PMC5343582 DOI: 10.1038/srep42392] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian spermatozoa deliver various classes of RNAs to the oocyte during fertilization, and many of them may regulate fertility. The objective of the present study was to determine the composition and abundance of spermatozoal transcripts in fresh bull semen. The entire transcriptome of the spermatozoa from bulls (n = 3) was sequenced using two different platforms (Ion Proton and Illumina) to identify the maximum number of genes present in the spermatozoa. The bovine spermatozoa contained transcripts for 13,833 genes (transcripts per million, TPM > 10). Both intact and fragmented transcripts were found. These spermatozoal transcripts were associated with various stages of spermatogenesis, spermatozoal function, fertilization, and embryo development. The presence of intact transcripts of pregnancy-associated glycoproteins (PAGs) in the spermatozoa suggest a possible influence of sperm transcripts beyond early embryonic development. The specific regions (exon, intron, and exon-intron) of the particular spermatozoal transcripts might help regulate fertilization. This study demonstrates that the use of two different RNA-seq platforms provides a comprehensive profile of bovine spermatozoal RNA. Spermatozoal RNA profiling may be useful as a non-invasive method to delineate possible causes of male infertility and to predict fertility in a manner that is more effective than the conventional methods.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - B Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| |
Collapse
|
19
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
20
|
Najafipour R, Rashvand Z, Alizadeh A, Aleyasin A, Moghbelinejad S. Association of G/T(rs222859) polymorphism in Exon 1 of YBX2 gene with azoospermia, among Iranian infertile males. Andrologia 2016; 48:956-960. [DOI: 10.1111/and.12537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- R. Najafipour
- Cellular and Molecular Research Center of Qazvin University of Medical Science; Qazvin Iran
| | - Z. Rashvand
- Cellular and Molecular Research Center of Qazvin University of Medical Science; Qazvin Iran
| | - A. Alizadeh
- Cellular and Molecular Research Center of Qazvin University of Medical Science; Qazvin Iran
| | - A. Aleyasin
- Fertility and Infertility Center of Shariati Hospital; Tehran Iran
| | - S. Moghbelinejad
- Cellular and Molecular Research Center of Qazvin University of Medical Science; Qazvin Iran
| |
Collapse
|
21
|
Snyder E, Soundararajan R, Sharma M, Dearth A, Smith B, Braun RE. Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression. PLoS Genet 2015; 11:e1005690. [PMID: 26646932 PMCID: PMC4672889 DOI: 10.1371/journal.pgen.1005690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2-/-;Ybx3-/- double mutants using a previously reported Ybx2-/- model and a newly generated global Ybx3-/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. The Y-box proteins are evolutionary conserved across eukaryotes. This study focused on two Y-box proteins, YBX2 and YBX3, expressed in testis and known be important for male fertility. Previous studies in male germ cells link YBX2 and YBX3 proteins to RNA masking, however, whether they function in translational repression or mRNA stability during spermatogenesis has not been resolved. Ybx2-null mice are known to be infertile due to post-meiotic spermatid defects. To assess the functional role of YBX3 during spermatogenesis, we generated Ybx3-null mice. These mice displayed reduced fertility and spermatid differentiation defects. To test if YBX2 and YBX3 are functionally redundant, we attempted to generate double knockout mice. Double mutants could not be generated due to unexpected infertility in the compound Ybx2/3 heterozygotes. Compound heterozygotes displayed multiple sperm defects indicative of failed post-meiotic germ cell differentiation. Analysis of translational repression in compound Ybx2/3 heterozygous testes demonstrated a loss of translation repression in mRNAs lacking the Y box recognition sequence. These findings suggest YBX2 and YBX3 function to repress translation through both sequence-specific and non-specific mechanisms in a hierarchical manner.
Collapse
Affiliation(s)
- Elizabeth Snyder
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Manju Sharma
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Andrea Dearth
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Benjamin Smith
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Robert E. Braun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
22
|
Moghbelinejad S, Najafipour R, Hashjin AS. Comparison of Protamine 1 to Protamine 2 mRNA Ratio and YBX2 gene mRNA Content in Testicular Tissue of Fertile and Azoospermic Men. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2015; 9:338-45. [PMID: 26644857 PMCID: PMC4671373 DOI: 10.22074/ijfs.2015.4549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022]
Abstract
Background Although aberrant protamine (PRM) ratios have been observed in infertile
men, the mechanisms that implicit the uncoupling of PRM1 and PRM2 expression remain
unclear. To uncover these mechanisms, in this observational study we have compared the
PRM1/PRM2 mRNA ratio and mRNA contents of two regulatory factors of these genes. Materials and Methods In this experimental study, sampling was performed by a multi-step method from 50 non-obstructive azoospermic and 12 normal men. After RNA
extraction and cDNA synthesis, real-time quantitative polymerase chain reaction (RT-
QPCR) was used to analyze the PRM1, PRM2, Y box binding protein 2 (YBX2) and
JmjC-containing histone demethylase 2a (JHDM2A) genes in testicular biopsies of the
studied samples. Results The PRM1/PRM2 mRNA ratio differed significantly among studied groups,
namely 0.21 ± 0.13 in azoospermic samples and -0.8 ± 0.22 in fertile samples. The amount
of PRM2 mRNA, significantly reduced in azoospermic patients. Azoospermic men exhibited significant under expression of YBX2 gene compared to controls (P<0.001). mRNA
content of this gene showed a positive correlation with PRM mRNA ratio (R=0.6, P=0.007).
JHDM2A gene expression ratio did not show any significant difference between the studied
groups (P=0.3). We also observed no correlation between JHDM2A mRNA content and the
PRM mRNA ratio (R=0.2, P=0.3). Conclusion We found significant correlation between the aberrant PRM ratio (PRM2
under expression) and lower YBX2 mRNA content in testicular biopsies of azoospermic
men compared to controls, which suggested that downregulation of the YBX2 gene might
be involved in PRM2 under expression. These molecules could be useful biomarkers for
predicting male infertility.
Collapse
Affiliation(s)
- Sahar Moghbelinejad
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran ; Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran ; Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Samimi Hashjin
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
23
|
Wang G, Zhang H, Wang L, Wang Y, Huang H, Sun F. Ca(2+)/Calmodulin-Dependent Protein Kinase IV Promotes Interplay of Proteins in Chromatoid Body of Male Germ Cells. Sci Rep 2015; 5:12126. [PMID: 26179157 PMCID: PMC4503993 DOI: 10.1038/srep12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
The chromatoid body is a granule-like structure of male germ cells, containing many proteins and RNAs, and is important for spermatogenesis. However, the molecular mechanisms for the formation and function of the chromatoid body are still elusive. Here, we report that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) accumulates in the chromatoid body by immunofluorescence staining, indicating that CaMKIV is a new component of the chromatoid body. Furthermore, we find that CaMKIV can interplay with the other components of the chromatoid body by immunoprecipitation: mouse VASA homologue (MVH), mouse homologue of PIWI, PIWIL1 (MIWI), and kinesin KIF17b. Importantly, interplay between KIF17b and MVH or MIWI can be potentially regulated by CaMKIV. These results imply that CaMKIV plays a role in maintenance the structure of chromatoid body by regulating the associations of proteins in it.
Collapse
Affiliation(s)
- Guishuan Wang
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Huijuan Zhang
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Lu Wang
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yuan Wang
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Hefeng Huang
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Fei Sun
- International Peace Maternity &Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
24
|
Najafipour R, Moghbelinejad S, Samimi Hashjin A, Rajaei F, Rashvand Z. Evaluation of mRNA Contents of YBX2 and JHDM2A Genes on Testicular Tissues of Azoospermic Men with Different Classes of Spermatogenesis. CELL JOURNAL 2015; 17:121-8. [PMID: 25870841 PMCID: PMC4393659 DOI: 10.22074/cellj.2015.518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/08/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Animal model studies have shown that MSY2 and JHDM2A genes have an important role in spermatogenesis process and fertility of male mice. But the potential role of these genes in human spermatogenesis and fertility is not known yet. Therefore, we evaluated expression ratios of these genes in testis tissues of men with normal and impaired spermatogenesis. MATERIALS AND METHODS In this experimental study, after RNA extraction and cDNA syn- thesis from 50 non-obstructive azoospermic and 12 normal testis tissues, the expression ratios of genes were evaluated by real time polymerase chain reaction (PCR) technique. Hematoxcylin and eosin (H&E) staining was used for histological classification of testis tissues. For statistical analysis, one way analysis of variance (ANOVA) test was carried out. RESULTS Our results showed a significant reduction in mRNA level of YBX2 in samples with impaired spermatogenesis (p<0.001) compared to samples with qualitatively normal spermatogenesis and normal spermatogenesis; however, in JHDM2A gene, despite sensible reduction in gene expression level in men with impaired spermatogenesis, no significant differences were shown (p>0.05). Furthermore in YBX2, a significant negative correlation was demonstrated between the efficiency score of spermatogenesis and the threshold cycle (CT) (r=-0.7, p<0.0001), whereas in JHDM2A, this negative correlation was not significant (r=-0.4, p=0.06). CONCLUSION Generally, these data indicated that YBX2 and JHDM2A genes may play an important role in male infertility, and suggested that these molecules can act as useful biomarkers for predicting male infertility.
Collapse
Affiliation(s)
- Reza Najafipour
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran ; Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Moghbelinejad
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran ; Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Samimi Hashjin
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzad Rajaei
- Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Rashvand
- Department of Medical Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
25
|
Cullinane DL, Chowdhury TA, Kleene KC. Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction 2014; 149:43-54. [PMID: 25336347 DOI: 10.1530/rep-14-0394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protamine 1 (Prm1) and sperm mitochondria-associated, cysteine-rich protein (Smcp) mRNAs exemplify a widespread pattern of mRNA-specific regulation of mRNA translation in post-meiotic spermatogenic cells, spermatids. Both mRNAs are transcribed and initially stored in free-mRNPs in early spermatids, and translated on polysomes in late spermatids. In this study, we demonstrate that the 5' and 3'-UTRs and the 3' terminus of the Smcp 3'-UTR are required for normal repression of the Smcp mRNA in transgenic mice. RNA affinity chromatography and mass spectrometry sequencing identified Y-box protein 2 (YBX2/MSY2) as the major protein that interacts with the 3' terminus of the Smcp 3'-UTR and a Y-box recognition sequence, GCCACCU, in the translation control element that is necessary for Prm1 mRNA repression. Depletion of YBX2 in Ybx2-null mice prematurely activates Prm1 and Smcp mRNA translation in early spermatids. Fluorescent in situ hybridization reveals that the Smcp intron, the Smcp mRNA, and both Smcp-Gfp transgenic mRNAs are strongly concentrated in the chromatoid body, and that theYbx2-null mutation does not eliminate the Smcp mRNA from the chromatoid body. This and previous findings suggest that the Smcp pre-mRNA is spliced and associates with YBX2 in the chromatoid body, and that repressed free-mRNPs are stored in the general cytoplasm. As YBX2 is the predominant protein in testis free-mRNPs, it likely represses many mRNAs in early spermatids. The mechanisms by which YBX2 represses the Smcp and Prm1 mRNAs are relevant to reproductive medicine because mutations in the human YBX2 gene correlate with abnormal protamine expression and male infertility.
Collapse
Affiliation(s)
- Danielle L Cullinane
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Tamjid A Chowdhury
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Kenneth C Kleene
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| |
Collapse
|
26
|
Sobinoff AP, Sutherland JM, Beckett EL, Stanger SJ, Johnson R, Jarnicki AG, McCluskey A, St John JC, Hansbro PM, McLaughlin EA. Damaging legacy: maternal cigarette smoking has long-term consequences for male offspring fertility. Hum Reprod 2014; 29:2719-35. [PMID: 25269568 DOI: 10.1093/humrep/deu235] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the effects on fertility of cigarette smoke-induced toxicity on male offspring exposed during the gestational/weaning period? SUMMARY ANSWER Maternal cigarette smoke exposure during the gestational/weaning period causes long-term defects in male offspring fertility. WHAT IS KNOWN ALREADY Cigarette smoke is a well-known reproductive toxicant which is particularly harmful to both fetal and neonatal germ cells. However, recent studies suggest a significant portion of young mothers in the developed world still smoke during pregnancy. In the context of male reproductive health, our understanding of the effects of in utero exposure on offspring fertility is limited. STUDY DESIGN, SIZE, DURATION In this study, 27 C57BL/6 5-week-old female mice were exposed via the nose-only to cigarette smoke (treatment) or 27 were exposed to room air (control) for 6 weeks before being housed with stud males to produce litters. In the treatment group, smoke exposure continued throughout mating, pregnancy and lactation until weaning of pups at 21 days post birth. Male offspring were examined at post-natal days 3, 6, 12, 21 and 98 (adult). PARTICIPANTS/MATERIALS, SETTING, METHODS Approximately 108 maternal smoke-exposed C57BL/6 offspring and controls were examined. Spermatogenesis was examined using testicular histology and apoptosis/DNA damage was assessed using caspase immunohistochemistry and TUNEL. Sertoli cell morphology and fluctuations in the spermatogonial stem cell population were also examined using immunohistochemistry. Microarray and QPCR analysis were performed on adult testes to examine specific long-term transcriptomic alteration as a consequence of maternal smoke exposure. Sperm counts and motility, zona/oolemma binding assays, COMET analysis and mitochondrial genomic sequencing were also performed on spermatozoa obtained from adult treated and control mice. Fertility trials using exposed adult male offspring were also performed. MAIN RESULTS AND THE ROLE OF CHANCE Maternal cigarette smoke exposure caused increased gonocyte and meiotic spermatocyte apoptosis (P < 0.01) as well as germ cell depletion in the seminiferous tubules of neonatal and juvenile offspring. Aberrant testicular development characterized by abnormal Sertoli and germ cell organization, a depleted spermatogonial stem cell population (P < 0.01), atrophic seminiferous tubules and increased germ cell DNA damage (P < 0.01) persisted in adult offspring 11 weeks after exposure. Microarray analysis of adult offspring testes associated these defects with meiotic germ cell development, sex hormone metabolism, oxidative stress and Sertoli cell signalling. Next generation sequencing also revealed a high mitochondrial DNA mutational load in the testes of adult offspring (P < 0.01). Adult maternal smoke-exposed offspring also had reduced sperm counts with spermatozoa exhibiting morphological abnormalities (P < 0.01), affecting motility and fertilization potential. Odf2, a spermatozoa flagellum component required for coordinated ciliary beating, was also significantly down-regulated (P < 0.01) in maternal smoke-exposed adult offspring, with aberrant localization along the spermatozoa flagellum. Adult maternal smoke-exposed offspring took significantly longer to impregnate control females and had a slight but significant (P < 0.01) reduction in litter size. LIMITATIONS, REASONS FOR CAUTION This study examined only one species (mouse) using a smoking model which only simulates human cigarette smoke exposure. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first comprehensive animal model of maternal smoking on male offspring reproductive function, suggesting that exposure during the gestational/weaning period causes long-term defects in male offspring fertility. This is due to a compromised spermatogonial stem cell population resulting from gonocyte apoptosis and impaired spermatogenic development. This results in significant germ cell damage and Sertoli cell dysfunction, impacting germ cell number, tubule organization, DNA damage and spermatozoa in adult offspring. This study strengthens the current literature suggesting that maternal exposure impairs male offspring fertility, which is currently debated due to conflicting studies. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Australian Research Council, Hunter Medical Research Institute, National Health and Medical Research Council of Australia and the Newcastle Permanent Building Society Charitable Trust. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A P Sobinoff
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J M Sutherland
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E L Beckett
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - S J Stanger
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R Johnson
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - A G Jarnicki
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - A McCluskey
- Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J C St John
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton Vic 3168, Australia
| | - P M Hansbro
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - E A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia Monash Medical Centre, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
27
|
Purification of GidA protein, a novel topoisomerase II inhibitor produced by Streptomyces flavoviridis. World J Microbiol Biotechnol 2013; 30:555-65. [PMID: 23996636 DOI: 10.1007/s11274-013-1475-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The presence of topoisomerase II inhibition activities in the intracellular extract of Streptomyces flavoviridis was investigated. One active compound inhibiting relaxation activity of topoisomerase II was determined to be a protein. This active principle was purified to homogeneity by gel filtration followed by ion exchange chromatography. The apparent molecular mass was 42 kDa as determined by SDS-PAGE. MALDI TOF peptide mass fingerprinting analysis confirmed this topoisomerase II inhibitor, as glucose-inhibited division protein A (GidA) by MOWSE score of 72. The effects of purified GidA protein on DNA relaxation and decatenation by topoisomerase II were investigated. It inhibited topoisomerase II activity and acted as a topoisomerase poison that significantly stabilized the covalent DNA-topoisomerase II reaction intermediate "cleavable complex", as observed with etoposide. Collectively, these findings indicate that GidA is a potent inhibitor of topoisomerase II enzyme, which can be exploited for rational drug design in human carcinomas.
Collapse
|
28
|
Chapman KM, Powell HM, Chaudhary J, Shelton JM, Richardson JA, Richardson TE, Hamra FK. Linking spermatid ribonucleic acid (RNA) binding protein and retrogene diversity to reproductive success. Mol Cell Proteomics 2013; 12:3221-36. [PMID: 23938467 DOI: 10.1074/mcp.m113.030585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermiogenesis is a postmeiotic process that drives development of round spermatids into fully elongated spermatozoa. Spermatid elongation is largely controlled post-transcriptionally after global silencing of mRNA synthesis from the haploid genome. Here, rats that differentially express EGFP from a lentiviral transgene during early and late steps of spermiogenesis were used to flow sort fractions of round and elongating spermatids. Mass-spectral analysis of 2D gel protein spots enriched >3-fold in each fraction revealed a heterogeneous RNA binding proteome (hnRNPA2/b1, hnRNPA3, hnRPDL, hnRNPK, hnRNPL, hnRNPM, PABPC1, PABPC4, PCBP1, PCBP3, PTBP2, PSIP1, RGSL1, RUVBL2, SARNP2, TDRD6, TDRD7) abundantly expressed in round spermatids prior to their elongation. Notably, each protein within this ontology cluster regulates alternative splicing, sub-cellular transport, degradation and/or translational repression of mRNAs. In contrast, elongating spermatid fractions were enriched with glycolytic enzymes, redox enzymes and protein synthesis factors. Retrogene-encoded proteins were over-represented among the most abundant elongating spermatid factors identified. Consistent with these biochemical activities, plus corresponding histological profiles, the identified RNA processing factors are predicted to collectively drive post-transcriptional expression of an alternative exome that fuels finishing steps of sperm maturation and fitness.
Collapse
|
29
|
Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet 2013; 4:40. [PMID: 23577019 PMCID: PMC3616258 DOI: 10.3389/fgene.2013.00040] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability.
Collapse
Affiliation(s)
- Matt Merrifield
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | |
Collapse
|
30
|
Hussain S, Tuorto F, Menon S, Blanco S, Cox C, Flores JV, Watt S, Kudo NR, Lyko F, Frye M. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol 2013; 33:1561-70. [PMID: 23401851 PMCID: PMC3624257 DOI: 10.1128/mcb.01523-12] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional regulatory mechanisms are crucial for protein synthesis during spermatogenesis and are often organized by the chromatoid body. Here, we identify the RNA methyltransferase NSun2 as a novel component of the chromatoid body and, further, show that NSun2 is essential for germ cell differentiation in the mouse testis. In NSun2-depleted testes, genes encoding Ddx4, Miwi, and Tudor domain-containing (Tdr) proteins are repressed, indicating that RNA-processing and posttranscriptional pathways are impaired. Loss of NSun2 specifically blocked meiotic progression of germ cells into the pachytene stage, as spermatogonial and Sertoli cells were unaffected in knockout mice. We observed the same phenotype when we simultaneously deleted NSun2 and Dnmt2, the only other cytosine-5 RNA methyltransferase characterized to date, indicating that Dnmt2 was not functionally redundant with NSun2 in spermatogonial stem cells or Sertoli cells. Specific NSun2- and Dnmt2-methylated tRNAs decreased in abundance when both methyltransferases were deleted, suggesting that RNA methylation pathways play an essential role in male germ cell differentiation.
Collapse
Affiliation(s)
- Shobbir Hussain
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Tuorto
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany
| | - Suraj Menon
- CR-UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Sandra Blanco
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Claire Cox
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Joana V. Flores
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Watt
- CR-UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Nobuaki R. Kudo
- IRDB, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Frank Lyko
- Division of Epigenetics, German Cancer Research Center, Heidelberg, Germany
| | - Michaela Frye
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 2012; 19:773-81. [PMID: 22842725 PMCID: PMC3414646 DOI: 10.1038/nsmb.2347] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/25/2012] [Indexed: 01/31/2023]
Abstract
Germ cells implement elaborate mechanisms to protect their genetic material and to regulate gene expression during differentiation. Piwi proteins bind piRNAs, a class of small germline RNAs whose biogenesis and functions are still largely elusive. We employed high throughput sequencing after crosslinking and immunoprecipitation (HITS-CLIP) coupled with RNA-Seq to characterize the genome-wide target RNA repertoire of Mili (Piwil2) and Miwi (Piwil1), two Piwi proteins expressed in mouse postnatal testis. We report the in vivo pathway of primary piRNA biogenesis and implicate distinct nucleolytic activities that process Piwi-bound precursor transcripts. Our studies indicate that pachytene piRNAs are the end products of RNA processing. HITS-CLIP demonstrates that Miwi binds spermiogenic mRNAs directly, without utilizing piRNAs as guides, and independent biochemical analyses of testis mRNA-ribonucleoproteins (mRNPs) establishes that Miwi functions in the formation of mRNP complexes that stabilize mRNAs essential for spermiogenesis.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R. DNA demethylation and USF regulate the meiosis-specific expression of the mouse Miwi. PLoS Genet 2012; 8:e1002716. [PMID: 22661915 PMCID: PMC3355075 DOI: 10.1371/journal.pgen.1002716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/30/2012] [Indexed: 01/01/2023] Open
Abstract
Miwi, a member of the Argonaute family, is required for initiating spermiogenesis; however, the mechanisms that regulate the expression of the Miwi gene remain unknown. By mutation analysis and transgenic models, we identified a 303 bp proximal promoter region of the mouse Miwi gene, which controls specific expression from midpachytene spermatocytes to round spermatids during meiosis. We characterized the binding sites of transcription factors NF-Y (Nuclear Factor Y) and USF (Upstream Stimulatory Factor) within the core promoter and found that both factors specifically bind to and activate the Miwi promoter. Methylation profiling of three CpG islands within the proximal promoter reveals a markedly inverse correlation between the methylation status of the CpG islands and germ cell type–specific expression of Miwi. CpG methylation at the USF–binding site within the E2 box in the promoter inhibits the binding of USF. Transgenic Miwi-EGFP and endogenous Miwi reveal a subcellular co-localization pattern in the germ cells of the Miwi-EGFP transgenic mouse. Furthermore, the DNA methylation profile of the Miwi promoter–driven transgene is consistent with that of the endogenous Miwi promoter, indicating that Miwi transgene is epigenetically modified through methylation in vivo to ensure its spatio-temporal expression. Our findings suggest that USF controls Miwi expression from midpachytene spermatocytes to round spermatids through methylation-mediated regulation. This work identifies an epigenetic regulation mechanism for the spatio-temporal expression of mouse Miwi during spermatogenesis. Germ cell differentiation is a key process in the formation of functional spermatozoa. Despite the wealth of information about gene expression patterns and regulations important for this process, it is not clear how spatio-temporal expression of the key factor Miwi during spermatogenesis is controlled. We have characterized the functional promoter of the mouse Miwi gene. Transgenic mice harboring EGFP under the Miwi core promoter containing just the functional CCAAT box and E2 box were generated and demonstrated that it can direct germ cell–specific expression. We further identified the transcription factors NF-Y and USF1/2 as activators of Miwi gene expression, through their binding to the CCAAT box and E-box/E2 site of the Miwi promoter, respectively. A CpG dinucleotide just located within the USF binding site is responsible for mediating methylation-dependent silencing of the Miwi gene. Our findings provide new insight into an epigenetic regulation mechanism for the spatio-temporal expression of the mouse Miwi during spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (HC); (RZ)
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (HC); (RZ)
| |
Collapse
|
33
|
|
34
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Govin J, Gaucher J, Ferro M, Debernardi A, Garin J, Khochbin S, Rousseaux S. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome. ACTA ACUST UNITED AC 2011; 18:1-13. [DOI: 10.1093/molehr/gar063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Kleene KC, Cullinane DL. Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids. Reproduction 2011; 142:383-8. [DOI: 10.1530/rep-11-0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromatoid body is a dynamic organelle that is thought to coordinate the cytoplasmic regulation of mRNA translation and degradation in mammalian spermatids. The chromatoid body is also postulated to function in repression of mRNA translation by sequestering dormant mRNAs where they are inaccessible to the translational apparatus. This review finds no convincing evidence that dormant mRNAs are localized exclusively in the chromatoid body. This discrepancy can be explained by two hypotheses. First, experimental artifacts, possibly related to peculiarities of the structure and function of the chromatoid body, preclude obtaining an accurate indication of mRNA localization. Second, mRNA is not stored in the chromatoid body, because, like perinuclear P granules in Caenorhabditis elegans, the chromatoid body functions as a center for mRNP remodeling and export to other cytoplasmic sites.
Collapse
|
37
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
38
|
Medvedev S, Pan H, Schultz RM. Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the transcriptome. Biol Reprod 2011; 85:575-83. [PMID: 21613634 DOI: 10.1095/biolreprod.111.091710] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Messenger RNA is remarkably stable during oocyte growth, thus enabling mRNAs to accumulate during the growth phase and thereby provide mRNAs that support early embryonic development. MSY2, a germ cell-specific RNA-binding protein, is implicated in regulating mRNA stability. MSY2 is essential for development because female Msy2(-/-) mice are infertile. We describe here the characterization of Msy2(-/-) oocytes. Mutant oocytes grow more slowly during the first wave of folliculogenesis, and maturation to and arrest at metaphase II is severely compromised because of aberrant spindle formation and chromosome congression. Consistent with MSY2 conferring mRNA stability is that the amount of poly(A)-containing RNA is reduced by ~25% in mutant oocytes. Stability of an exogenous mRNA injected into mutant oocytes is lower than when compared to their wild-type counterparts, and moreover, expression of wild-type MSY2 in mutant oocytes increases mRNA stability, whereas injection of a mutant form of MSY2 not capable of binding RNA does not. Transcription quiescence that normally occurs during the course of oocyte growth is not observed in mutant oocytes, and the transcriptome of mutant oocytes is markedly perturbed. These results, and those of previous studies, strongly implicate a central role of MSY2 in regulating mRNA stability.
Collapse
Affiliation(s)
- Sergey Medvedev
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
39
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/04/2010] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
40
|
|
41
|
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1637-51. [PMID: 20403875 DOI: 10.1098/rstb.2009.0196] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spermatogenesis in mammals is achieved by multiple players that pursue a common goal of generating mature spermatozoa. The developmental processes acting on male germ cells that culminate in the production of the functional spermatozoa are regulated at both the transcription and post-transcriptional levels. This review addresses recent progress towards understanding such regulatory mechanisms and identifies future challenges to be addressed in this field. We focus on transcription factors, chromatin-associated factors and RNA-binding proteins necessary for spermatogenesis and/or sperm maturation. Understanding the molecular mechanisms that govern spermatogenesis has enormous implications for new contraceptive approaches and treatments for infertility.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0864, La Jolla, CA 92093-0864, USA
| | | |
Collapse
|
42
|
Yanagiya A, Delbes G, Svitkin YV, Robaire B, Sonenberg N. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J Clin Invest 2010; 120:3389-400. [PMID: 20739757 DOI: 10.1172/jci43350] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.
Collapse
Affiliation(s)
- Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
43
|
Zhou X, Nie Z, Roberts A, Zhang D, Sebat J, Malhotra D, Kelsoe JR, Geyer MA. Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders. Hum Mol Genet 2010; 19:3797-805. [PMID: 20634195 DOI: 10.1093/hmg/ddq298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reduced expression of the Sp4 gene in Sp4 hypomorphic mice resulted in subtle vacuolization in the hippocampus as well as deficits in sensorimotor gating and contextual memory, putative endophenotypes for schizophrenia and other psychiatric disorders. In this study, we examined both spatial learning/memory and hippocampal long-term potentiation (LTP) of Sp4 hypomorphic mice. Impaired spatial learning/memory and markedly reduced LTP were found. To corroborate the functional studies, the expression of N-methyl-D-aspartate (NMDA) glutamate receptors was investigated with both western blot and immunohistochemical analyses. The reduced expression of the Sp4 gene decreased the level of the NR1 subunit of NMDA receptors in Sp4 hypomorphic mice. In human, SP4 gene was found to be deleted sporadically in schizophrenia patients, corroborating evidence that polymorphisms of human SP4 gene are associated with schizophrenia and other psychiatric disorders. Impaired NMDA neurotransmission has been implicated in several human psychiatric disorders. As yet, it remains unclear how mutations of candidate susceptibility genes for these disorders may contribute to the disruption of NMDA neurotransmission. Sp4 hypomorphic mice could therefore serve as a genetic model to investigate impaired NMDA functions resulting from loss-of-function mutations of human SP4 gene in schizophrenia and/or other psychiatric disorders. Furthermore, aberrant expression of additional genes, besides NMDAR1, likely also contributes to the behavioral abnormalities in Sp4 hypomorphic mice. Thus, further investigation of the Sp4 pathway may provide novel insights in our understanding of a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Messina V, Di Sauro A, Pedrotti S, Adesso L, Latina A, Geremia R, Rossi P, Sette C. Differential contribution of the MTOR and MNK pathways to the regulation of mRNA translation in meiotic and postmeiotic mouse male germ cells. Biol Reprod 2010; 83:607-15. [PMID: 20574055 DOI: 10.1095/biolreprod.110.085050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Translation of stored mRNAs accounts for protein synthesis during the transcriptionally inactive stages of spermatogenesis. A key step in mRNA translation is the assembly of the initiation complex EIF4F, which is regulated by the MTOR (mammalian target of rapamycin) and MNK1/2 (MAP kinase-interacting kinase 1 and 2) pathways. We investigated the expression and activity of regulatory proteins of these pathways in male germ cells at different stages of differentiation. All translation factors analyzed were expressed in germ cells throughout spermatogenesis. However, while EIF4G and PABP1 (poly[A]-binding protein 1) were more abundant in postmeiotic cells, MTOR and its target EIF4EBP1 (4E-BP1) decreased steadily during spermatogenesis. In vivo labeling showed that pachytene spermatocytes display higher rates of protein synthesis, which are partially dependent on MTOR and MNK activity. By contrast, haploid spermatids are characterized by lower levels of protein synthesis, which are independent of the activity of these pathways. Accordingly, MTOR and MNK activity enhanced formation of the EIF4F complex in pachytene spermatocytes but not in round spermatids. Moreover, external cues differentially modulated the activity of these pathways in meiotic and haploid cells. Heat shock decreased MTOR and MNK activity in pachytene spermatocytes, whereas round spermatids were much less sensitive. On the other hand, treatment with the phosphatase inhibitor okadaic acid activated MTOR and MNK in both cell types. These results indicate that translational regulation is differentially dependent on the MTOR and MNK pathways in mouse spermatocytes and spermatids and suggest that the late stages of germ cell differentiation display constitutive assembly of the translation initiation complex.
Collapse
Affiliation(s)
- Valeria Messina
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shang P, Baarends WM, Hoogerbrugge J, Ooms MP, van Cappellen WA, de Jong AAW, Dohle GR, van Eenennaam H, Gossen JA, Grootegoed JA. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J Cell Sci 2010; 123:331-9. [PMID: 20053632 DOI: 10.1242/jcs.059949] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic chromatoid body (CB) organizes mRNA metabolism and small regulatory RNA pathways, in relation to haploid gene expression, in mammalian round spermatids. However, little is known about functions and fate of the CB at later steps of spermatogenesis, when elongating spermatids undergo chromatin compaction and transcriptional silencing. In mouse elongating spermatids, we detected accumulation of the testis-specific serine/threonine kinases TSSK1 and TSSK2, and the substrate TSKS, in a ring-shaped structure around the base of the flagellum and in a cytoplasmic satellite, both corresponding to structures described to originate from the CB. At later steps of spermatid differentiation, the ring is found at the caudal end of the newly formed mitochondrial sheath. Targeted deletion of the tandemly arranged genes Tssk1 and Tssk2 in mouse resulted in male infertility, with loss of the CB-derived ring structure, and with elongating spermatids possessing a collapsed mitochondrial sheath. These results reveal TSSK1- and TSSK2-dependent functions of a transformed CB in post-meiotic cytodifferentiation of spermatids.
Collapse
Affiliation(s)
- Peng Shang
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sekii K, Salvenmoser W, De Mulder K, Scharer L, Ladurner P. Melav2, an elav-like gene, is essential for spermatid differentiation in the flatworm Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2009; 9:62. [PMID: 19995429 PMCID: PMC2795745 DOI: 10.1186/1471-213x-9-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 12/08/2009] [Indexed: 11/10/2022]
Abstract
Background Failure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms. Results In a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage. Conclusion We characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation.
Collapse
Affiliation(s)
- Kiyono Sekii
- Department of Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Xu M, Medvedev S, Yang J, Hecht NB. MIWI-independent small RNAs (MSY-RNAs) bind to the RNA-binding protein, MSY2, in male germ cells. Proc Natl Acad Sci U S A 2009; 106:12371-6. [PMID: 19597149 PMCID: PMC2718373 DOI: 10.1073/pnas.0903944106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Indexed: 11/18/2022] Open
Abstract
The germ cell-specific DNA/RNA-binding protein MSY2 binds small RNAs (MSY-RNAs) that are approximately 25-31 nt in length, often initiate with a 5' adenine, and are expressed in both germ cells and somatic cells. MSY-RNA levels do not decrease in Miwi or Msy2 null mice. Most MSY-RNAs map within annotated genes, but some are PIWI-interacting RNA (piRNA)-like and map to piRNA clusters. MSY-RNAs are in both nuclei and cytoplasm. In nuclei, MSY-RNAs are enriched in chromatin, and in the cytoplasm they are detected in both ribonucleoproteins and polysomes.
Collapse
Affiliation(s)
- Mingang Xu
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Sergey Medvedev
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Juxiang Yang
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Norman B. Hecht
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
48
|
Golam Mostafa M, Sugimoto T, Hiyoshi M, Kawasaki H, Kubo H, Matsumoto K, Abe SI, Takamune K. Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: Its possible role in translational regulation of maternal mRNAs. Dev Growth Differ 2009; 51:595-605. [DOI: 10.1111/j.1440-169x.2009.01121.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Liu H, Li S, Zhang Y, Yan Y, Li Y. Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis. Acta Biochim Biophys Sin (Shanghai) 2009; 41:545-53. [PMID: 19578718 DOI: 10.1093/abbs/gmp043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glutamate decarboxylase 65 (GAD65) produces gamma-aminobutyric acid, the main inhibitory neurotransmitter in adult mammalian brain. Previous experiments, performed in brain, showed that GAD65 gene possesses two TATA-less promoters, although the significance is unknown. Here, by rapid amplification of cDNA ends method, two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis. RT-PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation, suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level. By using GAD65-specific antibodies, western blotting analysis showed that the 58-kDa GAD65, N-terminal 69 amino acids truncated form of full-length GAD65 protein, was developmentally expressed during post-natal testis maturation, suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing. Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis, primary spermatocytes and spermatids of postnatal of Day 90 testis. The above results suggested that GAD65 gene expression is dynamically regulated at multiple levels during post-natal testis maturation.
Collapse
Affiliation(s)
- Haixiong Liu
- Shanghai Key Laboratory for Molecular Andrology, Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
50
|
Lalancette C, Platts AE, Johnson GD, Emery BR, Carrell DT, Krawetz SA. Identification of human sperm transcripts as candidate markers of male fertility. J Mol Med (Berl) 2009; 87:735-48. [DOI: 10.1007/s00109-009-0485-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/18/2009] [Accepted: 05/08/2009] [Indexed: 12/20/2022]
|