1
|
Fernandez Garcia A, Jackson J, Iyer P, Oliver EG, Funato K. MYCN as an oncogene in pediatric brain tumors. Front Oncol 2025; 15:1584978. [PMID: 40365336 PMCID: PMC12069344 DOI: 10.3389/fonc.2025.1584978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
MYCN, or N-Myc, is a member of the MYC family of transcription factors, which plays a key role in tumor formation by regulating genes involved in proliferation, differentiation, and apoptosis. MYCN is essential for neural development, especially for the appropriate growth and differentiation of neural progenitor cells, and its aberrant expression contributes to tumorigenesis. Gene amplification and mutations of this gene have been observed in a wide variety of cancer types, particularly in pediatric brain and non-brain tumors, such as neuroblastoma. Previous studies have provided extensive insights into the complex regulatory network of this transcription factor. Additionally, the presence of MYCN alterations in patient tumors serve as a key factor for risk stratification, as it correlates with poorer outcomes, and presents a significant challenge for treatment. Despite its clinical significance, therapeutic targeting of MYCN is challenging due to its structure, nuclear localization, and complex regulatory pathways. Efforts to target MYCN have focused on destabilizing the protein, modulating epigenetic mechanisms, and disrupting its transcriptional network. This review explores the role of MYCN in different subtypes of pediatric brain tumors and highlights novel ongoing therapeutic approaches. However, further research is necessary to develop more effective therapies and improve survival outcomes for patients with MYCN-driven tumor.
Collapse
Affiliation(s)
- Adriana Fernandez Garcia
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jayden Jackson
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Poorvi Iyer
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Elissa G. Oliver
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kosuke Funato
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Koomoa DLT, Sunada N, Espinoza-Fuenzalida I, Tacdol D, Shackleford M, Feng L, Sun D, Lange I. Novel Compounds Target Aberrant Calcium Signaling in the Treatment of Relapsed High-Risk Neuroblastoma. Int J Mol Sci 2025; 26:3180. [PMID: 40243990 PMCID: PMC11989759 DOI: 10.3390/ijms26073180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
High-risk neuroblastoma (HRNB) is an extracranial solid pediatric cancer. Despite the plethora of treatments available for HRNB, up to 65% of patients are refractory or exhibit an initial response to treatment that transitions to therapy-resistant relapse, which is invariably fatal. A key feature that promotes HRNB progression is aberrant calcium (Ca2+) signaling. Ca2+ signaling is regulated by several druggable channel proteins, offering tremendous therapeutic potential. Unfortunately, many of the Ca2+ channels in HRNB also perform fundamental functions in normal healthy cells, hence targeting them increases the potential for adverse effects. To overcome this challenge, we sought to identify novel Ca2+ signaling pathways that are observed in HRNB but not normal non-cancerous cells with the hypothesis that these novel pathways may serve as potential therapeutic targets. One Ca2+ signaling pathway that is deregulated in HRNB is store-operated Ca2+ entry (SOCE). SOCE relays the release of Ca2+ from the endoplasmic reticulum (ER) and Ca2+ influx via the plasma membrane and promotes cancer drug resistance by regulating transcriptional programming and the induction of mitochondrial Ca2+ (mtCa2+)-dependent signaling. mtCa2+ signaling is critical for cellular metabolism, reactive oxygen production, cell cycle, and proliferation and has a key role in the regulation of cell death. Therefore, a dynamic interplay between ER, SOCE, and mitochondria tightly regulates cell survival and apoptosis. From a library of synthesized novel molecules, we identified two structurally related compounds that uniquely disrupt the dynamic interplay between SOCE, ER, and mitochondrial signaling pathways and induce cell death in HRNB. Our results revealed that compounds 248 and 249 activate distinct aberrant Ca2+ signals that are unique to relapsed HRNB and could be exploited to induce mtCa+ overload, a novel calcium influx current, and subsequent cell death. These findings establish a potential new pathway of calcium-mediated cell death; targeting this pathway could be critical for the treatment of refractory and relapsed HRNB.
Collapse
Affiliation(s)
- Dana-Lynn T. Koomoa
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | - Nathan Sunada
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | | | - Dustin Tacdol
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | - Madeleine Shackleford
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | - Li Feng
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | - Dianqing Sun
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| | - Ingo Lange
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA (D.S.)
| |
Collapse
|
3
|
Azizan A, Farhadi E, Faezi ST, Alikhani M, Vojgani Y, Enayati S, Jamshidi A, Vodjgani M, Mahmoudi M. Dysregulated CDKN2A-MDM2-p53 axis in B cell of systemic lupus erythematosus. Int Immunopharmacol 2025; 150:114297. [PMID: 39970716 DOI: 10.1016/j.intimp.2025.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND The complicated autoimmune disease known as systemic lupus erythematosus (SLE) is characterized by abnormal immunological B cell modulation that exhibits enhanced survival. The genes Tp53, MDM2, and CDKN2A (ARF) play crucial roles in cellular regulation. In this study, we aim to elucidate the status of these genes. This might be a factor in the B cells' higher survival rate in SLE. METHODS B cells were obtained from the peripheral blood of participants and cultured, with a subset of the cells activated using anti-IgM. The expression levels of Tp53, MDM2, and CDKN2A genes were assessed both at baseline and after activation. RESULTS Tp53 and CDKN2A exhibited decreased expression in both baseline and activated B cells, with further decreases observed active and inactive SLE. Conversely, MDM2 demonstrated increased expression in baseline B cells, with a more pronounced increase observed in activated B cells of active SLE. Correlation analysis indicated several significant positive and negative associations, particularly between disease activity indicators and MDM2 expression, as well as among the studied genes. CONCLUSION The dysregulation of the CDKN2A-MDM2-p53 axis in B cells of SLE may lead to increased B cell survival due to reduced Tp53 and CDKN2A expression and elevated MDM2 levels. In addition, MDM2 gene expression levels show a significant positive correlation with disease activity indices like anti-dsDNA titer and SLEDAI score in SLE patients.
Collapse
Affiliation(s)
- Amin Azizan
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Majid Alikhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Vojgani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Tan L, He G, Shen C, He S, Chen Y, Guo X. Construction of a ferroptosis-based prediction model for the prognosis of MYCN-amplified neuroblastoma and screening and verification of target sites. Hereditas 2025; 162:41. [PMID: 40108662 PMCID: PMC11921587 DOI: 10.1186/s41065-025-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a prevalent extracranial solid tumor in pediatric patients. Of these, the MYCN-amplified type has a poor treatment response and prognosis. To enhance therapeutic efficacy and prognostic outcomes, numerous research teams have undertaken extensive investigations through various pathways and directions. Among these, ferroptosis has recently emerged as a significant area of research focus.Ferroptosis, a type of iron-dependent cell death, is primarily caused by lipid peroxides. This study intends to develop a prognosis model based on MYCN-amplified NB and ferroptosis-related genes (FGs). METHODS Data for this study were sourced from the TARGET and FerrDb databases. Lasso regression algorithms and univariate COX analysis were leveraged to determine feature genes; multivariate COX analysis was employed to develop a prediction model and risk scores; and receiver operating characteristic (ROC) curves and Kaplan-Meier analysis were utilized to assess the predictive ability of the model. Furthermore, discrepancies in immune cell infiltration (ICI) between the high-risk (HR) and low-risk (LR) populations were assessed via CIBERSORT analysis. Finally, experiments were conducted on MYCN-amplified and MYCN non-amplified cells so as to validate the differential expression of the gene. RESULTS A prediction model was constructed and risk scores were calculated based on 4 genes (LIFR, TP53, NRAS, and OSBPL9). The HR group, which was stratified by the median score, had a lower overall survival rate than the LR group.The differences in expression of each gene between MYCN-amplified and MYCN non-amplified cells were further confirmed through cell experiments and qPCR. CONCLUSION The prediction model in this study can be employed to forecast the prognosis of MYCN-amplified NB. These genes may represent promising new ferroptosis-related intervention targets (FITs) in treating MYCN-amplified NB, with the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Linjun Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China
- Department of Pediatrics, Guizhou Children's Hospital, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China
| | - Guoqian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Chengqi Shen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Sijia He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Department of Pediatrics, Guizhou Children's Hospital, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Collaborative Innovation Center for Tissue Injury Repairand Regenerative Medicine of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
| | - Xia Guo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wang W, Du Y, Datta S, Fowler JF, Sang HT, Albadari N, Li W, Foster J, Zhang R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis 2025; 12:101156. [PMID: 39802403 PMCID: PMC11719324 DOI: 10.1016/j.gendis.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2025] Open
Abstract
Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions. Dysregulation of MYC, such as amplification of MYCN, is associated with tumorigenesis, especially for neuroblastoma. Although the general survival rate of neuroblastoma patients has significantly improved over the past few decades, high-risk neuroblastoma still presents a poor prognosis. Therefore, innovative and more potent therapeutic strategies are needed to eradicate these aggressive neoplasms. This review focuses on the oncogenic properties of MYCN and its molecular regulation and summarizes the major therapeutic strategies being developed based on preclinical findings. We also highlight the potential benefits of targeting both the MYCN and MDM2 oncogenes, providing preclinical evidence of the efficacy and safety of this approach. In conclusion, the development of effective small molecules that inhibit both MYCN and MDM2 represents a promising new strategy for the treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Josef F. Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hannah T. Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Najah Albadari
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Foster
- Texas Children's Hospital, Department of Pediatrics, Section of Hematology-Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Huertas-Castaño C, Martínez-López L, Cabrera-Roldán P, Pastor N, Mateos JC, Mateos S, Pardal R, Domínguez I, Orta ML. Influence of stromal neural crest progenitor cells on neuroblastoma radioresistance. Int J Radiat Biol 2025; 101:153-163. [PMID: 39750107 DOI: 10.1080/09553002.2024.2440865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation. In this paper we wanted to study the radiobiological behavior of these cells (NB14t) and how they influence the growth of tumorigenic neuroblasts after radiotherapy. MATERIALS AND METHODS To achieve our aim, we employed a wide list of methods either using NB14t cells as well as commercial NB cells. We have analyzed viability, survival, cell cyle profiles and differentiation. In addition, cocultured experiments were performed to monitor the influence of stroma cells to tumorigenic neuroblasts. RESULTS We found that stromal progenitor cells showed an extraordinary radio-resistance either cultured in attached or suspension conditions. In good agreement, we found an enhanced repair of irradiation-induced DNA lesions as compared with commercial cell lines. In addition, according to our data these cells differentiate into a Cancer Associated Fibroblasts (CAFs)-like phenotype, hence contributing to the formation of mesenchymal stroma enhancing the growth of tumor cells after irradiation. CONCLUSION Our data show that neural progenitor cells from high risk NB stroma are radio-resistant and promote cancer growth after irradiation. This paper can help to understand the complex cell relationships within a tumor that will determine patient prognosis after radiotherapy.
Collapse
Affiliation(s)
| | | | - Patricia Cabrera-Roldán
- Departamento de Oncología Radioterápica, Hospital Universitario Virgen del Rocío (HUVR), Seville, Spain
| | - Nuria Pastor
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| | - Juan Carlos Mateos
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Santiago Mateos
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| | - Ricardo Pardal
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS) (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | | | - Manuel Luis Orta
- Departamento de Biología Celular, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
7
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
8
|
Oliver TRW, Behjati S. Developmental Dysregulation of Childhood Cancer. Cold Spring Harb Perspect Med 2024; 14:a041580. [PMID: 38692740 PMCID: PMC11529852 DOI: 10.1101/cshperspect.a041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Most childhood cancers possess distinct clinicopathological profiles from those seen in adulthood, reflecting their divergent mechanisms of carcinogenesis. Rather than depending on the decades-long, stepwise accumulation of changes within a mature cell that defines adult carcinomas, many pediatric malignancies emerge rapidly as the consequence of random errors during development. These errors-whether they be genetic, epigenetic, or microenvironmental-characteristically block maturation, resulting in phenotypically primitive neoplasms. Only an event that falls within a narrow set of spatiotemporal parameters will forge a malignant clone; if it occurs too soon then the event might be lethal, or negatively selected against, while if it is too late or in an incorrectly primed precursor cell then the necessary intracellular conditions for transformation will not be met. The precise characterization of these changes, through the study of normal tissues and tumors from patients and model systems, will be essential if we are to develop new strategies to diagnose, treat, and perhaps even prevent childhood cancer.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
| |
Collapse
|
9
|
Mabry AR, Gorman J, Delvasto JS, Lavik AR, Layer JH, Mayo LD. Activation of the Snail transcription factor induces Mdm2 gene expression. J Biol Chem 2024; 300:107811. [PMID: 39313097 PMCID: PMC11530585 DOI: 10.1016/j.jbc.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Epithelial-like tumor cells can become metastatic by undergoing molecular and phenotypic reprogramming in a process referred to as epithelial-to-mesenchymal transition (EMT). In response to EMT genes that promote migration and condition the tumor microenvironment to permit intravasation into the bloodstream, dissemination and extravasation into new organs are induced. While the mutant p53 has been implicated in extravasation, one negative regulator of p53, the oncogene murine double minute-2 gene (Mdm2), is required in the early stages of metastasis and the driver of EMT. This activity is independent of Mdm2's role in the p53-Mdm2 autoregulatory feedback loop. Herein, we examine the EMT transcription factor Snail as a downstream effector of kinase signaling pathways. We show that the activation of upstream receptors and KRas signaling increase Snail levels. Snail binds to Ebox DNA motifs, and Mdm2 has two Ebox DNA-binding domains in the second promoter. Snail binds to the second Ebox and induces Mdm2 gene expression. Knockdown of endogenous Snail by shRNA shows a decrease in Mdm2 and is associated with reduced migration. The reintroduction of Mdm2 in shSnail cells restores cellular migration. These data integrate upstream pathways that induce Snail-Mdm2 to promote the metastasis of tumor cells.
Collapse
Affiliation(s)
- Alexander R Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Juan S Delvasto
- Department of Biology, Indiana University, Indianapolis, Indiana, USA
| | - Andrew R Lavik
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Justin H Layer
- Department of Hematology and Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
10
|
Mabry AR, Singh A, Mulrooney B, Gorman J, Thielbar AR, Wolf ER, Mayo LD. Induction of the Mdm2 gene and protein by kinase signaling pathways is repressed by the pVHL tumor suppressor. Proc Natl Acad Sci U S A 2024; 121:e2400935121. [PMID: 39047034 PMCID: PMC11295014 DOI: 10.1073/pnas.2400935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The tumor suppressor von Hippel-Lindau, pVHL, is a multifaceted protein. One function is to dock to the hypoxia-inducible transcription factor (HIF) and recruit a larger protein complex that destabilizes HIF via ubiquitination, preventing angiogenesis and tumor development. pVHL also binds to the tumor suppressor p53 to activate specific p53 target genes. The oncogene Mdm2 impairs the formation of the p53-pVHL complex and activation of downstream genes by conjugating nedd8 to pVHL. While Mdm2 can impact p53 and pVHL, how pVHL may impact Mdm2 is unclear. Like p53 somatic mutations, point mutations are evident in pVHL that are common in renal clear cell carcinomas (RCC). In patients with RCC, Mdm2 levels are elevated, and we examined whether there was a relationship between Mdm2 and pVHL. TCGA and DepMap analysis revealed that mdm2 gene expression was elevated in RCC with vhl point mutations or copy number loss. In pVHL reconstituted or deleted isogenetically match RCC or MEF cell lines, Mdm2 was decreased in the presence of pVHL. Furthermore, through analysis using genetic and pharmacological approaches, we show that pVHL represses Mdm2 gene expression by blocking the MAPK-Ets signaling pathway and blocks Akt-mediated phosphorylation and stabilization of Mdm2. Mdm2 inhibition results in an increase in the p53-p21 pathway to impede cell growth. This finding shows how pVHL can indirectly impact the function of Mdm2 by regulating signaling pathways to restrict cell growth.
Collapse
Affiliation(s)
- Alexander R. Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Arnima Singh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Brianna Mulrooney
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Abigail R. Thielbar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Eric R. Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| | - Lindsey D. Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| |
Collapse
|
11
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
12
|
Oskouian B, Lee JY, Asgharzadeh S, Khan R, Zhang M, Weisbrod JR, Choi YJ, Puri L, Aguilar AE, Zhao P, Saba JD. AF1q is a universal marker of neuroblastoma that sustains N-Myc expression and drives tumorigenesis. Oncogene 2024; 43:1203-1213. [PMID: 38413795 PMCID: PMC11014797 DOI: 10.1038/s41388-024-02980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Neuroblastoma is the most common extracranial malignant tumor of childhood, accounting for 15% of all pediatric cancer deaths. Despite significant advances in our understanding of neuroblastoma biology, five-year survival rates for high-risk disease remain less than 50%, highlighting the importance of identifying novel therapeutic targets to combat the disease. MYCN amplification is the most frequent and predictive molecular aberration correlating with poor outcome in neuroblastoma. N-Myc is a short-lived protein primarily due to its rapid proteasomal degradation, a potentially exploitable vulnerability in neuroblastoma. AF1q is an oncoprotein with established roles in leukemia and solid tumor progression. It is normally expressed in brain and sympathetic neurons and has been postulated to play a part in neural differentiation. However, no role for AF1q in tumors of neural origin has been reported. In this study, we found AF1q to be a universal marker of neuroblastoma tumors. Silencing AF1q in neuroblastoma cells caused proteasomal degradation of N-Myc through Ras/ERK and AKT/GSK3β pathways, activated p53 and blocked cell cycle progression, culminating in cell death via the intrinsic apoptotic pathway. Moreover, silencing AF1q attenuated neuroblastoma tumorigenicity in vivo signifying AF1q's importance in neuroblastoma oncogenesis. Our findings reveal AF1q to be a novel regulator of N-Myc and potential therapeutic target in neuroblastoma.
Collapse
Affiliation(s)
- Babak Oskouian
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Joanna Y Lee
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Shahab Asgharzadeh
- Children's Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Ranjha Khan
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Julia R Weisbrod
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Youn-Jeong Choi
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Latika Puri
- Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Ana E Aguilar
- Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Piming Zhao
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Julie D Saba
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
14
|
Chaudhry KA, Jacobi JJ, Gillard BM, Karasik E, Martin JC, da Silva Fernandes T, Hurley E, Feltri ML, Attwood KM, Twist CJ, Smiraglia DJ, Long MD, Bianchi-Smiraglia A. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation. iScience 2023; 26:108303. [PMID: 38026169 PMCID: PMC10654598 DOI: 10.1016/j.isci.2023.108303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.
Collapse
Affiliation(s)
- Kanita A. Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Justine J. Jacobi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jeffrey C. Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Edward Hurley
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Foundation I.R.C.C.S. Carlo Besta Neurological Institute Milan, Italy
| | - Kristopher M. Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Clare J. Twist
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dominic J. Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D. Long
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
15
|
Pirvu LC, Neagu G, Albulescu A, Stefaniu A, Pintilie L. Potential Benefits of Dietary Plant Compounds on Normal and Tumor Brain Cells in Humans: In Silico and In Vitro Approaches. Int J Mol Sci 2023; 24:ijms24087404. [PMID: 37108565 PMCID: PMC10139435 DOI: 10.3390/ijms24087404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Neuroblastoma can be accessed with compounds of larger sizes and wider polarities, which do not usually cross the blood-brain barrier. Clinical data indicate cases of spontaneous regression of neuroblastoma, suggesting a reversible point in the course of cell brain tumorigenesis. Dual specificity tyrosine-phosphorylation-regulated kinase2 (DYRK2) is a major molecular target in tumorigenesis, while curcumin was revealed to be a strong inhibitor of DYRK2 (PBD ID: 5ZTN). Methods: in silico studies by CLC Drug Discovery Workbench (CLC) and Molegro Virtual Docker (MVD) Software on 20 vegetal compounds from the human diet tested on 5ZTN against the native ligand curcumin, in comparison with anemonin. In vitro studies were conducted on two ethanolic extracts from Anemone nemorosa tested on normal and tumor human brain cell lines NHA and U87, compared with four phenolic acids (caffeic, ferulic, gentisic, and para-aminobenzoic/PABA). Conclusions: in silico studies revealed five dietary compounds (verbascoside, lariciresinol, pinoresinol, medioresinol, matairesinol) acting as stronger inhibitors of 5ZTN compared to the native ligand curcumin. In vitro studies indicated that caffeic acid has certain anti-proliferative effects on U87 and small benefits on NHA viability. A. nemorosa extracts indicated potential benefits on NHA viability, and likely dangerous effects on U87.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development-ICCF, 112 Vitan Av., 031299 Bucharest, Romania
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development-ICCF, 112 Vitan Av., 031299 Bucharest, Romania
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development-ICCF, 112 Vitan Av., 031299 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Av., 030304 Bucharest, Romania
| | - Amalia Stefaniu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development-ICCF, 112 Vitan Av., 031299 Bucharest, Romania
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical Technologies, National Institute of Chemical Pharmaceutical Research and Development-ICCF, 112 Vitan Av., 031299 Bucharest, Romania
| |
Collapse
|
16
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
17
|
Deciphering the Role of p53 and TAp73 in Neuroblastoma: From Pathogenesis to Treatment. Cancers (Basel) 2022; 14:cancers14246212. [PMID: 36551697 PMCID: PMC9777536 DOI: 10.3390/cancers14246212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
Collapse
|
18
|
Liu T, Gu L, Wu Z, Albadari N, Li W, Zhou M. MYCN mRNA degradation and cancer suppression by a selective small-molecule inhibitor in MYCN-amplified neuroblastoma. Front Oncol 2022; 12:1058726. [PMID: 36505784 PMCID: PMC9730801 DOI: 10.3389/fonc.2022.1058726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Amplification of the MYCN gene leads to its overexpression at both the mRNA and protein levels. Overexpression of MYCN mRNA may also have an important role in promoting neuroblastoma (NB) beyond the translation of MYCN protein. In the present study, we report a small molecule compound (MX25-1) that was able to bind to the 3'UTR of MYCN mRNA and induce MYCN mRNA degradation; this resulted in potent cell-growth inhibition and cell death specifically in MYCN-amplified or MYCN 3'UTR overexpressing NB cells. To evaluate the role of MYCN 3'UTR-mediated signals in contributing to the anticancer activity of MX25-1, we examined the status and activation of the tumor suppressor microRNA (miRNA) let-7, which is a target of MYCN 3'UTR in MYCN-amplified NB. We first observed that overexpression of MYCN mRNA was associated with high-level expression of the let-7 oncogenic targets DICER1, ARID3B and HMGA2. Following MYCN mRNA degradation, the expression of DICER1, ARID3B and HMGA2 was downregulated in MX25-1-treated cells. Inhibition of let-7 reversed the downregulation of these oncogenic mRNAs and significantly increased resistance of NB cells to MX25-1. Our results from this study supported the notion that overexpression of MYCN mRNA due to gene amplification has an independent function in NB cell growth and disease progression and suggest that targeting MYCN mRNA may represent an attractive strategy for therapy of MYCN amplified NB, both by inhibiting MYCN's cell-survival effects and activating the tumor-suppressor effect of let-7.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
19
|
An immature, dedifferentiated, and lineage-deconstrained cone precursor origin of N-Myc-initiated retinoblastoma. Proc Natl Acad Sci U S A 2022; 119:e2200721119. [PMID: 35867756 PMCID: PMC9282279 DOI: 10.1073/pnas.2200721119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most retinoblastomas develop from maturing cone precursors in response to biallelic RB1 loss and are dependent on cone maturation-related signaling. Additionally, ∼2% lack RB1 mutations but have MYCN amplification (MYCNA), N-Myc protein overexpression, and more rapid and invasive growth, yet the MYCNA retinoblastoma cell of origin and basis for its responses to deregulated N-Myc are unknown. Here, using explanted cultured retinae, we show that ectopic N-Myc induces cell cycle entry in cells expressing markers of several retinal types yet induces continuous proliferation and tumorigenesis only in cone precursors. Unlike the response to RB1 loss, both immature cone arrestin-negative (ARR3-) and maturing ARR3+ cone precursors proliferate, and maturing cone precursors rapidly dedifferentiate, losing ARR3 as well as L/M-opsin expression. N-Myc-overexpressing retinal cells also lose cell lineage constraints, occasionally coexpressing the cone-specific RXRγ with the rod-specific NRL or amacrine-specific AP2α and widely coexpressing RXRγ with the progenitor and Müller cell-specific SOX9 and retinal ganglion cell-specific BRN3 and GAP43. Mechanistically, N-Myc induced Cyclin D2 and CDK4 overexpression, pRB phosphorylation, and SOX9-dependent proliferation without a retinoma-like stage that characterizes pRB-deficient retinoblastoma, despite continuous p16INK4A expression. Orthotopic xenografts of N-Myc-overexpressing retinal cells formed tumors with retinal cell marker expression similar to those in MYCN-transduced retinae and MYCNA retinoblastomas in patients. These findings demonstrate the MYCNA retinoblastoma origin from immature and lineage-deconstrained cone precursors, reveal their opportunistic use of an undifferentiated retinal progenitor cell feature, and illustrate that different cancer-initiating mutations cooperate with distinct developmental stage-specific cell signaling circuitries to drive retinoblastoma tumorigenesis.
Collapse
|
20
|
Wang H, Wang X, Xu L, Zhang J. TP53 and TP53-associated genes are correlated with the prognosis of paediatric neuroblastoma. BMC Genom Data 2022; 23:41. [PMID: 35655142 PMCID: PMC9164562 DOI: 10.1186/s12863-022-01059-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background TP53 is rarely mutated in paediatric neuroblastoma. The prognosis of TP53 and TP53-associated genes in paediatric neuroblastoma is unclear. The objectives of the study were to analyse datasets of 2477 paediatric neuroblastoma patients from eight independent cohorts to reveal the prognosis of TP53 and TP53-associated genes. Results High TP53 mRNA expression was associated with shortened event-free survival and overall survival in paediatric neuroblastoma. Moreover, a higher enrichment score of the TP53 signalling pathway was associated with worse clinical outcomes of paediatric neuroblastoma. Among the genes associated with TP53, CCNE1, CDK2 and CHEK2 were correlated with unfavourable clinical outcomes, while SESN1 was correlated with favourable clinical outcomes of paediatric neuroblastoma in the eight independent neuroblastoma cohorts. TP53, CCNE1, CDK2 and CHEK2 were overexpressed in neuroblastoma patients with MYCN amplification, while SESN1 was downregulated in neuroblastoma patients with MYCN amplification. CCNE1, SESN1, MYCN amplification and age at diagnosis were independent prognostic markers of neuroblastoma. CCNE1 was also highly expressed in paediatric neuroblastoma patients with an age at diagnosis ≥ 18 months, while SESN1 was downregulated in paediatric neuroblastoma patients with an age at diagnosis ≥ 18 months. Combinations of CCNE1 with age at diagnosis or combinations of SESN1 with age at diagnosis achieved superior prognostic effects in paediatric neuroblastoma. Finally, we constructed a nomogram risk model of paediatric neuroblastoma based on age and TP53, CCNE1, CDK2, CHEK2 and SESN1 expression. The nomogram model could predict the overall survival of paediatric neuroblastoma and MYCN nonamplified paediatric neuroblastoma with high specificity and sensitivity. Conclusions TP53 and TP53-associated genes CCNE1, CDK2, CHEK2 and SESN1 were significantly associated with the clinical outcomes of paediatric neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01059-5.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Decaesteker B, Durinck K, Van Roy N, De Wilde B, Van Neste C, Van Haver S, Roberts S, De Preter K, Vermeirssen V, Speleman F. From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk Neuroblastoma. J Pers Med 2021; 11:1286. [PMID: 34945759 PMCID: PMC8707517 DOI: 10.3390/jpm11121286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- G087221N, G.0507.12, G049720N,12U4718N, 11C3921N, 11J8313N, 12B5313N, 1514215N, 1197617N,1238420N, 12Q8322N, 3F018519, 12N6917N Fund for Scientific Research Flanders
- 2018-087, 2018-125, 2020-112 Belgian Foundation against Cancer
Collapse
Affiliation(s)
- Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Nadine Van Roy
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Bram De Wilde
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Christophe Van Neste
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stéphane Van Haver
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Vanessa Vermeirssen
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Zwijnaarde, Belgium
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| |
Collapse
|
22
|
Lundsten S, Berglund H, Jha P, Krona C, Hariri M, Nelander S, Lane DP, Nestor M. p53-Mediated Radiosensitization of 177Lu-DOTATATE in Neuroblastoma Tumor Spheroids. Biomolecules 2021; 11:1695. [PMID: 34827693 PMCID: PMC8615514 DOI: 10.3390/biom11111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
p53 is involved in DNA damage response and is an exciting target for radiosensitization in cancer. Targeted radionuclide therapy against somatostatin receptors with 177Lu-DOTATATE is currently being explored as a treatment for neuroblastoma. The aim of this study was to investigate the novel p53-stabilizing peptide VIP116 in neuroblastoma, both as monotherapy and together with 177Lu-DOTATATE. Five neuroblastoma cell lines, including two patient-derived xenograft (PDX) lines, were characterized in monolayer cultures. Four out of five were positive for 177Lu-DOTATATE uptake. IC50 values after VIP116 treatments correlated with p53 status, ranging between 2.8-238.2 μM. IMR-32 and PDX lines LU-NB-1 and LU-NB-2 were then cultured as multicellular tumor spheroids and treated with 177Lu-DOTATATE and/or VIP116. Spheroid growth was inhibited in all spheroid models for all treatment modalities. The most pronounced effects were observed for combination treatments, mediating synergistic effects in the IMR-32 model. VIP116 and combination treatment increased p53 levels with subsequent induction of p21, Bax and cleaved caspase 3. Combination treatment resulted in a 14-fold and 1.6-fold induction of MDM2 in LU-NB-2 and IMR-32 spheroids, respectively. This, together with differential MYCN signaling, may explain the varying degree of synergy. In conclusion, VIP116 inhibited neuroblastoma cell growth, potentiated 177Lu-DOTATATE treatment and could, therefore, be a feasible treatment option for neuroblastoma.
Collapse
Affiliation(s)
- Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Hanna Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - David P. Lane
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 65 Solna, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| |
Collapse
|
23
|
Zhang M, Wang S. Roles of circular RNAs in colorectal cancer. Oncol Lett 2021; 22:602. [PMID: 34188704 PMCID: PMC8227629 DOI: 10.3892/ol.2021.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancer worldwide and poses a significant burden on both the individual and healthcare systems. Despite advances in treatment options, advanced-stage CRC has a high mortality rate due to its heterogeneity, metastatic potential and/or delay in diagnosis. In recent years, an increasing number of studies have indicated that circular RNAs (circRNAs) serve important roles in several types of cancer, including CRC. Recent studies have revealed that circRNAs are aberrantly expressed in CRC tissues and function as oncogenic or tumor suppressive regulators of CRC carcinogenesis and development. Numerous circRNAs have been associated with the clinicopathological features of patients with CRC and have been considered as potential biomarkers for the diagnosis and prognosis of CRC, as well as targets for treatment. However, a deeper understanding of their potential function is required. In the present review, the current body of knowledge on the biogenesis and functions of CRC-associated circRNAs, and their potential value in clinical applications, such as in CRC diagnosis, prognosis and treatment, is discussed and summarized.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Shubin Wang, Department of Oncology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
24
|
Moreno-Smith M, Milazzo G, Tao L, Fekry B, Zhu B, Mohammad MA, Di Giacomo S, Borkar R, Reddy KRK, Capasso M, Vasudevan SA, Sumazin P, Hicks J, Putluri N, Perini G, Eckel-Mahan K, Burris TP, Barbieri E. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat Commun 2021; 12:4006. [PMID: 34183658 PMCID: PMC8238982 DOI: 10.1038/s41467-021-24196-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
MYCN activation is a hallmark of advanced neuroblastoma (NB) and a known master regulator of metabolic reprogramming, favoring NB adaptation to its microenvironment. We found that the expression of the main regulators of the molecular clock loops is profoundly disrupted in MYCN-amplified NB patients, and this disruption independently predicts poor clinical outcome. MYCN induces the expression of clock repressors and downregulates the one of clock activators by directly binding to their promoters. Ultimately, MYCN attenuates the molecular clock by suppressing BMAL1 expression and oscillation, thereby promoting cell survival. Reestablishment of the activity of the clock activator RORα via its genetic overexpression and its stimulation through the agonist SR1078, restores BMAL1 expression and oscillation, effectively blocks MYCN-mediated tumor growth and de novo lipogenesis, and sensitizes NB tumors to conventional chemotherapy. In conclusion, reactivation of RORα could serve as a therapeutic strategy for MYCN-amplified NBs by blocking the dysregulation of molecular clock and cell metabolism mediated by MYCN.
Collapse
Affiliation(s)
- Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ling Tao
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, USA
| | - Bokai Zhu
- Department of Medicine, Division of Endocrinology and Metabolism, Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture, Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roshan Borkar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, USA
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Ashok G, Miryala SK, Anbarasu A, Ramaiah S. Integrated systems biology approach using gene network analysis to identify the important pathways and new potential drug targets for Neuroblastoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
27
|
Veneziani I, Infante P, Ferretti E, Melaiu O, Battistelli C, Lucarini V, Compagnone M, Nicoletti C, Castellano A, Petrini S, Ognibene M, Pezzolo A, Di Marcotullio L, Bei R, Moretta L, Pistoia V, Fruci D, Barnaba V, Locatelli F, Cifaldi L. Nutlin-3a Enhances Natural Killer Cell-Mediated Killing of Neuroblastoma by Restoring p53-Dependent Expression of Ligands for NKG2D and DNAM-1 Receptors. Cancer Immunol Res 2021; 9:170-183. [PMID: 33303573 DOI: 10.1158/2326-6066.cir-20-0313] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
In this study, we explored whether Nutlin-3a, a well-known, nontoxic small-molecule compound antagonizing the inhibitory interaction of MDM2 with the tumor suppressor p53, may restore ligands for natural killer (NK) cell-activating receptors (NK-AR) on neuroblastoma cells to enhance the NK cell-mediated killing. Neuroblastoma cell lines were treated with Nutlin-3a, and the expression of ligands for NKG2D and DNAM-1 NK-ARs and the neuroblastoma susceptibility to NK cells were evaluated. Adoptive transfer of human NK cells in a xenograft neuroblastoma-bearing NSG murine model was assessed. Two data sets of neuroblastoma patients were explored to correlate p53 expression with ligand expression. Luciferase assays and chromatin immunoprecipitation analysis of p53 functional binding on PVR promoter were performed. Primary neuroblastoma cells were also treated with Nutlin-3a, and neuroblastoma spheroids obtained from one high-risk patient were assayed for NK-cell cytotoxicity. We provide evidence showing that the Nutlin-3a-dependent rescue of p53 function in neuroblastoma cells resulted in (i) increased surface expression of ligands for NK-ARs, thus rendering neuroblastoma cell lines significantly more susceptible to NK cell-mediated killing; (ii) shrinkage of human neuroblastoma tumor masses that correlated with overall survival upon adoptive transfer of NK cells in neuroblastoma-bearing mice; (iii) and increased expression of ligands in primary neuroblastoma cells and boosting of NK cell-mediated disaggregation of neuroblastoma spheroids. We also found that p53 was a direct transcription factor regulating the expression of PVR ligand recognized by DNAM-1. Our findings demonstrated an immunomodulatory role of Nutlin-3a, which might be prospectively used for a novel NK cell-based immunotherapy for neuroblastoma.
Collapse
Affiliation(s)
- Irene Veneziani
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Elisa Ferretti
- Department of Experimental Medicine, University of Genoa, Genova, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Cecilia Battistelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Mirco Compagnone
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Carmine Nicoletti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Aurora Castellano
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy, Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Lucia Di Marcotullio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Vincenzo Barnaba
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Cellular and Molecular Immunology Unit, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Loredana Cifaldi
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata," Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
28
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Tran HN, Singh HP, Guo W, Cambier L, Riggan L, Shackleford GM, Thornton ME, Grubbs BH, Erdreich-Epstein A, Qi DL, Cobrinik D. Reciprocal Induction of MDM2 and MYCN in Neural and Neuroendocrine Cancers. Front Oncol 2020; 10:563156. [PMID: 33425720 PMCID: PMC7793692 DOI: 10.3389/fonc.2020.563156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
MYC family oncoproteins MYC, MYCN, and MYCL are deregulated in diverse cancers and via diverse mechanisms. Recent studies established a novel form of MYCN regulation in MYCN-overexpressing retinoblastoma and neuroblastoma cells in which the MDM2 oncoprotein promotes MYCN translation and MYCN-dependent proliferation via a p53-independent mechanism. However, it is unclear if MDM2 also promotes expression of other MYC family members and has similar effects in other cancers. Conversely, MYCN has been shown to induce MDM2 expression in neuroblastoma cells, yet it is unclear if MYC shares this ability, if MYC family proteins upregulate MDM2 in other malignancies, and if this regulation occurs during tumorigenesis as well as in cancer cell lines. Here, we report that intrinsically high MDM2 expression is required for high-level expression of MYCN, but not for expression of MYC, in retinoblastoma, neuroblastoma, small cell lung cancer, and medulloblastoma cells. Conversely, ectopic overexpression of MYC as well as MYCN induced high-level MDM2 expression and gave rise to rapidly proliferating and MDM2-dependent cone-precursor-derived masses in a cultured retinoblastoma genesis model. These findings reveal a highly specific collaboration between the MDM2 and MYCN oncoproteins and demonstrate the origin of their oncogenic positive feedback circuit within a normal neuronal tissue.
Collapse
Affiliation(s)
- Hung N Tran
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hardeep P Singh
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wenxuan Guo
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Program in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Linda Cambier
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Luke Riggan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Gregory M Shackleford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anat Erdreich-Epstein
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Departments of Pediatrics and Pathology, Children's Hospital Los Angeles and Keck School of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Targeting MDM2 for Neuroblastoma Therapy: In Vitro and In Vivo Anticancer Activity and Mechanism of Action. Cancers (Basel) 2020; 12:cancers12123651. [PMID: 33291373 PMCID: PMC7762001 DOI: 10.3390/cancers12123651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroblastoma is a malignant tumor of the sympathetic nervous system that causes aggressive disease in children. The overall survival rate of high-risk patients is very low, therefore developing effective and safe therapies for neuroblastoma is an urgent unmet medical need. The mouse double minute 2 (MDM2) homolog gene is amplified and overexpressed in neuroblastoma and contributes to the poor response to treatment and poor prognosis in patients with high-risk neuroblastoma. Therefore, targeting MDM2 provides a promising approach to neuroblastoma therapy, especially for advanced disease. In the present study, we tested a unique MDM2 inhibitor, SP141, for its therapeutic efficacy and safety in neuroblastoma tumor models. We found that SP141 has significant anti- neuroblastoma activity in cell culture and inhibits tumor growth in animal models of human neuroblastoma, without any noticeable host toxicity. These results provide the basis for targeting MDM2 to treat high-risk neuroblastoma. Abstract Background: Neuroblastoma is an aggressive pediatric solid tumor with an overall survival rate of <50% for patients with high-risk disease. The majority (>98%) of pathologically-diagnosed neuroblastomas have wild-type p53 with intact functional activity. However, the mouse double minute 2 (MDM2) homolog, an E3 ubiquitin ligase, is overexpressed in neuroblastoma and leads to inhibition of p53. MDM2 also exerts p53-independent oncogenic functions. Thus, MDM2 seems to be an attractive target for the reactivation of p53 and attenuation of oncogenic activity in neuroblastoma. Methods: In this study, we evaluated the anticancer activities and underlying mechanisms of action of SP141, a first-in-class MDM2 inhibitor, in neuroblastoma cell lines with different p53 backgrounds. The findings were confirmed in mouse xenograft models of neuroblastoma. Results: We demonstrate that SP141 reduces neuroblastoma cell viability, induces apoptosis, arrests cells at the G2/M phase, and prevents cell migration, independent of p53. In addition, in neuroblastoma xenograft models, SP141 inhibited MDM2 expression and suppressed tumor growth without any host toxicity at the effective dose. Conclusions: MDM2 inhibition by SP141 results in the inhibition of neuroblastoma growth and metastasis, regardless of the p53 status of the cells and tumors. These findings provide proof-of-concept that SP141 represents a novel treatment option for both p53 wild-type and p53 null neuroblastoma.
Collapse
|
31
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
32
|
DeCaprio JA. Molecular Pathogenesis of Merkel Cell Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:69-91. [PMID: 33228463 DOI: 10.1146/annurev-pathmechdis-012419-032817] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with two distinct etiologies. Clonal integration of Merkel cell polyomavirus DNA into the tumor genome with persistent expression of viral T antigens causes at least 60% of all MCC. UV damage leading to highly mutated genomes causes a nonviral form of MCC. Despite these distinct etiologies, both forms of MCC are similar in presentation, prognosis, and response to therapy. At least three oncogenic transcriptional programs feature prominently in both forms of MCC driven by the virus or by mutation. Both forms of MCC have a high proliferative growth rate with increased levels of cell cycle-dependent genes due to inactivation of the tumor suppressors RB and p53, a strong MYC signature due to MYCL activation by the virus or gene amplification, and an attenuated neuroendocrine differentiation program driven by the ATOH1 transcription factor.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Wang E, Huang Y, Du Q, Sun Y. Alterations in reproductive parameters and gene expression in Balb/c mice testes after exposure to silver nanoparticles. Andrologia 2020; 53:e13841. [PMID: 33167059 DOI: 10.1111/and.13841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 11/28/2022] Open
Abstract
Silver nanoparticles (AgNPs) have become one of the most common nanomaterials in various commercial products; however, its potential toxicity to the male reproductive system and the possible mechanisms remains unknown. Our study aimed to investigate the toxicity of silver nanoparticle (AgNPs) in the testis and to elucidate its possible mechanisms. We exposed 6-week-old Balb/c male mice to AgNP daily [0 (control), 30 or 125 mg/kg BW] for 90 days. The histological structure, sperm production and levels of reproductive hormones were assessed; we also observed apoptotic cell nuclei and the ultrastructural characteristics of the testis. Microarray analyses were used to identify differentially expressed genes, and dysregulated apoptosis-related genes and protein were also analysed. Our results indicated that 125 mg/kg AgNP changed testis morphology and decreased sperm production. AgNP treatment also increased apoptosis of germ cells and induced the presence of swollen or dissolved mitochondria in the testis. Microarray analysis showed the expression of 383 genes was altered by AgNP treatment, with apoptosis-related genes showing the greatest changes. Furthermore, we verified dysregulated apoptosis-related genes and proteins (caspase3 and Myc). These results demonstrated that AgNP induced changes of testis morphology, sperm production and apoptosis-related genes, suggested this process maybe associated with apoptosis.
Collapse
Affiliation(s)
- Enyin Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Huang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyun Du
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol Res 2020; 162:105245. [PMID: 33069756 DOI: 10.1016/j.phrs.2020.105245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.
Collapse
|
35
|
Maser T, Zagorski J, Kelly S, Ostrander A, Goodyke A, Nagulapally A, Bond J, Park Y, Saulnier Sholler G. The MDM2 inhibitor CGM097 combined with the BET inhibitor OTX015 induces cell death and inhibits tumor growth in models of neuroblastoma. Cancer Med 2020; 9:8144-8158. [PMID: 33034426 PMCID: PMC7643634 DOI: 10.1002/cam4.3407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, with amplification of the oncogene MYCN being a hallmark of high‐risk disease and poor prognosis. Although less frequent, overexpression of MYC is similarly an indicator of poor prognosis. Most NB tumors initially respond to chemotherapy, however, most will relapse, resulting in chemoresistant disease. After relapse, there is growing evidence of p53 inactivation. MYC/MYCN and MDM2 have been shown to interact and contribute to NB growth and disease progression. MDM2 inhibitors and Bromodomain and Extra‐Terminal domain (BET) inhibitors have both shown promise in treating NB by increasing the expression of p53 and decreasing MYC/MYCN expression, respectively. Our study focuses on the combined treatment of a MDM2 inhibitor (CGM097) with a BET inhibitor (OTX015) in neuroblastoma. Methods Two p53 wild‐type and two p53 mutant established neuroblastoma cells lines were used to test this combination. Ray design assays were used to test whether this combination was synergistically cytotoxic to NB cells. Western blots were performed to check signaling pathways of interest after drug treatment. IncuCyte imaging and flow cytometry were utilized to quantify the apoptotic and cytostatic effects of these drugs on NB cells. In vivo studies were carried out to test the antitumor effect of this combination in a living host. Results The combination of CGM097 and OTX015 resulted in p53 activation, decreased expression of MYC family proteins and a subsequent synergistic increase in NB cell death. Conclusion This study warrants further investigation into the combination of MDM2 inhibitors and BET inhibitors for the treatment in NB.
Collapse
Affiliation(s)
- Tyler Maser
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Joseph Zagorski
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Shannon Kelly
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Anna Ostrander
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Austin Goodyke
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Abhinav Nagulapally
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Yeonhee Park
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Giselle Saulnier Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital, Grand Rapids, MI, USA.,College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
36
|
Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett 2020; 496:16-29. [PMID: 33007410 DOI: 10.1016/j.canlet.2020.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Despite being the subject of extensive research and clinical trials, neuroblastoma remains a major therapeutic challenge in pediatric oncology. The p53 protein is a central safeguard that protects cells against genome instability and malignant transformation. Mutated TP53 (the gene encoding p53) is implicated in many human cancers, but the majority of neuroblastomas have wild type p53 with intact transcriptional function. In fact, the TP53 mutation rate does not exceed 1-2% in neuroblastomas. However, overexpression of the murine double minute 2 (MDM2) gene in neuroblastoma is relatively common, and leads to inhibition of p53. It is also associated with other non-canonical p53-independent functions, including drug resistance and increased translation of MYCN and VEGF mRNA. The p53-MDM2 pathway in neuroblastoma is also modulated at several different molecular levels, including via interactions with other proteins (MYCN, p14ARF). In addition, the overexpression of MDM2 in tumors is linked to a poorer prognosis for cancer patients. Thus, restoring p53 function by inhibiting its interaction with MDM2 is a potential therapeutic strategy for neuroblastoma. A number of p53-MDM2 antagonists have been designed and studied for this purpose. This review summarizes the current understanding of p53 biology and the p53-dependent and -independent oncogenic functions of MDM2 in neuroblastoma, and also the regulation of the p53-MDM2 axis in neuroblastoma. This review also highlights the use of MDM2 as a molecular target for the disease, and describes the MDM2 inhibitors currently being investigated in preclinical and clinical studies. We also briefly explain the various strategies that have been used and future directions to take in the development of effective MDM2 inhibitors for neuroblastoma.
Collapse
|
37
|
Suenaga Y, Nakatani K, Nakagawara A. De novo evolved gene product NCYM in the pathogenesis and clinical outcome of human neuroblastomas and other cancers. Jpn J Clin Oncol 2020; 50:839-846. [PMID: 32577751 DOI: 10.1093/jjco/hyaa097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
NCYM is an antisense transcript of MYCN oncogene and promotes tumor progression. NCYM encodes a de novo protein whose open reading frame evolved from noncoding genomic regions in the ancestor of Homininae. Because of its topology, NCYM is always co-amplified with MYCN oncogene, and the mutual regulations between NCYM and MYCN maintain their expressions at high levels in MYCN-amplified tumors. NCYM stabilizes MYCN by inhibiting GSK3β, whereas MYCN stimulates transcription of both NCYM and MYCN. NCYM mRNA and its noncoding transcript variants MYCNOS have been shown to stimulate MYCN expression via direct binding to MYCN promoter, indicating that both coding and noncoding transcripts of NCYM induce MYCN expression. In contrast to the noncoding functions of NCYM, NCYM protein also promotes calpain-mediated cleavage of c-MYC. The cleaved product called Myc-nick inhibits cell death and promotes cancer cell migration. Furthermore, NCYM-mediated inhibition of GSK3β results in the stabilization of β-catenin, which promotes aggressiveness of bladder cancers. These MYCN-independent functions of NCYM showed their clinical significance in MYCN-non-amplified tumors, including adult tumors. This year is the 30th anniversary of the identification of NCYM/MYCNOS gene. On this special occasion, we summarize the current understanding of molecular functions and the clinical significance of NCYM and discuss future directions to achieve therapeutic strategies targeting NCYM.
Collapse
|
38
|
Mallepalli S, Gupta MK, Vadde R. Neuroblastoma: An Updated Review on Biology and Treatment. Curr Drug Metab 2020; 20:1014-1022. [PMID: 31878853 DOI: 10.2174/1389200221666191226102231] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroblastoma (NB) is the second leading extracranial solid tumors of early childhood and clinically characterized by the presence of round, small, monomorphic cells with excess nuclear pigmentation (hyperchromasia).Owing to a lack of definitive treatment against NB and less survival rate in high-risk patients, there is an urgent requirement to understand molecular mechanisms associated with NB in a better way, which in turn can be utilized for developing drugs towards the treatment of NB in human. OBJECTIVES In this review, an approach was adopted to understand major risk factors, pathophysiology, the molecular mechanism associated with NB, and various therapeutic agents that can serve as drugs towards the treatment of NB in humans. CONCLUSION Numerous genetic (e.g., MYCN amplification), perinatal, and gestational factors are responsible for developing NB. However, no definite environmental or parental exposures responsible for causing NB have been confirmed to date. Though intensive multimodal treatment approaches, namely, chemotherapy, surgery & radiation, may help in improving the survival rate in children, these approaches have several side effects and do not work efficiently in high-risk patients. However, recent studies suggested that numerous phytochemicals, namely, vincristine, and matrine have a minimal side effect in the human body and may serve as a therapeutic drug during the treatment of NB. Most of these phytochemicals work in a dose-dependent manner and hence must be prescribed very cautiously. The information discussed in the present review will be useful in the drug discovery process as well as treatment and prevention on NB in humans.
Collapse
Affiliation(s)
- Suresh Mallepalli
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| | - Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa-516003, A.P., India
| |
Collapse
|
39
|
Tanimoto T, Tazawa H, Ieda T, Nouso H, Tani M, Oyama T, Urata Y, Kagawa S, Noda T, Fujiwara T. Elimination of MYCN-Amplified Neuroblastoma Cells by Telomerase-Targeted Oncolytic Virus via MYCN Suppression. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:14-23. [PMID: 32637577 PMCID: PMC7321810 DOI: 10.1016/j.omto.2020.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Neuroblastoma (NB) is a primary malignant tumor of the peripheral sympathetic nervous system. High-risk NB is characterized by MYCN amplification and human telomerase reverse transcriptase (hTERT) rearrangement, contributing to hTERT activation and a poor outcome. For targeting hTERT-activated tumors, we developed two oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in which the hTERT promoter drives expression of the viral E1 gene for tumor-specific virus replication. In this study, we demonstrate the therapeutic potential of the hTERT-driven oncolytic adenoviruses OBP-301 and OBP-702 using four human MYCN-amplified NB cell lines (IMR-32, CHP-134, NB-1, LA-N-5) exhibiting high hTERT expression. OBP-301 and OBP-702 exhibited a strong antitumor effect in association with autophagy in NB cells. Virus-mediated activation of E2F1 protein suppressed MYCN expression. OBP-301 and OBP-702 significantly suppressed the growth of subcutaneous CHP-134 tumors. Thus, these hTERT-driven oncolytic adenoviruses are promising antitumor agents for eliminating MYCN-amplified NB cells via E2F1-mediated suppression of MYCN protein.
Collapse
Affiliation(s)
- Terutaka Tanimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takeshi Ieda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Nouso
- Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Morimichi Tani
- Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takanori Oyama
- Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takuo Noda
- Department of Pediatric Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
40
|
A Circular RNA from the MDM2 Locus Controls Cell Cycle Progression by Suppressing p53 Levels. Mol Cell Biol 2020; 40:MCB.00473-19. [PMID: 32041821 DOI: 10.1128/mcb.00473-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs produced by a noncanonical form of alternative splicing called back-splicing. To investigate a potential role of circRNAs in the p53 pathway, we analyzed RNA sequencing (RNA-seq) data from colorectal cancer cell lines (HCT116, RKO, and SW48) that were untreated or treated with a DNA-damaging agent. Surprisingly, unlike the strong p53-dependent induction of hundreds of p53-induced mRNAs upon DNA damage, only a few circRNAs were upregulated from p53-induced genes. circ-MDM2, an annotated circRNA from the MDM2 locus, was one of the handful of circRNAs that originated from a p53-induced gene. Given the central role of MDM2 in suppressing p53 protein levels and p53 activity, we investigated the function of circ-MDM2 Knocking down circ-MDM2 with small interfering RNAs (siRNAs) that targeted circ-MDM2 did not alter MDM2 mRNA or MDM2 protein levels but resulted in increased basal p53 levels and growth defects in vitro and in vivo Consistent with these results, transcriptome profiling showed increased expression of several direct p53 targets, reduced retinoblastoma protein (Rb) phosphorylation, and defects in G1-S progression upon silencing circ-MDM2 Our results on the initial characterization of circ-MDM2 identify a new player from the MDM2 locus that suppresses p53 levels and cell cycle progression.
Collapse
|
41
|
Li BB, Wang B, Zhu CM, Tang D, Pang J, Zhao J, Sun CH, Qiu MJ, Qian ZR. Cyclin-dependent kinase 7 inhibitor THZ1 in cancer therapy. Chronic Dis Transl Med 2019; 5:155-169. [PMID: 31891127 PMCID: PMC6926117 DOI: 10.1016/j.cdtm.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies have encountered adverse response due to poor therapeutic efficiency, severe side effects and acquired resistance to multiple drugs. Thus, there are urgent needs for finding new cancer-targeted pharmacological strategies. In this review, we summarized the current understanding with THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), which demonstrated promising anti-tumor activity against different cancer types. By introducing the anti-tumor behaviors and the potential targets for different cancers, this review aims to provide more effective approaches to CDK7 inhibitor-based therapeutic agents and deeper insight into the diverse tumor proliferation mechanisms.
Collapse
Affiliation(s)
- Bin-Bin Li
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bo Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Di Tang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jun Pang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chun-Hui Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), College de France, Paris 75005, France
| | - Miao-Juan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
42
|
Mooney MR, Geerts D, Kort EJ, Bachmann AS. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol 2019; 162:237-249. [DOI: 10.1016/j.bcp.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
|
43
|
Veneziani I, Fruci D, Compagnone M, Pistoia V, Rossi P, Cifaldi L. The BET-bromodomain inhibitor JQ1 renders neuroblastoma cells more resistant to NK cell-mediated recognition and killing by downregulating ligands for NKG2D and DNAM-1 receptors. Oncotarget 2019; 10:2151-2160. [PMID: 31040907 PMCID: PMC6481332 DOI: 10.18632/oncotarget.26736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Low expression of ligands for NK cell-activating receptors contributes to neuroblastoma (NB) aggressiveness. Recently, we demonstrated that the expression of MYCN, a poor prognosis marker in NB, inversely correlates with that of activating ligands. This indicates that MYCN expression level can predict the susceptibility of NB cells to NK cell-mediated immunotherapy and that its downregulation can be exploited as a novel therapeutic strategy to induce the expression of activating ligands. Here we evaluated the effect of the BET-bromodomain inhibitor JQ1 on the expression of ligands for NK cell-activating receptors in NB cell lines. Although downmodulating MYCN, JQ1 impaired the expression of ligands for NK cell-activating receptors, rendering NB cell lines more resistant to NK cell-mediated killing. The downregulation of activating ligands was due to JQ1-mediated impaired functions of both c-MYC and p53, two transcription factors known to regulate the expression of ULBP1-3 ligands for NKG2D activating receptor. Moreover JQ1 strongly downregulated the levels of ROS, a stress-induced signaling event associated with the induction of ligands for NK cell-activating receptors. These results suggest that the use of JQ1 should be discourage in combination with NK cell-based immunotherapy in a perspective chemotherapeutic treatment of NB. Thus, further investigations, exploiting molecular strategies aimed to boost the NK cell-mediated killing of NB cells, are warranted.
Collapse
Affiliation(s)
- Irene Veneziani
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Doriana Fruci
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mirco Compagnone
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
44
|
Liu Y, Liu D, Wan W. MYCN-induced E2F5 promotes neuroblastoma cell proliferation through regulating cell cycle progression. Biochem Biophys Res Commun 2019; 511:35-40. [DOI: 10.1016/j.bbrc.2019.01.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 01/06/2023]
|
45
|
Abstract
PURPOSE OF REVIEW Childhood blastomas, unlike adult cancers, originate from developing organs in which molecular and cellular features exhibit differentiation arrest and embryonic characteristics. Conventional cancer therapies, which rely on the generalized cytotoxic effect on rapidly dividing cells, may damage delicate organs in young children, leading to multiple late effects. Deep understanding of the biology of embryonal cancers is crucial in reshaping the cancer treatment paradigm for children. RECENT FINDINGS p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed. SUMMARY Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).
Collapse
Affiliation(s)
- Lixian Oh
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - Hind Hafsi
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Pierre Hainaut
- Institute of Advanced Biosciences, University of Grenoble-Alpes, La Tronche, France
| | - Hany Ariffin
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Cao Z, Xue J, Cheng Y, Wang J, Liu Y, Li H, Jiang W, Li G, Gui Y, Zhang X. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene 2019; 38:4835-4855. [PMID: 30816344 PMCID: PMC6756050 DOI: 10.1038/s41388-019-0761-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/09/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
Genome instability is a common feature of tumor cells, and the persistent presence of genome instability is a potential mechanism of tumorigenesis. The E3 ubiquitin ligase MDM2 is intimately involved in genome instability, but its mechanisms are unclear. Our data demonstrated that the transcription factor HBP1 is a target of MDM2. MDM2 facilitates HBP1 proteasomal degradation by ubiquitinating HBP1, regardless of p53 status, thus attenuating the transcriptional inhibition of HBP1 in the expression of its target genes, such as the DNA methyltransferase DNMT1 and histone methyltransferase EZH2, which results in global DNA hypermethylation and histone hypermethylation and ultimately genome instability. The repression of HBP1 by MDM2 finally promotes cell growth and tumorigenesis. Next, we thoroughly explored the regulatory mechanism of the MDM2/HBP1 axis in DNA damage repair following ionizing radiation. Our data indicated that MDM2 overexpression-mediated repression of HBP1 delays DNA damage repair and causes cell death in a p53-independent manner. This investigation elucidated the mechanism of how MDM2 promotes genome instability and enhances tumorigenesis in the absence of p53, thus providing a theoretical and experimental basis for targeting MDM2 as a cancer therapy.
Collapse
Affiliation(s)
- Zhengyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Junhui Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Jiyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yujuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
47
|
Gomes S, Raimundo L, Soares J, Loureiro JB, Leão M, Ramos H, Monteiro MN, Lemos A, Moreira J, Pinto M, Chlapek P, Veselska R, Sousa E, Saraiva L. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett 2019; 446:90-102. [PMID: 30664963 DOI: 10.1016/j.canlet.2019.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
TAp73 is a key tumor suppressor protein, regulating the transcription of unique and shared p53 target genes with crucial roles in tumorigenesis and therapeutic response. As such, in tumors with impaired p53 signaling, like neuroblastoma, TAp73 activation represents an encouraging strategy, alternative to p53 activation, to suppress tumor growth and chemoresistance. In this work, we report a new TAp73-activating agent, the 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2), with potent antitumor activity. Notably, LEM2 was able to release TAp73 from its interaction with both MDM2 and mutant p53, enhancing TAp73 transcriptional activity, cell cycle arrest, and apoptosis in p53-null and mutant p53-expressing tumor cells. Importantly, LEM2 displayed potent antitumor activity against patient-derived neuroblastoma cells, consistent with an activation of the TAp73 pathway. Additionally, potent synergistic effects were obtained for the combination of LEM2 with doxorubicin and cisplatin in patient-derived neuroblastoma cells. Collectively, besides its relevant contribution to the advance of TAp73 pharmacology, LEM2 may pave the way to improved therapeutic alternatives against neuroblastoma.
Collapse
Affiliation(s)
- Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Liliana Raimundo
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Joana Soares
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Mariana Leão
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Madalena N Monteiro
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Agostinho Lemos
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Joana Moreira
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
48
|
Alharris E, Singh NP, Nagarkatti PS, Nagarkatti M. Role of miRNA in the regulation of cannabidiol-mediated apoptosis in neuroblastoma cells. Oncotarget 2019; 10:45-59. [PMID: 30713602 PMCID: PMC6343753 DOI: 10.18632/oncotarget.26534] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma (NBL) is one of the most common childhood cancers that originate from the immature nerve cells of the sympathetic system. Studies with NBL cancers have also shown that miRNAs are dysregulated and may play a critical role in pathogenesis. Cannabidiol (CBD) is a non-psychoactive compound found in marijuana which has been previously shown by our laboratory and others to induce apoptosis in cancer cells. However, there are no studies reported to test if CBD mediates these effects through regulation of miRNA. In the current study, therefore, we investigated if CBD induces apoptosis in human NBL cell lines, SH SY5Y and IMR-32, and if it is regulated by miRNA. Our data demonstrated that CBD induces apoptosis in NBL cells through activation of serotonin and vanilloid receptors. We also found that caspase-2 and -3 played an important role in the induction of apoptosis. CBD also significantly reduced NBL cell migration and invasion in vitro. Furthermore, CBD blocked mitochondrial respiration and caused a shift in metabolism towards glycolysis. CBD altered the expression of miRNA specifically, down-regulating hsa-let-7a and upregulating hsa-mir-1972. Downregulation of let-7a increased expression of target caspase-3, and growth arrest specific-7 (GAS-7) genes. Upregulation of hsa-mir-1972 caused decreased expression of BCL2L1 and SIRT2 genes. Together, our studies suggest that CBD-mediated apoptosis in NBL cells is regulated by miRNA.
Collapse
Affiliation(s)
- Esraah Alharris
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
49
|
Sakka L, Delétage N, Chalus M, Aissouni Y, Sylvain-Vidal V, Gobron S, Coll G. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget 2018; 8:42789-42807. [PMID: 28467792 PMCID: PMC5522106 DOI: 10.18632/oncotarget.17050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Collapse
Affiliation(s)
- Laurent Sakka
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.,Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| | - Nathalie Delétage
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Maryse Chalus
- Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, NeuroDol, Faculté de Médecine, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | | | - Stéphane Gobron
- Neuronax SAS, Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France
| | - Guillaume Coll
- Service de Neurochirurgie, Pole RMND, CHU de Clermont-Ferrand, Hôpital Gabriel-Montpied, 63003 Clermont-Ferrand Cedex, France
| |
Collapse
|
50
|
Agarwal S, Milazzo G, Rajapakshe K, Bernardi R, Chen Z, Barbieri E, Koster J, Perini G, Coarfa C, Shohet JM. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget 2018; 9:20323-20338. [PMID: 29755654 PMCID: PMC5945521 DOI: 10.18632/oncotarget.24859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimal Rajapakshe
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald Bernardi
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Zaowen Chen
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason M Shohet
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|