1
|
Wang W, Chang X, Lin F, Feng L, Wang M, Huang J, Wu T. Adding salt to foods and risk of incident depression and anxiety. BMC Med 2025; 23:32. [PMID: 39838382 PMCID: PMC11752635 DOI: 10.1186/s12916-025-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Diet is a well-known determinant of mental health outcomes. However, epidemiologic evidence on salt consumption with the risk of developing depression and anxiety is still very limited. This study aimed to examine the association between adding salt to foods and incident depression and anxiety longitudinally. METHODS This study used data from 444,787 adults who had never been diagnosed with depression or anxiety at baseline from the UK Biobank, a national community-based cohort from 2006 to 2010. Adding salt to foods was measured using a four-point Likert scale at baseline from a touch-screen questionnaire. The outcomes were incidents of diagnosed depression (F32-F33) and anxiety (F40-F48), defined by the International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes. Cox proportional hazards models were used to investigate the association between the frequency of adding salt to foods and incident depression and anxiety. RESULTS During a mean follow-up period of 14.5 years, 16,319 incidents of depression and 18,959 incidents of anxiety were documented. A higher frequency of adding salt to foods was associated with elevated risk for depression and anxiety. Compared with the group of never/rarely adding salt to foods, the adjusted HRs of incident depression were 1.07 (95% CI: 1.02-1.12), 1.18 (95% CI: 1.10-1.26), and 1.29 (95% CI: 1.18-1.41) across the groups of sometimes, usually, and always, respectively (P trend < 0.001). Participants who reported always adding salt to foods had a 1.17-fold higher risk for developing anxiety (95% CI: 1.07-1.28) compared with those who never/rarely added salt to foods. CONCLUSIONS A higher frequency of adding salt to foods was independently associated with a higher hazard of depression and anxiety. Interventions such as public awareness campaigns promoting reduced salt consumption may be promising preventative measures to reduce the incidence of depression and anxiety.
Collapse
Affiliation(s)
- Weiwei Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Xiaotian Chang
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, 525 West 120 Street, New York, 10027, USA
| | - Feifei Lin
- Institute of Epidemiology and Health Care, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lei Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
2
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Squillacioti C, Pelagalli A, Liguori G, Mirabella N. Urocortins in the mammalian endocrine system. Acta Vet Scand 2019; 61:46. [PMID: 31585551 PMCID: PMC6778379 DOI: 10.1186/s13028-019-0480-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
Urocortins (Ucns), peptides belonging to the corticotropin-releasing hormone (CRH) family, are classified into Ucn1, Ucn2, and Ucn3. They are involved in regulating several body functions by binding to two G protein-coupled receptors: receptor type 1 (CRHR1) and type 2 (CRHR2). In this review, we provide a historical overview of research on Ucns and their receptors in the mammalian endocrine system. Although the literature on the topic is limited, we focused our attention particularly on the main role of Ucns and their receptors in regulating the hypothalamic-pituitary-adrenal and thyroid axes, reproductive organs, pancreas, gastrointestinal tract, and other tissues characterized by "diffuse" endocrine cells in mammals. The prominent function of these peptides in health conditions led us to also hypothesize an action of Ucn agonists/antagonists in stress and in various diseases with its critical consequences on behavior and physiology. The potential role of the urocortinergic system is an intriguing topic that deserves further in-depth investigations to develop novel strategies for preventing stress-related conditions and treating endocrine diseases.
Collapse
Affiliation(s)
- Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| |
Collapse
|
4
|
Ch'ng SS, Lawrence AJ. The subfornical organ in sodium appetite: Recent insights. Neuropharmacology 2019; 154:107-113. [DOI: 10.1016/j.neuropharm.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022]
|
5
|
Stengel A, Taché Y. Gut-Brain Neuroendocrine Signaling Under Conditions of Stress-Focus on Food Intake-Regulatory Mediators. Front Endocrinol (Lausanne) 2018; 9:498. [PMID: 30210455 PMCID: PMC6122076 DOI: 10.3389/fendo.2018.00498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
The gut-brain axis represents a bidirectional communication route between the gut and the central nervous system comprised of neuronal as well as humoral signaling. This system plays an important role in the regulation of gastrointestinal as well as homeostatic functions such as hunger and satiety. Recent years also witnessed an increased knowledge on the modulation of this axis under conditions of exogenous or endogenous stressors. The present review will discuss the alterations of neuroendocrine gut-brain signaling under conditions of stress and the respective implications for the regulation of food intake.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- VA Greater Los Angeles Health Care System, Los Angeles, CA, United States
| |
Collapse
|
6
|
Stengel A, Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci 2014; 8:52. [PMID: 24672423 PMCID: PMC3957495 DOI: 10.3389/fnins.2014.00052] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Early on, corticotropin-releasing factor (CRF), a hallmark brain peptide mediating many components of the stress response, was shown to affect food intake inducing a robust anorexigenic response when injected into the rodent brain. Subsequently, other members of the CRF signaling family have been identified, namely urocortin (Ucn) 1, Ucn 2, and Ucn 3 which were also shown to decrease food intake upon central or peripheral injection. However, the kinetics of feeding suppression was different with an early decrease following intracerebroventricular injection of CRF and a delayed action of Ucns contrasting with the early onset after systemic injection. CRF and Ucns bind to two distinct G-protein coupled membrane receptors, the CRF1 and CRF2. New pharmacological tools such as highly selective peptide CRF1 or CRF2 agonists or antagonists along with genetic knock-in or knock-out models have allowed delineating the primary role of CRF2 involved in the anorexic response to exogenous administration of CRF and Ucns. Several stressors trigger behavioral changes including suppression of feeding behavior which are mediated by brain CRF receptor activation. The present review will highlight the state-of-knowledge on the effects and mechanisms of action of CRF/Ucns-CRF1/2 signaling under basal conditions and the role in the alterations of food intake in response to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette Taché
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's Health, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
7
|
Filippi BM, Abraham MA, Yue JTY, Lam TKT. Insulin and glucagon signaling in the central nervous system. Rev Endocr Metab Disord 2013; 14:365-75. [PMID: 23959343 DOI: 10.1007/s11154-013-9258-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of the obesity and diabetes epidemic has triggered tremendous research investigating the role of the central nervous system (CNS) in the regulation of food intake, body weight gain and glucose homeostasis. This invited review focuses on the role of two pancreatic hormones--insulin and glucagon--that trigger signaling pathways in the brain to regulate energy and glucose homeostasis. Unlike in the periphery, insulin and glucagon signaling in the CNS does not seem to have opposing metabolic effects, as both hormones exert a suppressive effect on food intake and weight gain. They signal through different pathways and alter different neuronal populations suggesting a complementary action of the two hormones in regulating feeding behavior. Similar to its systemic effect, insulin signaling in the brain lowers glucose production. However, the ability of glucagon signaling in the brain to regulate glucose production remains unknown. Future studies that aim to dissect insulin and glucagon signaling in the CNS that regulate energy and glucose homeostasis could unveil novel signaling molecules to lower body weight and glucose levels in obesity and diabetes.
Collapse
|
8
|
da Silva AV, Torres KR, Haemmerle CA, Céspedes IC, Bittencourt JC. The Edinger–Westphal nucleus II: Hypothalamic afferents in the rat. J Chem Neuroanat 2013; 54:5-19. [DOI: 10.1016/j.jchemneu.2013.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
|
9
|
Leshem M. Low dietary sodium is anxiogenic in rats. Physiol Behav 2011; 103:453-8. [DOI: 10.1016/j.physbeh.2011.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
|
10
|
Sartin JL, Whitlock BK, Daniel JA. Triennial Growth Symposium: neural regulation of feed intake: modification by hormones, fasting, and disease. J Anim Sci 2010; 89:1991-2003. [PMID: 21148776 DOI: 10.2527/jas.2010-3399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Appetite is a complex process that results from the integration of multiple signals at the hypothalamus. The hypothalamus receives neural signals; hormonal signals such as leptin, cholecystokinin, and ghrelin; and nutrient signals such as glucose, FFA, AA, and VFA. This effect is processed by a specific sequence of neurotransmitters beginning with the arcuate nucleus and orexigenic cells containing neuropeptide Y or agouti-related protein and anorexigenic cells containing proopiomelanocortin (yielding the neurotransmitter α-melanocyte-stimulating hormone) or cells expressing cocaine amphetamine-related transcript. These so-called first-order neurons act on second-order orexigenic neurons (containing either melanin-concentrating hormone or orexin) or act on anorexigenic neurons (e.g., expressing corticotropin-releasing hormone) to alter feed intake. In addition, satiety signals from the liver and gastrointestinal tract signal through the vagus nerve to the nucleus tractus solitarius to cause meal termination, and in combination with the hypothalamus, integrate the various signals to determine the feeding response. The activities of these neuronal pathways are also influenced by numerous factors such as nutrients, fasting, and disease to modify appetite and hence affect growth and reproduction. This review will begin with the central nervous system pathways and then discuss the ways in which hormones and metabolites may alter the process to affect feed intake with emphasis on farm animals.
Collapse
Affiliation(s)
- J L Sartin
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
11
|
Kurose Y, Kamisoyama H, Honda K, Azuma Y, Sugahara K, Hasegawa S, Kobayashi S. Effects of central administration of glucagon on feed intake and endocrine responses in sheep. Anim Sci J 2010; 80:686-90. [PMID: 20163659 DOI: 10.1111/j.1740-0929.2009.00685.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was conducted to investigate effects of glucagon intracerebroventricularly administered on feed intake and endocrine changes in sheep. Four male sheep (48-55 kg BW) were used. The animals were acclimatized to be fed alfalfa hay cubes at 12.00 hour. Human glucagon (40 and 80 microg/0.5 mL) was injected into the lateral ventricle at 12.00 hour. Blood samples were taken every 10 min from 30 min before to 180 min after the glucagon injection. Soon after the injection, the animals were given alfalfa hay cubes, and the amounts of the feed eaten within 2 h were measured. Feed intakes were significantly (P < 0.05) suppressed by 80 microg of glucagon. Plasma glucose levels in control animals were gradually decreased after the feeding, whilst those in glucagon-treated animals were temporarily elevated just after the feeding and then kept higher than control levels. Plasma insulin was abruptly elevated after the feeding and was maintained at higher levels than before the feeding in all treatments. Plasma NEFA concentrations were decreased after the feeding in all treatments. A tendency of increase in plasma cortisol levels occurred in glucagon-injected animals. The present study provides the first evidence that glucagon directly acts on the brain, then inhibiting feeding behavior and inducing endocrine responses in ruminants.
Collapse
Affiliation(s)
- Yohei Kurose
- Laboratory of Animal Nutrition, Faculty of Animal Science, Kitasato University, Towada, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Psychological stress is a common feature of modern day societies, and contributes to the global burden of disease. It was proposed by Henry over 20 years ago that the salt intake of a society reflects the level of stress, and that stress, through its effect on increasing salt intake, is an important factor in the development of hypertension. This review evaluates the evidence from animal and human studies to determine if stress does induce a salt appetite and increase salt consumption in human subjects. Findings from animal studies suggest that stress may drive salt intake, with evidence for a potential mechanism via the sympatho-adrenal medullary system and/or the hypothalamo-pituitary-adrenal axis. In contrast, in the few laboratory studies conducted in human subjects, none has found that acute stress affects salt intake. However, one study demonstrated that life stress (chronic stress) was associated with increased consumption of snack foods, which included, but not specifically, highly salty snacks. Studies investigating the influence of chronic stress on eating behaviours are required, including consumption of salty foods. From the available evidence, we can conclude that in free-living, Na-replete individuals, consuming Na in excess of physiological requirements, stress is unlikely to be a major contributor to salt intake.
Collapse
|
13
|
Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM. Four-day urocortin-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 2005; 26:2055-62. [PMID: 15961410 DOI: 10.1093/eurheartj/ehi351] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS To investigate the subacute effects of a sustained intravenous infusion of urocortin-I (Ucn-I) in experimental heart failure (HF). METHODS AND RESULTS In eight sheep with pacing-induced HF, a 4-day infusion of Ucn-I (0.3 microg/kg/h) induced prompt (30 min) and sustained (4-day) increases in cardiac output (CO, Day 4: 1.8+/-0.2 vs. 2.3+/-0.2 L/min, P<0.001) and stroke volume (7.8+/-0.8 vs. 10.2+/-1.0 mL/beat, P=0.0011), and reductions in mean arterial pressure (MAP, 72+/-3 vs. 70+/-3 mmHg, P=0.0305), left atrial pressure (26+/-1 vs. 11+/-2 mmHg, P<0.001), and total calculated peripheral resistance (43+/-6 vs. 32+/-4 mmHg/L/min, P<0.001). Ucn-I also induced persistent falls in plasma renin (1.34+/-0.23 vs. 0.77+/-0.10 nmol/L/min, P=0.048), aldosterone (3273+/-1172 vs. 382+/-44 pmol/L, P=0.0098), endothelin-1 (4.6+/-0.3 vs. 2.7+/-0.3 pmol/L, P<0.001), vasopressin (24+/-4 vs. 14+/-2 pmol/L, P=0.0028) and atrial (184+/-14 vs. 154+/-29 pmol/L, P=0.0226) and brain (43+/-5 vs. 32+/-6 pmol/L, P=0.0016) natriuretic peptides. Plasma adrenocorticotrophic hormone and cortisol rose transiently on Day 0. Ucn-I enhanced urinary sodium excretion (5.3-fold, P=0.0001) and creatinine clearance (1.3-fold, P=0.0055) long-term, and tended to increase urine output (P=0.0748). Food intake was attenuated over the first 2 days of treatment (P=0.0283). CONCLUSION Four-day administration of Ucn-I induces sustained reductions in cardiac preload and MAP, improvements in CO and renal function, and inhibition of a range of vasoconstrictor/volume-retaining factors. These findings support Ucn-I's therapeutic potential in HF.
Collapse
Affiliation(s)
- Miriam T Rademaker
- Christchurch Cardioendocrine Research Group, Department of Medicine, The Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
14
|
Weisinger RS, Blair-West JR, Burns P, Denton DA, Purcell B, Vale W, Rivier J, Weisinger HS, May CN. Cardiovascular effects of long-term central and peripheral administration of urocortin, corticotropin-releasing factor, and adrenocorticotropin in sheep. Endocrinology 2004; 145:5598-604. [PMID: 15319360 DOI: 10.1210/en.2004-0432] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine hormones ACTH and corticotropin- releasing factor (CRF), which are involved in the stress response, have acute effects on arterial pressure. New evidence indicates that urocortin (UCN), the putative agonist for the CRF type 2 receptor, has selective cardiovascular actions. The responses to long-term infusions of these hormones, both peripherally and centrally, in conscious animals have not been studied. Knowledge of the long-term effects is important because they may differ considerably from their acute actions, and stress is frequently a chronic stimulus. The present experiments investigated the cardiovascular effects of CRF, UCN, and ACTH in conscious sheep. Infusions were made either into the lateral cerebral ventricles (i.c.v.) or i.v. over 4 d at 5 microg/h. UCN infused i.c.v. or i.v. caused a prolonged increase in heart rate (HR) (P < 0.01) and a small increase in mean arterial pressure (MAP) (P < 0.05). CRF infused i.c.v. or i.v. progressively increased MAP (P < 0.05) but had no effect on HR. Central administration of ACTH had no effect, whereas systemic infusion increased MAP and HR (P < 0.001). In conclusion, long-term administration of these three peptides associated with the stress response had prolonged, selective cardiovascular actions. The striking finding was the large and sustained increase in HR with i.c.v. and i.v. infusions of UCN. These responses are probably mediated by CRF type 2 receptors because they were not reproduced by infusions of CRF.
Collapse
Affiliation(s)
- R S Weisinger
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zorrilla EP, Reinhardt LE, Valdez GR, Inoue K, Rivier JE, Vale WW, Koob GF. Human urocortin 2, a corticotropin-releasing factor (CRF)2 agonist, and ovine CRF, a CRF1 agonist, differentially alter feeding and motor activity. J Pharmacol Exp Ther 2004; 310:1027-34. [PMID: 15115804 DOI: 10.1124/jpet.104.068676] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two corticotropin-releasing factor (CRF) receptor families have been identified (CRF1 and CRF2). Whereas anxiogenic-like roles for the CRF1 receptor have been identified, behavioral functions of the CRF2 receptor remain obscure. Urocortin 2 (Ucn 2), a CRF-related peptide that selectively binds CRF2 receptors, was recently identified and recognized for its central anorectic properties. The present study tested the hypothesis that the anorexigenic mode of action of Ucn 2 differed from that of ovine CRF (oCRF), a preferential CRF1 receptor agonist. The behavioral effects of intracerebroventricular administration of Ucn 2 were compared with those of oCRF in nondeprived male Wistar rats (n=102). Ucn 2 reduced 6-h food and water intake at doses that did not induce visceral illness (0.1, 1, and 10 microg), as indicated by kaolin intake. Ucn 2 retained its potent anorectic activity in rats receiving a highly palatable cafeteria diet, preferentially reducing intake of carbohydrate (CHO)-rich items while sparing intake of mixed-fat/CHO items. In contrast to Ucn 2, oCRF (10 microg) suppressed 6-h intake of cafeteria diet-fed rats without regard to macronutrient composition. Rather, oCRF most potently suppressed intake of preferred food items. Whereas oCRF had short-onset motor-activating effects, Ucn 2 had nondose-dependent, delayed-onset motor-suppressing effects. Thus, central infusion of a CRF2 receptor agonist suppressed intake of both bland and palatable diets without inducing behavioral arousal or malaise, and the profile of anorexigenic effects qualitatively differed from those of a CRF1 receptor agonist. The results suggest the existence of distinct forms of CRF1- and CRF2-mediated anorexia.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jankevicius M, Widowski T. The effect of ACTH on pigs’ attraction to salt or blood-flavored tail-models. Appl Anim Behav Sci 2004. [DOI: 10.1016/j.applanim.2003.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Zorrilla EP, Taché Y, Koob GF. Nibbling at CRF receptor control of feeding and gastrocolonic motility. Trends Pharmacol Sci 2003; 24:421-7. [PMID: 12915052 DOI: 10.1016/s0165-6147(03)00177-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inadequate pharmacological tools, until recently, hindered the understanding of the roles of corticotropin-releasing factor (CRF) receptor subtypes in appetite regulation and gastrocolonic motor function. Now, novel ligands that are selective for CRF(1) or CRF(2) receptors are helping to uncover the specific functions of CRF receptor subtypes. Central or peripheral CRF(2) receptor activation suppresses feeding independently of CRF(1) receptors. In the rat, central administration of CRF(2) receptor agonists promotes satiation without eliciting the malaise, behavioral arousal or anxiogenesis associated with CRF(1) receptor agonists. Conversely, central administration of CRF(1) receptor agonists elicits short-onset anorexia independently of CRF(2) receptor activation. With respect to gastrointestinal motor function, stress inhibits gastric motility through CRF(2) receptor-dependent central autonomic and peripheral myenteric systems. By contrast, stress stimulates colonic motility via CRF(1) receptor-dependent sacral parasympathetic and colonic myenteric mechanisms. These findings have important physiological implications and suggest targeted approaches for the pharmacotherapy of obesity and stress-related functional gastrointestinal and eating disorders.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
18
|
Sinnayah P, Blair-West JR, McBurnie MI, McKinley MJ, Oldfield BJ, Rivier J, Vale WW, Walker LL, Weisinger RS, Denton DA. The effect of urocortin on ingestive behaviours and brain Fos immunoreactivity in mice. Eur J Neurosci 2003; 18:373-82. [PMID: 12887419 DOI: 10.1046/j.1460-9568.2003.02760.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of urocortin (UCN) on ingestive behaviours and brain neural activity, as measured immunohistochemically by the presence of Fos protein, was determined in mice. Rat UCN was administered by continuous intracerebroventricular (ICV) or subcutaneous (SC) infusion. ICV infusion of UCN (100 ng/h, 14 days) transiently reduced daily food and water intakes (days 1-4) but body weight was reduced from day 2 into the post-infusion period. Sodium intake was reduced from day 3 to the end of infusion. SC infusion of UCN caused similar but smaller reductions in food and water intakes and body weight, without change in sodium intake. In separate experiments, Fos immunoreactivity was increased in several brain nuclei known to be involved in the control of body fluid and energy homeostasis, e.g. central nucleus of the amygdala, median preoptic nucleus, bed nucleus of the stria terminalis and arcuate nucleus. Increased Fos expression was similar for ICV and SC infusions when measured on days 2-3 or 6-7 of infusion. In conclusion, increases of brain activity by UCN may be associated with stimulation of adrenocorticotrophic hormone release and sympathetic nervous activity, but increases may also indicate suppression of ingestive behaviours by stimulating central inhibitory mechanisms located in areas known to control body fluid and energy homeostasis.
Collapse
Affiliation(s)
- P Sinnayah
- The Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Inoue K, Valdez GR, Reyes TM, Reinhardt LE, Tabarin A, Rivier J, Vale WW, Sawchenko PE, Koob GF, Zorrilla EP. Human urocortin II, a selective agonist for the type 2 corticotropin-releasing factor receptor, decreases feeding and drinking in the rat. J Pharmacol Exp Ther 2003; 305:385-93. [PMID: 12649393 DOI: 10.1124/jpet.102.047712] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticotropin-releasing factor (CRF) has been hypothesized to modulate consummatory behavior through the Type 2 CRF (CRF(2)) receptor. However, behavioral functions subserved by the CRF(2) receptor remain poorly understood. Recently, human urocortin II (hUcn II), a selective CRF(2) receptor agonist, was identified. To study the effects of this neuropeptide on ingestive behavior, we examined the effects of centrally infused hUcn II (i.c.v. 0, 0.01, 0.1, 1.0, 10.0 micro g) on the microstructure of nose-poke responding for food and water in nondeprived, male rats. Malaise-inducing properties of the peptide were monitored using conditioned taste aversion (CTA) testing. To identify potential sites of action, central induction of Fos protein expression was examined. hUcn II dose dependently reduced the quantity and duration of responding for food and water at doses lower (0.01-1.0 micro g) than that forming a CTA (10 micro g). Effects were most evident during hours 4 to 6 of the dark cycle. Meal pattern analysis showed that hUcn II potently (0.1 micro g) increased the satiating value of food. Rats ate and drank smaller and shorter meals without changing meal frequency. Rats also ate more slowly. hUcn II induced Fos in regions involved in visceral sensory processing and autonomic/neuroendocrine regulation and resembling those activated by appetite suppressants. hUcn II is a promising neuropeptide for investigating the role of the CRF(2) receptor in ingestive behavior.
Collapse
Affiliation(s)
- Koki Inoue
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jankevicius ML, Widowski TM. Exogenous adrenocorticotrophic hormone does not elicit a salt appetite in growing pigs. Physiol Behav 2003; 78:277-84. [PMID: 12576126 DOI: 10.1016/s0031-9384(02)00970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In rodents, rabbits, and sheep, exogenous adrenocorticotrophic hormone (ACTH) leads to a marked increase in sodium appetite. It has been suggested that if pigs show a similar response to stress, an appetite for salt could increase their attraction to blood and contribute to the development of tail biting. The aim of this study was to examine the effects of ACTH on salt appetite in growing pigs. Individually housed Yorkshire pigs (45 kg) were divided into three groups of four. Group 1 had free access to water, 0.5 M NaCl, and 0.5 M KCl solutions; Group 2 to water, 0.5, and 0.25 M NaCl solutions; Group 3 to water, 0.25, and 0.125 M NaCl solutions. Intramuscular injection of long-acting synthetic ACTH (50 IU twice daily for 5 days) did not elicit increases in intakes of any of the available salt solutions compared to pretreatment intakes. However, there was a 1.6-fold increase in both water and feed intake during ACTH treatment. ACTH treatment also stimulated significant increases in salivary cortisol concentrations. Although increases in salivary cortisol concentrations and in water and feed intake indicate that there were physiological responses to the treatment, exogenous ACTH given for 5 days did not elicit a sodium appetite in growing pigs. These findings do not support the notion that a stress-induced salt appetite serves as an underlying mechanism for tail biting.
Collapse
Affiliation(s)
- M L Jankevicius
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
21
|
Shade RE, Blair-West JR, Carey KD, Madden LJ, Weisinger RS, Rivier JE, Vale WW, Denton DA. Ingestive responses to administration of stress hormones in baboons. Am J Physiol Regul Integr Comp Physiol 2002; 282:R10-8. [PMID: 11742818 DOI: 10.1152/ajpregu.2002.282.1.r10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental stress and the administration of the stress hormone ACTH have been reported to stimulate sodium appetite in many nonprimate species. Experiments were conducted to determine whether prolonged intracerebroventricular infusions of the neuropeptides corticotropin-releasing factor (CRF) and urocortin (Ucn), or systemic administration of ACTH, affected ingestive behaviors in a nonhuman primate, the baboon. Intracerebroventricular infusions of CRF or Ucn significantly decreased daily food intake. The decrease with Ucn continued into the postinfusion period. These infusions did not alter daily water intake. Daily voluntary intake of 300 mM NaCl solution was not increased, and there was evidence of reductions on days 2-4 of the infusions. Intramuscular injections of porcine ACTH or synthetic ACTH (Synacthen) for 5 days did not affect daily NaCl intake, although the doses were sufficient to increase cortisol secretion and arterial blood pressure. Sodium depletion by 3 days of furosemide injections did induce a characteristic sodium appetite in the same baboons. These results demonstrate the anorexigenic action of CRF and Ucn in this primate. Also, CRF, Ucn, and ACTH did not stimulate sodium appetite at the doses used.
Collapse
Affiliation(s)
- R E Shade
- Department of Physiology and Medicine, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Urocortin is a potent regulator of cardiac function, with actions that are prolonged in experimental animals. These changes are mediated via binding to CRH receptors found in peripheral tissues. The diversity of actions of urocortin on behaviour, appetite, inflammation and the cardiovascular system suggest that this peptide may be an endogenous factor mediating actions previously attributed to CRH. The present review will focus on the recent understanding of mechanisms mediating the cardiovascular actions of urocortin and CRH reported to date.
Collapse
Affiliation(s)
- D G Parkes
- Amylin Pharmaceuticals Inc., 9373 Towne Centre Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
23
|
Conlon JM. Singular contributions of fish neuroendocrinology to mammalian regulatory peptide research. REGULATORY PEPTIDES 2000; 93:3-12. [PMID: 11033047 DOI: 10.1016/s0167-0115(00)00172-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During the past 20 years, several bioactive peptides have been identified in teleost fishes that subsequently have been shown to play important regulatory roles in mammalian physiology. The urophysis, corpuscles of Stannius and Brockmann body are anatomical structures particular to fish that have no obvious counterpart in mammals. Extracts and/or cDNA libraries prepared from these tissues have been used to identify for the first time urotensin II (U-II), urotensin-I (U-I), stanniocalcin and glucagon-like peptide-1 (GLP-1). Although U-II and U-I were originally regarded as exclusively the products of the teleost urophysis, the peptides have a wide phylogenetic distribution across the vertebrate lineage, including mammals. U-II is localized to motor neurones in the human spinal cord and is a potent vasoconstrictor that may be implicated in the pathogenesis of heart failure. The human ortholog of urotensin-I is urocortin which is synthesized in selected regions of the brain and is the endogenous ligand for the CRF type 2 receptor. Urocortin is believed to important in mediating the effects of stress on appetite. Stanniocalcin is involved in maintaining calcium and phosphate homeostasis in teleost fish. An ortholog of stanniocalcin has a widespread distribution in mammalian tissues and is postulated to regulate renal phosphate excretion and to protect neurons against damage during cerebral ischemia. The biological actions and therapeutic potential of GLP-1 in humans are now fully appreciated but the peptide was first identified as a domain in a preproglucagon cDNA prepared from anglerfish Brockmann bodies. In contrast to mammalian preproglucagons, GLP-1 is present in anglerfish preproglucagon as the bioactive, truncated sequence [corresponding to human GLP-1(7-37)] rather than the inactive, N-terminally extended form [corresponding to GLP-1(1-37)]. Failure to appreciate the significance of this fact retarded progress in the field for several years.
Collapse
Affiliation(s)
- J M Conlon
- Regulatory Peptide Center, Department of Biomedical Sciences, Creighton University Medical School, 68178-0405, Omaha NE, USA.
| |
Collapse
|