1
|
Boissot N, Chovelon V, Rittener-Ruff V, Giovinazzo N, Mistral P, Pitrat M, Charpentier M, Troadec C, Bendahmane A, Dogimont C. A highly diversified NLR cluster in melon contains homologs that confer powdery mildew and aphid resistance. HORTICULTURE RESEARCH 2024; 11:uhad256. [PMID: 38269294 PMCID: PMC10807702 DOI: 10.1093/hr/uhad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myriam Charpentier
- INRAE, IPS2, 91190 Gif-sur-Yvette, France
- John Innes Centre, Department Cell & Developmental Biology, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
2
|
Kahlon PS, Seta SM, Zander G, Scheikl D, Hückelhoven R, Joosten MHAJ, Stam R. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc Biol Sci 2020; 287:20202723. [PMID: 33352079 DOI: 10.1098/rspb.2020.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Shallet Mindih Seta
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Gesche Zander
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Str. 2, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
3
|
Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS, Paulus JK, van der Hoorn RAL. Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nat Commun 2020; 11:4393. [PMID: 32879321 PMCID: PMC7468133 DOI: 10.1038/s41467-020-18069-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Shivani Malik
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Oliver Mattinson
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Sonja Krauter
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Parvinderdeep S Kahlon
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Judith K Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK.
| |
Collapse
|
4
|
Märkle H, Tellier A. Inference of coevolutionary dynamics and parameters from host and parasite polymorphism data of repeated experiments. PLoS Comput Biol 2020; 16:e1007668. [PMID: 32203545 PMCID: PMC7156111 DOI: 10.1371/journal.pcbi.1007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/14/2020] [Accepted: 01/19/2020] [Indexed: 01/27/2023] Open
Abstract
There is a long-standing interest in understanding host-parasite coevolutionary dynamics and associated fitness effects. Increasing amounts of genomic data for both interacting species offer a promising source to identify candidate loci and to infer the main parameters of the past coevolutionary history. However, so far no method exists to perform the latter. By coupling a gene-for-gene model with coalescent simulations, we first show that three types of biological costs, namely, resistance, infectivity and infection, define the allele frequencies at the internal equilibrium point of the coevolution model. These in return determine the strength of selective signatures at the coevolving host and parasite loci. We apply an Approximate Bayesian Computation (ABC) approach on simulated datasets to infer these costs by jointly integrating host and parasite polymorphism data at the coevolving loci. To control for the effect of genetic drift on coevolutionary dynamics, we assume that 10 or 30 repetitions are available from controlled experiments or several natural populations. We study two scenarios: 1) the cost of infection and population sizes (host and parasite) are unknown while costs of infectivity and resistance are known, and 2) all three costs are unknown while populations sizes are known. Using the ABC model choice procedure, we show that for both scenarios, we can distinguish with high accuracy pairs of coevolving host and parasite loci from pairs of neutrally evolving loci, though the statistical power decreases with higher cost of infection. The accuracy of parameter inference is high under both scenarios especially when using both host and parasite data because parasite polymorphism data do inform on costs applying to the host and vice-versa. As the false positive rate to detect pairs of genes under coevolution is small, we suggest that our method complements recently developed methods to identify host and parasite candidate loci for functional studies.
Collapse
Affiliation(s)
- Hanna Märkle
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Stam R, Silva-Arias GA, Tellier A. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. THE NEW PHYTOLOGIST 2019; 224:367-379. [PMID: 31230368 DOI: 10.1111/nph.16017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Nucleotide binding site, leucine-rich repeat receptors (NLRs) are canonical resistance (R) genes in plants, fungi and animals, functioning as central (helper) and peripheral (sensor) genes in a signalling network. We investigate NLR evolution during the colonization of novel habitats in a model tomato species, Solanum chilense. We used R-gene enrichment sequencing to obtain polymorphism data at NLRs of 140 plants sampled across 14 populations covering the whole species range. We inferred the past demographic history of habitat colonization by resequencing whole genomes from three S. chilense plants from three key populations and performing approximate Bayesian computation using data from the 14 populations. Using these parameters, we simulated the genetic differentiation statistics distribution expected under neutral NLR evolution and identified small subsets of outlier NLRs exhibiting signatures of selection across populations. NLRs under selection between habitats are more often helper genes, whereas those showing signatures of adaptation in single populations are more often sensor-NLRs. Thus, centrality in the NLR network does not constrain NLR evolvability, and new mutations in central genes in the network are key for R-gene adaptation during colonization of different habitats.
Collapse
Affiliation(s)
- Remco Stam
- Phytopathology, Technical University Munich, 85354, Freising, Germany
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| | | | - Aurelien Tellier
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| |
Collapse
|
6
|
Han GZ. Origin and evolution of the plant immune system. THE NEW PHYTOLOGIST 2019; 222:70-83. [PMID: 30575972 DOI: 10.1111/nph.15596] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/02/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 70 I. Introduction 70 II. Ancient associations between plants and microbes 72 III. Evolutionary dynamics of plant-pathogen interactions 74 IV. Evolutionary signature of plant-pathogen interactions 74 V. Origin and evolution of RLK proteins 75 VI. Origin and evolution of NLR proteins 77 VII. Origin and evolution of SA signaling 78 VIII. Origin and evolution of RNA-based defense 79 IX. Perspectives 79 Acknowledgements 80 References 80 SUMMARY: Microbes have engaged in antagonistic associations with plants for hundreds of millions of years. Plants, in turn, have evolved diverse immune strategies to combat microbial pathogens. The conflicts between plants and pathogens result in everchanging coevolutionary cycles known as 'Red Queen' dynamics. These ancient and ongoing plant-pathogen interactions have shaped the evolution of both plant and pathogen genomes. With the recent explosion of plant genome-scale data, comparative analyses provide novel insights into the coevolutionary dynamics of plants and pathogens. Here, we discuss the ancient associations between plants and microbes as well as the evolutionary principles underlying plant-pathogen interactions. We synthesize and review the current knowledge on the origin and evolution of key components of the plant immune system. We also highlight the importance of studying algae and nonflowering land plants in understanding the evolution of the plant immune system.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
7
|
Ye M, Liu W, Xue Q, Hou B, Luo J, Ding X. Phylogeography of the endangered orchid Dendrobium moniliforme in East Asia inferred from chloroplast DNA sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:880-891. [PMID: 27931140 DOI: 10.1080/24701394.2016.1202942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the current study was to elucidate the phylogeographic history of Dendrobium moniliforme, an endangered orchid species, based on two chloroplast DNA (cpDNA) markers (trnC-petN and trnE-trnT). One hundred and thirty-five samples were collected from 18 natural populations of D. moniliforme covering the entire range of the Sino-Japanese Floristic Region (SJFR) of East Asia. A total of 35 distinct cpDNA haplotypes were identified in these populations, of which 23 haplotypes were each present in only one sample and thus restricted to a single population. The significantly larger NST value (0.586) than GST (0.328) (p < 0.05) demonstrated the presence of strong phylogeographic structure. Phylogenetic analyses indicated that all haplotypes were clustered into two lineages. The genetic diversity of D. moniliforme was high at the species level, reflected in its haplotype diversity (Hd=0.8862), nucleotide diversity (Pi=0.00361), total genetic diversity (HT=0.9011), and significant differentiation (ΦST=0.5482). Based on mismatch distribution analysis and neutrality tests, population expansion was evident in all sampled populations and also in all populations sampled in mainland China. Three refuge areas were identified, one each in southwestern China, central-southeastern China, and the CKJ (Taiwan, Japan and Korea) Islands. The results supported the hypothesis that glacial refugia were maintained on different spatial-temporal scales in the SJFR during the last glacial maximum or earlier cold periods, suggesting that Quaternary refugial isolation promoted allopatric speciation of D. moniliforme in East Asia.
Collapse
Affiliation(s)
- Meirong Ye
- a College of Life Sciences , Nanjing Normal University , Nanjing , China.,b College of Life Sciences , Anhui Science and Technology University , Fengyang , China
| | - Wei Liu
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Qingyun Xue
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Beiwei Hou
- c Nanjing Institute for Comprehensive Utilization of Wild Plants , Nanjing , China
| | - Jing Luo
- d College of Physical Sciences , Nanjing Normal University , Nanjing , China
| | - Xiaoyu Ding
- a College of Life Sciences , Nanjing Normal University , Nanjing , China
| |
Collapse
|
8
|
Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP, Bruce TJA, Caulfield JC, Furzer OJ, Reed A, Robinson SI, Miller E, Davis CN, Pickett JA, Whitney HM, Glover BJ, Carr JP. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts? PLoS Pathog 2016; 12:e1005790. [PMID: 27513727 PMCID: PMC4981420 DOI: 10.1371/journal.ppat.1005790] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts.
Collapse
Affiliation(s)
- Simon C. Groen
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jack H. Westwood
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Oliver J. Furzer
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison Reed
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sophie I. Robinson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Miller
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Christopher N. Davis
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John A. Pickett
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Heather M. Whitney
- University of Bristol, School of Biological Sciences, Bristol, United Kingdom
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Stam R, Scheikl D, Tellier A. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population. Genome Biol Evol 2016; 8:1501-15. [PMID: 27189991 PMCID: PMC4898808 DOI: 10.1093/gbe/evw094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technische Universität München, Freising, Germany
| |
Collapse
|
10
|
Rausher MD, Huang J. Prolonged Adaptive Evolution of a Defensive Gene in the Solanaceae. Mol Biol Evol 2015; 33:143-51. [PMID: 26412446 DOI: 10.1093/molbev/msv205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although plants and their natural enemies may coevolve for prolonged periods, little is known about how long individual plant defensive genes are involved in the coevolutionary process. We address this issue by examining patterns of selection on the defensive gene threonine deaminase (TD). Tomato (Solanum lycopersicum) has two copies of this gene. One performs the canonical housekeeping function in amino acid metabolism of catalyzing the first reaction in the conversion of threonine to isoleucine. The second copy functions as an antinutritive defense against lepidopteran herbivores by depleting threonine in the insect gut. Wild tobacco (Nicotiana attenuata) also contains a defensive copy. We show that a single copy of TD underwent two or three duplications near the base of the Solanaceae. One copy retains the housekeeping function, whereas a second copy evolved defensive functions. Positive selection occurred on the branch of the TD2 gene tree subtending the common ancestor of the Nicotianoideae and Solanoideae. It also occurred within the Solanoideae clade but not within the Nicotianoideae clade. Finally, it occurred on most branches leading from the common ancestor to S. lycopersicum. Based on recent calibrations of the Solanaceae phylogeny, TD2 experienced adaptive substitutions for a period of 30-50 My. We suggest that the most likely explanation for this result is fluctuating herbivore abundances: When herbivores are rare, relaxed selection increases the likelihood that slightly disadvantageous mutations will be fixed by drift; when herbivores are common, increased selection causes the evolution of compensatory adaptive mutations. Alternative explanations are also discussed.
Collapse
Affiliation(s)
| | - Jie Huang
- Department of Biology, Duke University
| |
Collapse
|
11
|
Ilyas M, Hörger A, Bozkurt T, van den Burg H, Kaschani F, Kaiser M, Belhaj K, Smoker M, Joosten M, Kamoun S, van der Hoorn R. Functional Divergence of Two Secreted Immune Proteases of Tomato. Curr Biol 2015; 25:2300-6. [DOI: 10.1016/j.cub.2015.07.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 11/30/2022]
|
12
|
Morales Palacio MN, Espinosa López G, Morales Astudillo ÁR, Sánchez Masache BR, Jiménez Castillo ÁM, Milián-García Y. Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2014. [DOI: 10.15446/rev.colomb.biote.v16n1.38259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Pavy N, Deschênes A, Blais S, Lavigne P, Beaulieu J, Isabel N, Mackay J, Bousquet J. The landscape of nucleotide polymorphism among 13,500 genes of the conifer picea glauca, relationships with functions, and comparison with medicago truncatula. Genome Biol Evol 2014; 5:1910-25. [PMID: 24065735 PMCID: PMC3814201 DOI: 10.1093/gbe/evt143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene families differ in composition, expression, and chromosomal organization between conifers and angiosperms, but little is known regarding nucleotide polymorphism. Using various sequencing strategies, an atlas of 212k high-confidence single nucleotide polymorphisms (SNPs) with a validation rate of more than 92% was developed for the conifer white spruce (Picea glauca). Nonsynonymous and synonymous SNPs were annotated over the corresponding 13,498 white spruce genes representative of 2,457 known gene families. Patterns of nucleotide polymorphisms were analyzed by estimating the ratio of nonsynonymous to synonymous numbers of substitutions per site (A/S). A general excess of synonymous SNPs was expected and observed. However, the analysis from several perspectives enabled to identify groups of genes harboring an excess of nonsynonymous SNPs, thus potentially under positive selection. Four known gene families harbored such an excess: dehydrins, ankyrin-repeats, AP2/DREB, and leucine-rich repeat. Conifer-specific sequences were also generally associated with the highest A/S ratios. A/S values were also distributed asymmetrically across genes specifically expressed in megagametophytes, roots, or in both, harboring on average an excess of nonsynonymous SNPs. These patterns confirm that the breadth of gene expression is a contributing factor to the evolution of nucleotide polymorphism. The A/S ratios of Medicago truncatula genes were also analyzed: several gene families shared between P. glauca and M. truncatula data sets had similar excess of synonymous or nonsynonymous SNPs. However, a number of families with high A/S ratios were found specific to P. glauca, suggesting cases of divergent evolution at the functional level.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lucatti AF, van Heusden AW, de Vos RCH, Visser RGF, Vosman B. Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evol Biol 2013; 13:175. [PMID: 23972016 PMCID: PMC3765935 DOI: 10.1186/1471-2148-13-175] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Galapagos Islands constitute a highly diverse ecosystem and a unique source of variation in the form of endemic species. There are two endemic tomato species, Solanum galapagense and S. cheesmaniae and two introduced tomato species, S. pimpinellifolium and S. lycopersicum. Morphologically the two endemic tomato species of the Galapagos Islands are clearly distinct, but molecular marker analysis showed no clear separation. Tomatoes on the Galapagos are affected by both native and exotic herbivores. Bemisia tabaci is an important introduced insect species that feeds on a wide range of plants. In this article, we address the question whether the differentiation between S. galapagense and S. cheesmaniae may be related to differences in susceptibility towards phloem-feeders and used B. tabaci as a model to evaluate this. RESULTS We have characterized 12 accessions of S. galapagense, 22 of S. cheesmaniae, and one of S. lycopersicum as reference for whitefly resistance using no-choice experiments. Whitefly resistance was found in S. galapagense only and was associated with the presence of relatively high levels of acyl sugars and the presence of glandular trichomes of type I and IV. Genetic fingerprinting using 3316 SNP markers did not show a clear differentiation between the two endemic species. Acyl sugar accumulation as well as the climatic and geographical conditions at the collection sites of the accessions did not follow the morphological species boundaries. CONCLUSION Our results suggest that S. galapagense and S. cheesmaniae might be morphotypes rather than two species and that their co-existence is likely the result of selective pressure.
Collapse
Affiliation(s)
- Alejandro F Lucatti
- Wageningen UR Plant Breeding, Wageningen University and Research, Centre, P,O, Box 386, Wageningen, AJ 6700, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Bimolata W, Kumar A, Sundaram RM, Laha GS, Qureshi IA, Reddy GA, Ghazi IA. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives. PLANTA 2013; 238:293-305. [PMID: 23652799 DOI: 10.1007/s00425-013-1891-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/23/2013] [Indexed: 05/07/2023]
Abstract
Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.
Collapse
Affiliation(s)
- Waikhom Bimolata
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nair RA, Thomas G. Functional genetic diversity at nucleotide binding site (NBS) loci: Comparisons among soft rot resistant and susceptible Zingiber taxa. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL, Rose LE. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense. PLoS Genet 2012; 8:e1002813. [PMID: 22829777 PMCID: PMC3400550 DOI: 10.1371/journal.pgen.1002813] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022] Open
Abstract
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards") can sense modification of target molecules in the host (the "guardees") by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen.
Collapse
Affiliation(s)
- Anja C Hörger
- Section of Evolutionary Biology, Department of Biology II, University of Munich, LMU, Planegg-Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L. Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. PLANT CELL REPORTS 2012; 31:973-85. [PMID: 22350316 PMCID: PMC3351601 DOI: 10.1007/s00299-012-1234-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the world's most important vegetable crops. Managing the health of this crop can be particularly challenging; crop resistance may be overcome by new pathogen races while new pathogens have been introduced by global agricultural markets. Tomato is extensively used as a model plant for resistance studies and much has been attained through both genetic and biotechnological approaches. In this paper, we illustrate genomic methods currently employed to preserve resistant germplasm and to facilitate the study and transfer of resistance genes, and we describe the genomic organization of R-genes. Patterns of gene activation during disease resistance response, identified through functional approaches, are depicted. We also describe the opportunities offered by the use of new genomic technologies, including high-throughput DNA sequencing, large-scale expression data production and the comparative hybridization technique, whilst reporting multifaceted approaches to achieve genetic tomato disease control. Future strategies combining the huge amount of genomic and genetic data will be able to accelerate development of novel resistance varieties sustainably on a worldwide basis. Such strategies are discussed in the context of the latest insights obtained in this field.
Collapse
Affiliation(s)
- M R Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
19
|
Liao PC, Lin KH, Ko CL, Hwang SY. Molecular evolution of a family of resistance gene analogs of nucleotide-binding site sequences in Solanum lycopersicum. Genetica 2011; 139:1229-40. [PMID: 22203213 DOI: 10.1007/s10709-011-9624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Nucleotide-binding site-leucine-rich repeats (NBS-LRR) gene families are one of the major plant resistance genes. Genomic NBS evolution was studied in many plant species for diverse arrays of NBS gene families. In this study, we focused on one family of NBS sequences in an attempt to understand how closely related NBS sequences evolved in the light of selection in domesticated plant species. A phylogenetic analysis revealed five major clades (A-E) and five subclades (A1-A5) within clade A of cloned NBS sequences. Positive selection was only detected in newly evolved NBS lineages in subclades of clade A. Positively selected codon sites were found among NBS sequences of clade A. A sliding-window analysis revealed that regions with Ka/Ks ratios of >1 were in the inter-motifs when paired clades were compared, but regions with Ka/Ks ratios of >1 were found across NBS sequences when subclades of clade A were compared. Our results based on a family of closely related NBS sequences showed that positive selection was first exerted on specific lineages across all NBS sequences after selective constraints. Subsequently, sequences with mutations in commonly conserved motifs were scrutinized by purifying selection. In the long term, conserved high frequency alleles in commonly conserved motifs and changes in inter-motifs were maintained in the investigated family of NBS sequences. Moreover, codons identified to be under positive selection in the inter-motifs were mainly located in regions involved in functions of ATP binding or hydrolysis.
Collapse
Affiliation(s)
- Pei-Chun Liao
- Department of Biological Science and Technology, Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | | | | | | |
Collapse
|
20
|
Tellier A, Brown JKM. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions. BMC Evol Biol 2011; 11:319. [PMID: 22044632 PMCID: PMC3273489 DOI: 10.1186/1471-2148-11-319] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes). It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. RESULTS Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur. CONCLUSIONS Our theoretical results confirm the importance of empirical studies for measuring the environmental heterogeneity for genetic costs of resistance and virulence alleles. We suggest that such studies should be developed to investigate the generality of this mechanism for the long-term maintenance of genetic diversity at host and parasite genes.
Collapse
Affiliation(s)
- Aurélien Tellier
- Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
21
|
Rouse MN, Saleh AA, Seck A, Keeler KH, Travers SE, Hulbert SH, Garrett KA. Genomic and resistance gene homolog diversity of the dominant tallgrass prairie species across the U.S. Great Plains precipitation gradient. PLoS One 2011; 6:e17641. [PMID: 21532756 PMCID: PMC3075248 DOI: 10.1371/journal.pone.0017641] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/08/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. METHODOLOGY/PRINCIPAL FINDINGS Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. SIGNIFICANCE Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly.
Collapse
Affiliation(s)
- Matthew N. Rouse
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Amgad A. Saleh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Amadou Seck
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Kathleen H. Keeler
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Steven E. Travers
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Scot H. Hulbert
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Karen A. Garrett
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
22
|
Brown JKM, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:345-67. [PMID: 21513455 DOI: 10.1146/annurev-phyto-072910-095301] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors.
Collapse
Affiliation(s)
- James K M Brown
- Department of Disease and Stress Biology, John Innes Center, Colney, Norwich, NR4 7UH, United Kingdom.
| | | |
Collapse
|
23
|
Moyle LC, Muir CD. Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evol Appl 2010; 3:409-21. [PMID: 25567935 PMCID: PMC3352507 DOI: 10.1111/j.1752-4571.2010.00143.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023] Open
Abstract
Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
24
|
Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:497-509. [PMID: 20192836 DOI: 10.1094/mpmi-23-4-0497] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Mla locus in barley (Hordeum vulgare) conditions isolate-specific immunity to the powdery mildew fungus (Blumeria graminis f. sp. hordei) and encodes intracellular coiled-coil (CC) domain, nucleotide-binding (NB) site, and leucine-rich repeat (LRR)-containing receptor proteins. Over the last decades, genetic studies in breeding material have identified a large number of functional resistance genes at the Mla locus. To study the structural and functional diversity of this locus at the molecular level, we isolated 23 candidate MLA cDNAs from barley accessions that were previously shown by genetic studies to harbor different Mla resistance specificities. Resistance activity was detected for 13 candidate MLA cDNAs in a transient gene-expression assay. Sequence alignment of the deduced MLA proteins improved secondary structure predictions, revealing four additional, previously overlooked LRR. Analysis of nucleotide diversity of the candidate and validated MLA cDNAs revealed 34 sites of positive selection. Recombination or gene conversion events were frequent in the first half of the gene but positive selection was also found when this region was excluded. The positively selected sites are all, except two, located in the LRR domain and cluster in predicted solvent-exposed residues of the repeats 7 to 15 and adjacent turns on the concave side of the predicted solenoid protein structure. This domain-restricted pattern of positively selected sites, together with the length conservation of individual LRR, suggests direct binding of effectors to MLA receptors.
Collapse
|
25
|
Wulff BBH, Chakrabarti A, Jones DA. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1191-202. [PMID: 19737093 DOI: 10.1094/mpmi-22-10-1191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also addresses the evolutionary causes and consequences of this specificity.
Collapse
Affiliation(s)
- B B H Wulff
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | | | | |
Collapse
|
26
|
Caicedo AL, Richards C, Ehrenreich IM, Purugganan MD. Complex rearrangements lead to novel chimeric gene fusion polymorphisms at the Arabidopsis thaliana MAF2-5 flowering time gene cluster. Mol Biol Evol 2009; 26:699-711. [PMID: 19139056 DOI: 10.1093/molbev/msn300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tandem gene clusters of multigene families are rearrangement hotspots and may be a major source of novel gene formation. Here, we report on a molecular population genetic analysis of the MAF2-5 gene cluster of the model plant species, Arabidopsis thaliana. The MAF2-5 genes are a MADS-box multigene family cluster spanning approximately 24 kbp on chromosome 5. We find heterogeneous evolutionary dynamics among these genes, all of which are closely related to the floral repressor, FLC, and are believed to play a role in the control of flowering time in A. thaliana. Low levels of nonsynonymous single nucleotide polymorphism (SNP) observed for MAF4 and MAF5 suggest purifying selection and conservation of function. In contrast, high levels of nonsynonymous SNPs, insertion-deletion, and rearrangements are observed for MAF2 and MAF3, including novel gene fusions that persist as a moderate-frequency polymorphism in A. thaliana. These fused genes, involving MAF2 and portions of MAF3, are expressed, resulting in the production of chimeric, alternatively spliced transcripts of MAF2. Association studies support a correlation between the described MAF2-MAF3 gene rearrangements and flowering time variation in the species. The finding that complex rearrangements within gene clusters, such as those observed for MAF2, might play a role in the generation of ecologically important phenotypic variation, emphasize the need for emerging high throughput genotyping and sequencing techniques to correctly reconstruct gene chimeras and other complex polymorphisms.
Collapse
Affiliation(s)
- Ana L Caicedo
- Biology Department, 221 Morrill Science Center, University of Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
Xu Q, Wen X, Deng X. Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, "chestnut rose". Genetics 2008; 178:2081-91. [PMID: 18245857 PMCID: PMC2323798 DOI: 10.1534/genetics.107.086421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/22/2008] [Indexed: 11/18/2022] Open
Abstract
From chestnut rose, a promising fruit crop of the Rosa genus, powdery mildew disease-resistant and susceptible genotypes and their F(1) progeny were used to isolate nucleotide-binding-site (NBS)-encoding genes using 19 degenerate primer pairs and an additional cloning method called overlapping extension amplification. A total of 126 genes were harvested; of these, 38 were from a resistant parent, 37 from a susceptible parent, and 51 from F(1) progeny. A phylogenetic tree was constructed, which revealed that NBS sequences from parents and F(1) progeny tend to form a mixture and are well distributed among the branches of the tree. Mapping of these NBS genes suggested that their organization in the genome is a "tandem duplicated cluster" and, to a lesser extent, a "heterogeneous cluster." Intraspecific polymorphisms and interspecific divergence were detected by Southern blotting with NBS-encoding genes as probes. Sequencing on the nucleotide level revealed even more intraspecific variation: for the R4 gene, 9.81% of the nucleotides are polymorphic. Amino acid sites under positive selection were detected in the NBS region. Some NBS-encoding genes were meiotically unstable, which may due to recombination and deletion events. Moreover, a transposon-like element was isolated in the flanking region of NBS genes, implying a possible role for transposon in the evolutionary history of resistance genes.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | | | | |
Collapse
|
28
|
Salvaudon L, Giraud T, Shykoff JA. Genetic diversity in natural populations: a fundamental component of plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:135-43. [PMID: 18329329 DOI: 10.1016/j.pbi.2008.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/21/2008] [Accepted: 02/05/2008] [Indexed: 05/20/2023]
Abstract
Genetic diversity for plant defense against microbial pathogens has been studied either by analyzing sequences of defense genes or by testing phenotypic responses to pathogens under experimental conditions. These two approaches give different but complementary information but, till date, only rare attempts at their integration have been made. Here we discuss the advances made, because of the two approaches, in understanding plant-pathogen coevolution and propose ways of integrating the two.
Collapse
Affiliation(s)
- Lucie Salvaudon
- Univ Paris-Sud, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Orsay Cedex F-91405, France
| | | | | |
Collapse
|
29
|
Caicedo AL. Geographic diversity cline of R gene homologs in wild populations of Solanum pimpinellifolium (Solanaceae). AMERICAN JOURNAL OF BOTANY 2008; 95:393-398. [PMID: 21632363 DOI: 10.3732/ajb.95.3.393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant resistance (R) genes tend to be highly variable within plant species and are thought to be under natural selection; however, little is known about the geographic distribution of R gene diversity within and among plant populations. To determine the possible roles of demography and selection on R gene evolution, patterns of diversity at the multigenic Cf-2 R gene family were studied in Solanum pimpinellifolium populations along the northern coast of Peru. Population diversity levels of Cf-2 homologs follow a latitudinal cline, consistent with the species's history of gradual colonization of the Peruvian coast and population variation in outcrossing levels. Although previous evidence suggests that selection has shaped the DNA sequence content of the Cf-2 genes, current results imply that the geographic distribution of Cf-2 homolog diversity has been shaped primarily by demographic factors or by selective pressures with a clinal distribution.
Collapse
Affiliation(s)
- Ana L Caicedo
- Biology Dept., 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
| |
Collapse
|
30
|
Kuang H, van Eck HJ, Sicard D, Michelmore R, Nevo E. Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics 2008; 178:1547-58. [PMID: 18385115 PMCID: PMC2278093 DOI: 10.1534/genetics.107.080796] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 12/23/2007] [Indexed: 12/15/2022] Open
Abstract
Genetic structure and diversity of natural populations of prickly lettuce (Lactuca serriola) were studied using AFLP markers and then compared with the diversity of the RGC2 disease resistance gene cluster. Screening of 696 accessions from 41 populations using 319 AFLP markers showed that eastern Turkish and Armenian populations were the most diverse populations and might be located in the origin and center of diversity of L. serriola. Screening 709 accessions using the microsatellite MSATE6 that is located in the coding region of most RGC2 homologs detected 366 different haplotypes. Again, the eastern Turkish and Armenian populations had the highest diversities at the RGC2 cluster. The diversities at the RGC2 cluster in different populations were significantly correlated with their genomewide diversities. There was significant variation of copy number of RGC2 homologs in different populations, ranging from 12 to 22 copies per genome. The nucleotide diversities of two conserved lineages (type II) of RGC2 genes (K and L) were not correlated with diversities calculated using the MSATE6 or AFLP data. We hypothesize that the high genomewide diversity and diversity of the RGC2 cluster in eastern Turkish and Armenian populations resulted from high abiotic and biotic stresses in the regions of origin of L. serriola.
Collapse
Affiliation(s)
- Hanhui Kuang
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
31
|
De Mita S, Santoni S, Ronfort J, Bataillon T. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago. BMC Evol Biol 2007; 7:210. [PMID: 17986323 PMCID: PMC2247475 DOI: 10.1186/1471-2148-7-210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 11/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein) in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race) must be tested to explain the adaptive evolution of NORK.
Collapse
Affiliation(s)
- Stéphane De Mita
- UMR 1097 Diversité et Adaptation des Plantes Cultivées - INRA Montpellier, France.
| | | | | | | |
Collapse
|
32
|
Wicker T, Yahiaoui N, Keller B. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:631-41. [PMID: 17573804 DOI: 10.1111/j.1365-313x.2007.03164.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current models for the evolution of plant disease resistance (R) genes are based on mechanisms such as unequal crossing-over, gene conversion and point mutations as sources for genetic variability and the generation of new specificities. Size variation in leucine-rich repeat (LRR) domains was previously mainly attributed to unequal crossing-over or template slippage between LRR units. Our analysis of 112 R genes and R gene analogs (RGAs) from 16 different gene lineages from monocots and dicots showed that individual LRR units are mostly too divergent to allow unequal crossing-over. We found that illegitimate recombination (IR) is the major mechanism that generates quasi-random duplications within the LRR domain. These initial duplications are required as seeds for subsequent unequal crossing-over events which cause the observed rapid increase or decrease in LRR repeat numbers. Ten of the 16 gene lineages studied contained such duplications, and in four of them the duplications served as a template for subsequent repeat amplification. Our analysis of Pm3-like genes from rice and three wheat species showed that such events can be traced back more than 50 million years. Thus, IR represents a major new evolutionary mechanism that is essential for the generation of molecular diversity in evolution of RGAs.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Cseke LJ, Ravinder N, Pandey AK, Podila GK. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene 2007; 391:209-22. [PMID: 17331677 DOI: 10.1016/j.gene.2006.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
In a past article, our lab described the identification and characterization of a novel vegetative MADS-box gene from quaking aspen trees, Populus tremuloides MADS-box 5 (PTM5). PTM5 was shown to be a member of the SOC1/TM3 class of MADS-box genes with a seasonal expression pattern specific to developing vascular tissues including the vascular cambium, the precursor to all woody branches, stems, and roots. Since the proper function of MADS-box proteins is dependent on specific interactions with other regulatory proteins, we further examined PTM5 protein-protein interactions as a means to better understand its function. Through yeast two-hybrid analyses, it was demonstrated that, like other SOC1/TM3 class proteins, PTM5 is capable of interacting with itself as well as other MADS-box proteins from aspen. In addition, yeast two-hybrid library screening revealed that PTM5 interacts with two non-MADS proteins, an actin depolymerizing factor (PtADF) and a novel leucine-rich repeat protein (PtLRR). In situ RNA localization was used to verify the overlapping expression patterns of these genes, and transgenic studies showed that over-expression of PTM5 in aspen causes alterations in root vasculature and root biomass development consistent with the cell growth and expansion functions of related ADF and LRR genes. These results suggest that the interaction of vegetative MADS-box genes with specific protein cofactors is a key step in the mechanisms that control woody tissue development in trees.
Collapse
Affiliation(s)
- Leland J Cseke
- The University of Alabama in Huntsville, Department of Biological Sciences, Huntsville, AL 35899, USA
| | | | | | | |
Collapse
|
34
|
Sun X, Cao Y, Wang S. Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. PLANT PHYSIOLOGY 2006; 140:998-1008. [PMID: 16461382 PMCID: PMC1400573 DOI: 10.1104/pp.105.073080] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rice (Oryza sativa) Xa26 gene, which confers resistance to bacterial blight disease and encodes a leucine-rich repeat (LRR) receptor kinase, resides at a locus clustered with tandem homologous genes. To investigate the evolution of this family, four haplotypes from the two subspecies of rice, indica and japonica, were analyzed. Comparative sequence analysis of 34 genes of 10 types of paralogs of the family revealed haplotype polymorphisms and pronounced paralog diversity. The orthologs in different haplotypes were more similar than the paralogs in the same haplotype. At least five types of paralogs were formed before the separation of indica and japonica subspecies. Only 7% of amino acid sites were detected to be under positive selection, which occurred in the extracytoplasmic domain. Approximately 74% of the positively selected sites were solvent-exposed amino acid residues of the LRR domain that have been proposed to be involved in pathogen recognition, and 73% of the hypervariable sites detected in the LRR domain were subject to positive selection. The family is formed by tandem duplication followed by diversification through recombination, deletion, and point mutation. Most variation among genes in the family is caused by point mutations and positive selection.
Collapse
Affiliation(s)
- Xinli Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | | | | |
Collapse
|
35
|
Hancock JF. Contributions of domesticated plant studies to our understanding of plant evolution. ANNALS OF BOTANY 2005; 96:953-63. [PMID: 16159942 PMCID: PMC4247096 DOI: 10.1093/aob/mci259] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/08/2005] [Accepted: 07/29/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant evolutionary theory has been greatly enriched by studies on crop species. Over the last century, important information has been generated on many aspects of population biology, speciation and polyploid genetics. SCOPE Searches for quantitative trait loci (QTL) in crop species have uncovered numerous blocks of genes that have dramatic effects on adaptation, particularly during the domestication process. Many of these QTL have epistatic and pleiotropic effects making rapid evolutionary change possible. Most of the pioneering work on the molecular basis of self-incompatibility has been conducted on crop species, along with the sequencing of the phytopathogenic resistance genes (R genes) responsible for the 'gene-to-gene' relations of coevolution observed in host-pathogen relationships. Some of the better examples of co-adaptation and early acting inbreeding depression have also been elucidated in crops. Crop-wild progenitor interactions have provided rich opportunities to study the evolution of novel adaptations subsequent to hybridization. Most crop/wild F1 hybrids have reduced fitness, but in some instances the crop relatives have acquired genes that make them more efficient weeds through crop mimicry. Studies on autopolyploid alfalfa and potato have uncovered the means by which polyploid gametes are formed and have led to hypotheses about how multiallelic interactions are associated with fitness and self-fertility. Research on the cole crops and wheat has discovered that newly formed polyploids can undergo dramatic genome rearrangements that could lead to rapid evolutionary change. CONCLUSIONS Many more important evolutionary discoveries are on the horizon, now that the whole genome sequence is available of the two major subspecies of rice Oryza sativa ssp. japonica and O. sativa ssp. indica. The rice sequence data can be used to study the origin of genes and gene families, track rates of sequence divergence over time, and provide hints about how genes evolve and generate products with novel biological properties. The rice sequence data has already been mined to show that transposable elements often carry fragments of cellular genes. This type of genome shuffling could play a role in creating novel, reorganized genes with new adaptive properties.
Collapse
Affiliation(s)
- James F Hancock
- Department of Horticulture, Michigan State University, East Lansing, MI 49924, USA.
| |
Collapse
|
36
|
Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, de Wit PJGM. The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1011-21. [PMID: 16167771 DOI: 10.1094/mpmi-18-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|