1
|
Tomalla V, Schmeisser MJ, Weinmann-Menke J. Mouse models, antibodies, and neuroimaging: Current knowledge and future perspectives in neuropsychiatric systemic lupus erythematosus (NPSLE). Front Psychiatry 2023; 14:1078607. [PMID: 36970286 PMCID: PMC10031066 DOI: 10.3389/fpsyt.2023.1078607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
As a chronic autoimmune disease systemic lupus erythematosus (SLE) can also affect the central and the peripheral nervous system causing symptoms which are summed up as neuropsychiatric systemic lupus erythematosus (NPSLE). These symptoms are heterogenous including cognitive impairment, seizures, and fatigue, leading to morbidity or even mortality. At present, little is known about the pathophysiological processes involved in NPSLE. This review focuses on the current knowledge of the pathogenesis of NPSLE gained from the investigation of animal models, autoantibodies, and neuroimaging techniques. The antibodies investigated the most are anti-ribosomal P protein antibodies (Anti-rib P) and anti-N-Methyl-D-Aspartic Acid Receptor 2 antibodies (Anti-NR2), which represent a subpopulation of anti-dsDNA autoantibodies. Experimental data demonstrates that Anti-rib P and Anti-NR2 cause different neurological pathologies when applied intravenously (i.v.), intrathecally or intracerebrally in mice. Moreover, the investigation of lupus-prone mice, such as the MRL/MpJ-Faslpr/lpr strain (MRL/lpr) and the New Zealand black/New Zealand white mice (NZB × NZW F1) showed that circulating systemic antibodies cause different neuropsychiatric symptoms compared to intrathecally produced antibodies. Furthermore, neuroimaging techniques including magnetic resonance imaging (MRI) and positron emission tomography (PET) are commonly used tools to investigate structural and functional abnormalities in NPSLE patients. Current research suggests that the pathogenesis of NPSLE is heterogenous, complex and not yet fully understood. However, it demonstrates that further investigation is needed to develop individual therapy in NPSLE.
Collapse
Affiliation(s)
- Vanessa Tomalla
- Department of Internal Medicine, Division of Nephrology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine, Division of Nephrology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Julia Weinmann-Menke,
| |
Collapse
|
2
|
Hirose S, Lin Q, Ohtsuji M, Nishimura H, Verbeek JS. Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int Immunol 2019; 31:687-696. [PMID: 31063541 PMCID: PMC6794944 DOI: 10.1093/intimm/dxz036] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractMonocytes are evolutionally conserved innate immune cells that play essential roles for the protection of the host against pathogens and also produce several inflammatory cytokines. Thus, the aberrant functioning of monocytes may affect not only host defense but also the development of inflammatory diseases. Monocytes are a heterogeneous population with phenotypical and functional differences. Most recent studies have shown that monocytes are divided into three subsets, namely classical, intermediate and non-classical subsets, both in humans and mice. Accumulating evidence showed that monocyte activation is associated with the disease progression in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, it remains to be determined how monocytes contribute to the disease process and which subset is involved. In this review, we discuss the pathogenic role of monocyte subsets in SLE and RA on the basis of current studies by ourselves and others to shed light on the suitability of monocyte-targeted therapies in these diseases.
Collapse
Affiliation(s)
- Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Qingshun Lin
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Mareki Ohtsuji
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| | - J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Japan
| |
Collapse
|
3
|
Tian S, Liu X, Fan Q, Ma J, Yao L, Li Y. Microarray expression and functional analysis of circular RNAs in the glomeruli of NZB/W F1 mice with lupus nephritis. Exp Ther Med 2019; 18:2813-2824. [PMID: 31555374 PMCID: PMC6755417 DOI: 10.3892/etm.2019.7901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
The present study applied a circular RNA (circRNA) microarray to examine the circRNA expression profiles in the glomeruli of NZB/W F1 mice with lupus nephritis (LN) during the pathogenesis of the disease. Glomeruli from two groups of female NZB/W F1 mice of the same age with either severe or mild LN were isolated by perfusion with dynabeads. A microarray analysis was then performed to evaluate the differentially expressed circRNAs of the glomeruli in the two groups, which were then confirmed by reverse transcription-quantitative PCR (RT-qPCR) assays. In addition, using a biomathematical strategy, the differentially-expressed circRNAs were identified in severe LN when compared with mild LN, and the commonly expressed circRNA species among these profiles were optimized via competing endogenous RNA (ceRNA) analysis. The predicted microRNAs (miRNAs/miRs) as downstream targets of circRNAs and upstream regulators of mRNAs were verified by RT-qPCR and the final circRNA-miRNA-mRNA network was constructed to identify the circRNA that was a pathogenic link in LN. The present study obtained 116 differentially expressed circRNAs, including 41 up- and 75 downregulated circRNAs, in severe LN when compared with mild LN, and 12 circRNAs were confirmed by RT-qPCR. The most significant difference was in the expression of mmu_circRNA_34428 (P<0.001) when comparing severe and mild LN glomeruli. A network of mmu_circRNA_34428-targeted miRNA-gene interactions was subsequently constructed, including miR-338-3p, miR-670-3p, miR-3066-5p, miR-210-5p and their corresponding mRNA targets. To the best of our knowledge, the present study elucidated, for the first time, circRNA profiling and the circRNA-miRNA interactions in the development of LN in female NZB/W F1 mice. The results revealed that mmu_circRNA_34428 could serve an important role in LN progression; however, the present study did not elucidate the functions of this circRNA or others in LN progression.
Collapse
Affiliation(s)
- Shuyan Tian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xue Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qiuling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianfei Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanqiu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Xue L, Shuyan T, Xiaoli L, Zilong L, Qiuling F, Lining W, Yanqiu L, Li Y. Glomerular Proteomic Profiles in the NZB/W F1 Hybrid Mouse Model of Lupus Nephritis. Med Sci Monit 2019; 25:2122-2131. [PMID: 30900683 PMCID: PMC6698093 DOI: 10.12659/msm.914365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Lupus nephritis is one of the most serious complications of systemic lupus erythematosus (SLE) and is associated with patient mortality. This study aimed to investigate the proteomic profiles of the glomerulus in the NZB/W F1 hybrid mouse model of mild and severe lupus nephritis using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Material/Methods Female NZB/WF1 mice (n=60) at 28 weeks of age were divided into the mild proteinuria group (+1), the moderate proteinuria group (+2), and the severe proteinuria group (+3) using paper strip urine testing, and then later divided into a mild (≤1+) and severe (≥3+) proteinuria group to allow comparison of upregulation and down-regulation of proteins between the two groups. Renal glomeruli were isolated following renal perfusion with magnetic beads. Protein expression was determined by Western blot, immunohistochemistry, 2D-DIGE, and MALDI-TOF-MS. Results A total of 56 differentially expressed proteins were identified from 133 protein spots, of which 18 were upregulated and 23 were down-regulated between groups 1 and 2. Expression of the proteins Ras-related GTP-binding protein B (RRAGB), serine/threonine-protein kinase 1 (SMG1), angiopoietin 2 (ANGP2), methylmalonate semialdehyde (MMSA), and ATP beta chain (ATPB) were identified by Western blot and SMG1, ANGP2, and MMSA were identified by immunohistochemistry. Conclusions In a mouse model of lupus nephritis, expression of SMG1, MMSA, and ATPB were down-regulated, and RRAGB and ANGP2 were upregulated.
Collapse
Affiliation(s)
- Liu Xue
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tian Shuyan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Xiaoli
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Zilong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fan Qiuling
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wang Lining
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Yanqiu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yao Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
5
|
Lin Q, Ohtsuji M, Amano H, Tsurui H, Tada N, Sato R, Fukuyama H, Nishimura H, Verbeek JS, Hirose S. FcγRIIb on B Cells and Myeloid Cells Modulates B Cell Activation and Autoantibody Responses via Different but Synergistic Pathways in Lupus-Prone Yaa Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:3199-3210. [PMID: 30373853 DOI: 10.4049/jimmunol.1701487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 09/22/2018] [Indexed: 11/19/2022]
Abstract
C57BL/6 (B6).FcγRIIb-/- Yaa mice spontaneously develop lethal lupus nephritis. To define the cell type-specific role of FcγRIIb in Yaa-associated lupus, we established B cell- (CD19Cre Yaa), myeloid cell- (C/EBPαCre Yaa), and dendritic cell- (DC) (CD11cCre Yaa) specific FcγRIIb-deficient B6.Yaa mouse strains. CD19Cre Yaa mice developed milder lupus than B6.FcγRIIb-/- Yaa mice, indicating that FcγRIIb deficiency on B cells is not sufficient for the development of severe disease. Surprisingly, C/EBPαCre Yaa mice also showed autoantibody production and mild lupus similar to that in CD19Cre Yaa mice, whereas CD11cCre Yaa mice stayed disease free. These observations indicate that FcγRIIb deficiency in B cells and myeloid cells, but not DCs, contributes to the severe disease in B6.FcγRIIb-/- Yaa mice. Flow cytometric analysis showed that the frequency of peripheral Gr-1- but not Gr-1+ monocyte was increased in B6.FcγRIIb-/- Yaa and C/EBPαCre Yaa but not CD19Cre Yaa mice, suggesting a link between FcγRIIb deficiency on myeloid cells and the high frequency of Gr-1- monocytes. RNA sequencing revealed that compared with Gr-1+ monocytes, Gr-1- monocytes expressed higher levels of the B cell-stimulating cytokines BSF-3, IL-10, and IL-1β, the DC markers CD11c, CD83, and Adamdec1, and the antiapoptotic factors Bcl2 and Bcl6. In conclusion, in Yaa-associated lupus nephritis, FcγRIIb on B cells and myeloid cells modulates B cell activation via different but synergistic pathways. Gr-1- monocytes are the most likely candidate myeloid cells involved.
Collapse
Affiliation(s)
- Qingshun Lin
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Mareki Ohtsuji
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hiromichi Tsurui
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ryota Sato
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; and
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; and
| | - Hiroyuki Nishimura
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Sachiko Hirose
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| |
Collapse
|
6
|
Fransen MF, Benonisson H, van Maren WW, Sow HS, Breukel C, Linssen MM, Claassens JWC, Brouwers C, van der Kaa J, Camps M, Kleinovink JW, Vonk KK, van Heiningen S, Klar N, van Beek L, van Harmelen V, Daxinger L, Nandakumar KS, Holmdahl R, Coward C, Lin Q, Hirose S, Salvatori D, van Hall T, van Kooten C, Mastroeni P, Ossendorp F, Verbeek JS. A Restricted Role for FcγR in the Regulation of Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29523656 DOI: 10.4049/jimmunol.1700429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity.
Collapse
Affiliation(s)
- Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hreinn Benonisson
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wendy W van Maren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Heng Sheng Sow
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Margot M Linssen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jill W C Claassens
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jos van der Kaa
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marcel Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kelly K Vonk
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sandra van Heiningen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ngaisah Klar
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lianne van Beek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kutty S Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Chris Coward
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Qingshun Lin
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Sachiko Hirose
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Daniela Salvatori
- Department of Anatomy, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Piero Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands;
| |
Collapse
|
7
|
Kawano S, Lin Q, Amano H, Kaneko T, Nishikawa K, Tsurui H, Tada N, Nishimura H, Takai T, Shirai T, Takasaki Y, Hirose S. Phenotype conversion from rheumatoid arthritis to systemic lupus erythematosus by introduction ofYaamutation into FcγRIIB-deficient C57BL/6 mice. Eur J Immunol 2013; 43:770-8. [DOI: 10.1002/eji.201243057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Shinya Kawano
- Department of Internal Medicine; Juntendo University School of Medicine; Tokyo; Japan
| | - Qingshun Lin
- Department of Pathology; Juntendo University School of Medicine; Tokyo; Japan
| | - Hirofumi Amano
- Department of Internal Medicine; Juntendo University School of Medicine; Tokyo; Japan
| | - Toshiyuki Kaneko
- Department of Internal Medicine; Juntendo University School of Medicine; Tokyo; Japan
| | - Keiko Nishikawa
- Department of Pathology; Juntendo University School of Medicine; Tokyo; Japan
| | - Hiromichi Tsurui
- Department of Pathology; Juntendo University School of Medicine; Tokyo; Japan
| | - Norihiro Tada
- Atopy Research Center; Juntendo University School of Medicine; Tokyo; Japan
| | - Hiroyuki Nishimura
- Toin Human Science and Technology Center; Department of Biomedical Engineering; Toin University of Yokohama; Yokohama; Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology and CREST of JST; Institute of Development; Aging and Cancer; Tohoku University; Sendai; Japan
| | - Toshikazu Shirai
- Department of Pathology; Juntendo University School of Medicine; Tokyo; Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine; Juntendo University School of Medicine; Tokyo; Japan
| | - Sachiko Hirose
- Department of Pathology; Juntendo University School of Medicine; Tokyo; Japan
| |
Collapse
|
8
|
Sato-Hayashizaki A, Ohtsuji M, Lin Q, Hou R, Ohtsuji N, Nishikawa K, Tsurui H, Sudo K, Ono M, Izui S, Shirai T, Takai T, Nishimura H, Hirose S. Presumptive role of 129 strain-derived Sle16 locus in rheumatoid arthritis in a new mouse model with Fcγ receptor type IIb-deficient C57BL/6 genetic background. ACTA ACUST UNITED AC 2013; 63:2930-8. [PMID: 21953083 DOI: 10.1002/art.30485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fcγ receptor type IIb (FcγRIIb) is a major negative regulator of B cells, and the lack of FcγRIIb expression has been reported to induce systemic lupus erythematosus (SLE) in mice of the C57BL/6 (B6) genetic background. The 129 strain-derived Sle16 locus on the telomeric region of chromosome 1 including polymorphic Fcgr2b confers the predisposition to systemic autoimmunity when present on the B6 background. We undertook this study to examine the effect of the Sle16 locus on autoimmune disease in FcγRIIb-deficient B6 mice. METHODS We established 2 lines of FcγRIIb-deficient B6 congenic mouse strains (KO1 and KO2) by selective backcrossing of the originally constructed FcγRIIb-deficient mice on a hybrid (129×B6) background into a B6 background. Although both lack FcγRIIb expression, the KO1 and KO2 strains carry different lengths of the 129 strain-derived telomeric chromosome 1 segment flanked to the null-mutated Fcgr2b gene; the KO1 strain carries a 129 strain-derived ∼6.3-Mb interval distal from the null-mutated Fcgr2b gene within the Sle16 locus, while this interval in the KO2 strain is of B6 origin. RESULTS Unexpectedly, both strains failed to develop SLE; instead, the KO1 strain, but not the KO2 strain, spontaneously developed severe rheumatoid arthritis (RA) with an incidence reaching >90% at age 12 months. CONCLUSION The current study shows evidence that the epistatic interaction between the Fcgr2b-null mutation and a polymorphic gene(s) in the 129 strain-derived interval located in the distal Sle16 locus contributes to RA susceptibility in a new mouse model with the B6 genetic background, although the participation of other genetic polymorphisms cannot be totally excluded.
Collapse
|
9
|
Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc Natl Acad Sci U S A 2012; 109:16276-81. [PMID: 22988104 DOI: 10.1073/pnas.1209372109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor 7 (Tlr7) has been linked to systemic lupus disease incidence in humans and mice, but how TLR7 potentiates autoimmunity is unclear. We used a Tlr7 transgenic (tg) mouse model to investigate the cellular and molecular events required to induce spontaneous autoimmunity through increased TLR7 activity. We determined that Tlr7 exerts B-cell-intrinsic effects in promoting spontaneous germinal center (GC) and plasmablast B-cell development, and that these B-cell subsets are dependent on T-cell-derived signals through CD40L and SLAM-associated protein (SAP), but not IL-17. Antigen specificity also factored into TLR7-induced disease, as both a restricted T cell receptor (TCR) specificity and MHC haplotype H2(k/k) protected Tlr7tg mice from spontaneous lymphocyte activation and autoantibody production. Inflammatory myeloid cell expansion and autoimmunity did not develop in Tlr7tgIgH(-/-) mice, suggesting either that spontaneous TLR7 activation does not occur in dendritic cells, or, if it does occur, cannot drive these events in the absence of B-cell aid. These data indicate that autoimmune disease in Tlr7tg mice is contingent upon B cells receiving stimulation both through innate pathways and T-cell-derived signals and suggest a codependent relationship between B cells and T cells in the development of autoimmunity.
Collapse
|
10
|
Role of MHC-linked susceptibility genes in the pathogenesis of human and murine lupus. Clin Dev Immunol 2012; 2012:584374. [PMID: 22761632 PMCID: PMC3385965 DOI: 10.1155/2012/584374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS) in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.
Collapse
|
11
|
Sang A, Yin Y, Zheng YY, Morel L. Animal Models of Molecular Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:321-70. [DOI: 10.1016/b978-0-12-394596-9.00010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
|
13
|
Okamoto A, Fujio K, van Rooijen N, Tsuno NH, Takahashi K, Tsurui H, Hirose S, Elkon KB, Yamamoto K. Splenic phagocytes promote responses to nucleosomes in (NZB x NZW) F1 mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:5264-71. [PMID: 18832681 DOI: 10.4049/jimmunol.181.8.5264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autoantigen presentation to T cells is crucial for the development of autoimmune disease. However, the mechanisms of autoantigen presentation are poorly understood. In this study, we show that splenic phagocytes play an important role in autoantigen presentation in murine lupus. Nucleosomes are major autoantigens in systemic lupus erythematosus. We found that nucleosome-specific T cells were stimulated dominantly in the spleen, compared with lymph nodes, lung, and thymus. Among splenic APCs, F4/80(+) macrophages and CD11b(+)CD11c(+) dendritic cells were strong stimulators for nucleosome-specific T cells. When splenic phagocytes were depleted in (NZB x NZW) F(1) (NZB/W F(1)) mice, nucleosome presentation in the spleen was dramatically suppressed. Moreover, depletion of splenic phagocytes significantly suppressed anti-nucleosome Ab and anti-dsDNA Ab production. Proteinuria progression was delayed and survival was prolonged in phagocyte-depleted mice. The numbers of autoantibody- secreting cells were decreased in the spleen from phagocyte-depleted mice. Multiple injections of splenic F4/80(+) macrophages, not those of splenic CD11c(+) dendritic cells, induced autoantibody production and proteinuria progression in NZB/W F(1) mice. These results indicate that autoantigen presentation by splenic phagocytes including macrophages significantly contributes to autoantibody production and disease progression in lupus-prone mice.
Collapse
Affiliation(s)
- Akiko Okamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Martínez-Soria E, Santiago-Raber ML, Ho L, Moll T, Izui S. Protection of Murine Systemic Lupus by the Ea Transgene without Expression of I-E Heterodimers. THE JOURNAL OF IMMUNOLOGY 2008; 181:3651-7. [DOI: 10.4049/jimmunol.181.5.3651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Liu K, Li QZ, Yu Y, Liang C, Subramanian S, Zeng Z, Wang HW, Xie C, Zhou XJ, Mohan C, Wakeland EK. Sle3 and Sle5 can independently couple with Sle1 to mediate severe lupus nephritis. Genes Immun 2007; 8:634-45. [PMID: 17728789 DOI: 10.1038/sj.gene.6364426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Genetic analyses of the lupus-prone NZM2410 mouse have identified multiple susceptibility loci on chromosome 7, termed Sle3 and Sle5. Both of these loci were contained within a large congenic interval, originally termed as Sle3 that strongly impacts a variety of myeloid and T-cell phenotypes and mediates fatal lupus nephritis when combined with Sle1. We have now produced two subcongenic strains, B6.Sle3 and B6.Sle5, carrying the Sle3 and Sle5 intervals separately and characterized their phenotypes as monocongenic strains and individually in combination with Sle1. Neither B6.Sle3 nor B6.Sle5 monocongenic strain develop severe autoimmunity; however, both of these intervals cause the development of severe glomerulonephritis when combined with Sle1. Thus, B6.Sle1Sle3 and B6.Sle1Sle5 exhibit splenomegaly, expansion of activated B and CD4+ T-cell populations and high levels of IgG and IgM autoantibodies targeting multiple nuclear antigens, intact glomeruli and various other autoantigens. In addition, B6.Sle1Sle3 mice also produced higher levels of IgA antinuclear autoantibodies, which were implicated in the development of IgA nephropathy. Our results indicate that Sle3 and Sle5 can independently complement with Sle1, through shared and unique mechanisms, to mediate the development of severe autoimmunity.
Collapse
Affiliation(s)
- K Liu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fujii T, Iida Y, Yomogida M, Ikeda K, Haga T, Jikumaru Y, Ninami M, Nishimura N, Kodera Y, Inada Y, Shirai T, Hirose S, Nishimura H. Genetic control of the spontaneous activation of CD4+ Th cells in systemic lupus erythematosus-prone (NZB x NZW) F1 mice. Genes Immun 2006; 7:647-54. [PMID: 17024131 DOI: 10.1038/sj.gene.6364342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F(1) hybrid of autoimmune hemolytic anemia-prone NZB and nonautoimmune NZW strains of mice has been studied as a murine model of systemic lupus erythematosus. Both NZB and F(1) hybrid mice show age-dependent spontaneous activation of peripheral CD4(+) T cells as reflected by the elevated frequencies of CD4(+) T cells positive for CD69 early activation marker. Both strains also show age-dependent abnormal decrease of the frequencies of CD62L(+) naive CD4(+) T cells and/or NTA260(+) memory CD4(+) T cells in the spleen. We studied the multigenic control of these abnormal features of peripheral CD4(+) T cells in (NZB x NZW) F(1) x NZW backcross mice by quantitative trait loci mapping and by association rule analysis. The abnormally elevated frequencies of CD69(+)CD4(+) T cells and decreased frequencies of CD62L(+) naive and/or NTA260(+) memory CD4(+) T cells were under the common genetic control, in which the interaction between MHC and a hitherto unknown locus, designated Sta-1 (spontaneous T-cell activation) on chromosome 12, plays a major role. The allelic effects of these loci likely predispose CD4(+) T cells to the loss of self-tolerance, and are responsible for the accelerated autoimmune phenotypes of (NZB x NZW) F(1) hybrid mice.
Collapse
MESH Headings
- Age Factors
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Autoimmunity/genetics
- Chromosome Mapping
- Crosses, Genetic
- Flow Cytometry
- L-Selectin/metabolism
- Lectins, C-Type
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred NZB
- Microsatellite Repeats/genetics
- Quantitative Trait Loci/genetics
- Spleen/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- T Fujii
- Department of Biomedical Engineering, Toin Human Science and Technology Center, Toin University of Yokohama, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hirose S, Jiang Y, Nishimura H, Shirai T. Significance of MHC class II haplotypes and IgG Fc receptors in SLE. ACTA ACUST UNITED AC 2006; 28:163-74. [PMID: 16972051 DOI: 10.1007/s00281-006-0036-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic antibody-mediated autoimmune disease that develops under the control of multiple susceptibility genes. Genetic studies in murine and human SLE have identified several chromosomal intervals that contain candidate susceptibility genes. However, the ultimate identification of the genes and their roles in disease process need much further investigation. Spontaneous murine SLE models provide useful tools in this respect. In this chapter, we show this line of investigation, particularly focusing on the roles of major histocompatibility complex (MHC) class II and immunoglobulin G Fc receptors (FcgammaRs). The existence of high-affinity autoantibodies is evidence that autoimmunity in SLE is antigen-driven. Thereby, MHC class II haplotypes have been implicated in SLE susceptibility; however, because of the linkage disequilibrium that exists among the class I, II and III genes within the MHC complex, it has been difficult to discriminate the relative contributions of individual loci. On the other hand, the extent of antibody synthesis upon antigen stimulation and associated inflammatory cascades are controlled in several ways by the balance of stimulatory and inhibitory signaling molecules on immune cells. Stimulatory/inhibitory FcgammaRs mediate one such mechanism, and there are reports indicating the association between polymorphic FcgammaRs and SLE. However, as stimulatory and inhibitory FcgammaRs cluster on the telomeric chromosome 1, the absolute contribution of individual genes has been difficult to dissect. In studies of genetic dissection using interval-congenic and intragenic recombinant mouse strains of SLE models, we show evidence and discuss how and to what extent MHC class II molecules and stimulatory/inhibitory FcgammaRs are involved in SLE susceptibility.
Collapse
Affiliation(s)
- Sachiko Hirose
- Department of Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | |
Collapse
|
18
|
Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 2006; 103:9970-5. [PMID: 16777955 PMCID: PMC1502563 DOI: 10.1073/pnas.0603912103] [Citation(s) in RCA: 494] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The y-linked autoimmune accelerating (yaa) locus is a potent autoimmune disease allele. Transcription profiling of yaa-bearing B cells revealed the overexpression of a cluster of X-linked genes that included Tlr7. FISH analysis demonstrated the translocation of this segment onto the yaa chromosome. The resulting overexpression of Tlr7 increased in vitro responses to Toll-like receptor (TLR) 7 signaling in all yaa-bearing males. B6.yaa mice are not overtly autoimmune, but the addition of Sle1, which contains the autoimmune-predisposing Slam/Cd2 haplotype, causes the development of fatal lupus with numerous immunological aberrations. B6.Sle1yaa CD4 T cells develop the molecular signature for T(FH) cells and also show expression changes in numerous cytokines and chemokines. Disease development and all component autoimmune phenotypes were inhibited by Sles1, a potent suppressor locus. Sles1 had no effect on yaa-enhanced TLR7 signaling in vitro, and these data place Sles1 downstream from the lesion in innate immune responses mediated by TLR7, suggesting that Sles1 modulates the activation of adaptive immunity in response to innate immune signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guy Bartov
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Lisa D. McDaniel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Xin J. Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Roger A. Schultz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Edward K. Wakeland
- *Center for Immunology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Subramanian S, Yim YS, Liu K, Tus K, Zhou XJ, Wakeland EK. Epistatic suppression of systemic lupus erythematosus: fine mapping of Sles1 to less than 1 mb. THE JOURNAL OF IMMUNOLOGY 2005; 175:1062-72. [PMID: 16002707 DOI: 10.4049/jimmunol.175.2.1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sle is a susceptibility locus for systemic autoimmunity derived from the lupus-prone NZM2410 mouse. The New Zealand White-derived suppressive modifier Sles1 was identified as a specific modifier of Sle1 and prevents the development of IgG anti-chromatin autoantibodies mediated by Sle1 on the C57BL/6 (B6) background. Fine mapping of Sles1 with truncated congenic intervals localizes it to a approximately 956-kb segment of mouse chromosome 17. Sles1 completely abrogates the development of activated T and B cell populations in B6.Sle1. Despite this suppression of the Sle1-mediated cell surface activation phenotypes, B6.Sle1 Sles1 splenic B cells still exhibit intrinsic ERK phosphorylation. Classic genetic complementation tests using the nonautoimmmune 129/SvJ mouse suggests that this strain possesses a Sles1 allele complementary to that of New Zealand White, as evidenced by the lack of glomerulonephritis, splenomegaly, and antinuclear autoantibody production seen in (129 x B6.Sle1 Sles1)F(1)s. These findings localize and characterize the suppressive properties of Sles1 and implicate 129 as a useful strain for aiding in the identification of this elusive epistatic modifier gene.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Epistasis, Genetic
- Female
- Genetic Complementation Test
- Immunophenotyping
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Mice, Inbred Strains
- Physical Chromosome Mapping/methods
- Spleen/immunology
- Spleen/metabolism
- Suppression, Genetic/immunology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Srividya Subramanian
- Center for Immunology and Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|