1
|
Al Kabbani MA, Köhler C, Zempel H. Effects of P301L-TAU on post-translational modifications of microtubules in human iPSC-derived cortical neurons and TAU transgenic mice. Neural Regen Res 2025; 20:2348-2360. [PMID: 38934386 PMCID: PMC11759014 DOI: 10.4103/nrr.nrr-d-23-01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00025/figure1/v/2024-09-30T120553Z/r/image-tiff TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon. TAU is missorted and aggregated in an array of diseases known as tauopathies. Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications, changes of which affect microtubule stability and dynamics, microtubule interaction with other proteins and cellular structures, and mediate recruitment of microtubule-severing enzymes. As impairment of microtubule dynamics causes neuronal dysfunction, we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics. We therefore aimed to study the effects of a disease-causing mutation of TAU (P301L) on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics, to assess whether P301L-TAU causes stability-changing modifications to microtubules. To investigate TAU localization, phosphorylation, and effects on tubulin post-translational modifications, we expressed wild-type or P301L-TAU in human MAPT -KO induced pluripotent stem cell-derived neurons (iNeurons) and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU (pR5 mice). Human neurons expressing the longest TAU isoform (2N4R) with the P301L mutation showed increased TAU phosphorylation at the AT8, but not the p-Ser-262 epitope, and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons. P301L-TAU showed pronounced somatodendritic presence, but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU. P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation, but reduced acetylation, of microtubules compared with non-transgenic littermates. In sum, P301L-TAU results in changes in microtubule PTMs, suggestive of impairment of microtubule stability. This is accompanied by missorting and aggregation of TAU in mice but not in iNeurons. Microtubule PTMs/impairment may be of key importance in tauopathies.
Collapse
Affiliation(s)
- Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christoph Köhler
- Center Anatomy, Department II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Ran J, Zhou J. Post-Translational Modifications in Cilia and Ciliopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e16562. [PMID: 40433930 DOI: 10.1002/advs.202416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Cilia are microtubule-based organelles that extend from the surface of most vertebrate cells, and they play important roles in diverse cellular processes during embryonic development and tissue homeostasis. Mutations in ciliary proteins are associated with a wide range of human diseases, collectively referred to as ciliopathies. The past decades have witnessed significant advances in the identification of post-translational modifications (PTMs) in ciliary proteins, as well as the enzymes responsible for the PTMs. For example, acetylation of α-tubulin at lysine 40 is essential for ciliary assembly and maintenance, while ubiquitination of centrosomal proteins, such as pericentriolar material 1, regulates ciliary disassembly. In addition, accumulating evidence has shown that PTMs are essential for modulating ciliary structure and function, and that dysregulation of these modifications leads to the development of ciliopathies. In this review, current knowledge of PTMs in ciliary proteins is summarized, and their roles in regulating ciliary formation, homeostasis, and signaling are highlighted. The contribution of aberrant ciliary PTMs to ciliopathies is also discussed, along with the potential of targeting PTMs for ciliopathy treatment, including pharmacological modulation of PTM-related enzymes or substrates, which may provide new avenues for therapeutic intervention in ciliopathies.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Wu D, Zhang S, Wu Y, Bi X, Zhou Y, Wu W. Sulforaphane downregulates mitochondrial TIGAR via inhibiting mitochondrial transmembrane assembly and LONP1/CASP3 axis causing apoptosis. Biochem Biophys Res Commun 2025; 760:151689. [PMID: 40157290 DOI: 10.1016/j.bbrc.2025.151689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) was implicated to be a brand-new target for sulforaphane (SFN) in human non-small cell lung cancer (NSCLC), while the mechanism was elusive. We found that highly expressed TIGAR was positively correlated to pathological grading and contributed to poor survival in NSCLC patients. Western blot showed that SFN downregulated α-tubulin, TIGAR, Timm23 and Timm17A in cytosolic and/or mitochondrial lysate. Besides, SFN downregulated α-tubulin contributing to TIGAR reduction, and also decreased interactions of α-tubulin to Timm23, Timm17A and TIGAR in mitochondria; thus, SFN disrupted the microtubule-mediated mitochondrial transmembrane complexes blocking the entry of cytosolic TIGAR into mitochondria. Further, SFN downregulated mitoprotease LONP1 and decreased the binding of LONP1 to TIGAR; knockdown of LONP1 activated mitochondrial caspase-3 causing the cleavage of mitochondrial TIGAR; SFN-mediated the reduction of TIGAR decreased NADPH leading to ROS elevation and apoptosis in NSCLC. These studies will provide key targets for anti-NSCLC therapy.
Collapse
Affiliation(s)
- Dongxue Wu
- Neonatal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yaheng Wu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Bi
- Core Facility, Capital Medical University, Beijing, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
5
|
Karamtzioti P, Ferrer-Vaquer A, Barragan M, Vernos I, Vassena R, Tiscornia G. Characterization of tubulin post-translational modifications and their enzymes during human oocyte meiosis. Reprod Biomed Online 2025; 50:103885. [PMID: 39920028 DOI: 10.1016/j.rbmo.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2025]
Abstract
RESEARCH QUESTION What are the profiles of tubulin post-translational modifications (PTM) in the meiotic spindles of oocytes with different developmental competence: in-vivo matured MII oocytes (IVO) versus cumulus-free in-vitro matured germinal vesicles (IVM)? DESIGN Cumulus-free germinal vesicles were matured in vitro and compared with IVO in terms of their tubulin PTM, characterizing tubulin PTM patterns (acetylation, tyrosination, detyrosination, D2-tubulin formation and polyglutamylation) of their meiotic spindles by immunofluorescence and by evaluation of the expression levels of the enzymes involved by quantitative reverse transcription polymerase chain reaction. RESULTS Levels of D2-tubulin, tyrosination and polyglutamylation were similar in IVO and IVM oocytes; acetylation displayed different patterns in both groups, whereas detyrosination was detected only in MII oocytes matured in vivo. The PTM enzyme RNA expression levels in germinal vesicles, IVO and IVM were analysed, as well as in oocytes that failed to mature. Of the 24 PTM enzyme transcripts tested, 17 were present in at least one of the groups under study (aΤΑΤ1, NAA50, HDAC6, SIRT2, TTL, TTLL1, TTLL2, TTLL4, TTLL5, TTLL6, TTLL9, TTLL11, TTLL12, CCP1, CCP5, CCP6, VASH1), of which three were differentially expressed (NAA50, TTLL12, CCP1). CONCLUSION All modifications studied were present in human oocytes regardless of whether their meiotic maturation occurred in vivo or in vitro, except for detyrosination, which was found at low levels in the IVO group, but not in the IVM group. This suggests that the presence of tubulin PTMs may play a role in human oocyte maturation, completion of meiosis and developmental competence.
Collapse
Affiliation(s)
- Paraskevi Karamtzioti
- Clínica EUGIN- Eugin Group, Carrer de Balmes 236, Barcelona, 08006, Spain.; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Anna Ferrer-Vaquer
- Clínica EUGIN- Eugin Group, Carrer de Balmes 236, Barcelona, 08006, Spain
| | | | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Rita Vassena
- Clínica EUGIN- Eugin Group, Carrer de Balmes 236, Barcelona, 08006, Spain
| | - Gustavo Tiscornia
- Clínica EUGIN- Eugin Group, Carrer de Balmes 236, Barcelona, 08006, Spain.; Center for Marine Sciences, University of Algarve, Faro, Portugal..
| |
Collapse
|
6
|
Le TH, Li L, Rami FZ, Oh JM, Chun S, Chung YC. Effects of Epothilone D on Social Defeat Stress-induced Changes in Microtubule-related and Endoplasmic Reticulum Stress Protein Expression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:110-119. [PMID: 39820117 PMCID: PMC11747728 DOI: 10.9758/cpn.24.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 01/19/2025]
Abstract
Objective Epothilone D (EpoD), microtubule (MT) stabilizing agent, demonstrated promising results in the animal models of Alzheimer's disease, Parkinson's disease and schizophrenia. The present study sought to investigate preventive effects of EpoD on altered changes of MT related proteins and endoplasmic reticulum (ER) stress proteins induced by social defeat stress (SDS). Methods We measured protein expression levels of α-tubulin and its post-translational modifications, MT-associated protein 2, stathmin1 and 2 with their phosphorylated forms, and ER stress markers, 78-kDa glucose-regulated protein (GRP-78) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the prefrontal cortex (PFC) and hippocampus (HIP) of C57BL/6J strain mice treated with EpoD (2 mg/kg) or its vehicle, dimethylsulfoxide (DMSO), and exposed to SDS. Results We observed lower levels of acetylated α-tubulin, MAP2, p-STMN (Ser16), and GRP-78 in the PFC of the EpoD-Con group when compared to the DMSO-Con group. On the other hand, in the HIP, there were significantly higher levels of tyrosinated α-tubulin and GRP-78 in the EpoD-Defeat group compared to the DMSO-Defeat group. Furthermore, the level of MAP2 in the HIP was found to be lower in the EpoD-Con group compared to the DMSO-Con group. Conclusion Our results suggest that EpoD exhibits a dual impact, manifesting both beneficial and detrimental effects on the aberrant changes of MT-related proteins and ER stress proteins induced by SDS, depending on the brain regions. These findings underscore the complexity of EpoD's effects, necessitating further exploration to understand its intricate mechanisms in cellular pathways linked to SDS.
Collapse
Affiliation(s)
- Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
7
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
9
|
Ten Martin D, Jardin N, Vougny J, Giudicelli F, Gasmi L, Berbée N, Henriot V, Lebrun L, Haumaître C, Kneussel M, Nicol X, Janke C, Magiera MM, Hazan J, Fassier C. Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes. EMBO J 2025; 44:107-140. [PMID: 39613968 PMCID: PMC11695996 DOI: 10.1038/s44318-024-00307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024] Open
Abstract
The microtubule cytoskeleton is a major driving force of neuronal circuit development. Fine-tuned remodelling of this network by selective activation of microtubule-regulating proteins, including microtubule-severing enzymes, has emerged as a central process in neuronal wiring. Tubulin posttranslational modifications control both microtubule properties and the activities of their interacting proteins. However, whether and how tubulin posttranslational modifications may contribute to neuronal connectivity has not yet been addressed. Here we show that the microtubule-severing proteins p60-katanin and spastin play specific roles in axon guidance during zebrafish embryogenesis and identify a key role for tubulin polyglutamylation in their functional specificity. Furthermore, our work reveals that polyglutamylases with undistinguishable activities in vitro, TTLL6 and TTLL11, play exclusive roles in motor circuit wiring by selectively tuning p60-katanin- and spastin-driven motor axon guidance. We confirm the selectivity of TTLL11 towards spastin regulation in mouse cortical neurons and establish its relevance in preventing axonal degeneration triggered by spastin haploinsufficiency. Our work thus provides mechanistic insight into the control of microtubule-driven neuronal development and homeostasis and opens new avenues for developing therapeutic strategies in spastin-associated hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Daniel Ten Martin
- Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France
| | - Nicolas Jardin
- Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France
| | - Juliette Vougny
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
| | - François Giudicelli
- Institut de Biologie de l'École Normale Supérieure, ENS, CNRS UMR8197, INSERM U1024, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France
| | - Naomi Berbée
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
- Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Véronique Henriot
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Laura Lebrun
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Cécile Haumaître
- Université Paris Diderot, INSERM UMR1149, ERL CNRS 8252, Paris, France
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xavier Nicol
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Jamilé Hazan
- Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241, INSERM U1050, Paris, France.
| | - Coralie Fassier
- Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012 Paris, France.
| |
Collapse
|
10
|
Girão H, Macário-Monteiro J, Figueiredo AC, Silva E Sousa R, Doria E, Demidov V, Osório H, Jacome A, Meraldi P, Grishchuk EL, Maiato H. α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments. Nat Commun 2024; 15:9720. [PMID: 39521805 PMCID: PMC11550433 DOI: 10.1038/s41467-024-54155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Post-translational cycles of α-tubulin detyrosination and tyrosination generate microtubule diversity, the cellular functions of which remain largely unknown. Here we show that α-tubulin detyrosination regulates kinetochore-microtubule attachments to ensure normal chromosome oscillations and timely anaphase onset during mitosis. Remarkably, detyrosinated α-tubulin levels near kinetochore microtubule plus-ends depend on the direction of chromosome motion during metaphase. Proteomic analyses unveil that the KNL-1/MIS12/NDC80 (KMN) network that forms the core microtubule-binding site at kinetochores and the microtubule-rescue protein CLASP2 are enriched on tyrosinated and detyrosinated microtubules during mitosis, respectively. α-tubulin detyrosination enhances CLASP2 binding and NDC80 complex diffusion along the microtubule lattice in vitro. Rescue experiments overexpressing NDC80, including variants with slower microtubule diffusion, suggest a functional interplay with α-tubulin detyrosination for the establishment of a labile kinetochore-microtubule interface. These results offer a mechanistic explanation for how different detyrosinated α-tubulin levels near kinetochore microtubule plus-ends fine-tune load-bearing attachments to both growing and shrinking microtubules.
Collapse
Affiliation(s)
- Hugo Girão
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Joana Macário-Monteiro
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ana C Figueiredo
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ricardo Silva E Sousa
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elena Doria
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Vladimir Demidov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hugo Osório
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, 4200-135, Porto, Portugal
| | - Ariana Jacome
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Helder Maiato
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
11
|
Masahiro Hirai, Suzuki K, Kassai Y, Konishi Y. 3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility. Neurochem Int 2024; 179:105832. [PMID: 39154836 DOI: 10.1016/j.neuint.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
3-Nitrotyrosine (3-NT), a byproduct of oxidative and nitrosative stress, is implicated in age-related neurodegenerative disorders. Current literature suggests that free 3-NT becomes integrated into the carboxy-terminal domain of α-tubulin via the tyrosination/detyrosination cycle. Independently of this integration, 3-NT has been associated with the cell death of dopaminergic neurons. Given the critical role of tyrosination/detyrosination in governing axonal morphology and function, the substitution of tyrosine with 3-NT in this process may potentially disrupt axonal homeostasis, although this aspect remains underexplored. In this study, we examined the impact of 3-NT on the axons of cerebellar granule neurons, which is used as a model for non-dopaminergic neurons. Our observations revealed axonal shortening, which correlated with the incorporation of 3-NT into α-tubulin. Importantly, this axonal effect was observed prior to the onset of cellular death. Furthermore, 3-NT was found to diminish mitochondrial motility within the axon, leading to a subsequent reduction in mitochondrial membrane potential. The suppression of syntaphilin, a protein responsible for anchoring mitochondria to microtubules, restored the mitochondrial motility and axonal elongation that were inhibited by 3-NT. These findings underscore the inhibitory role of 3-NT in axonal elongation by impeding mitochondrial movement, suggesting its potential involvement in axonal dysfunction within non-dopaminergic neurons.
Collapse
Affiliation(s)
- Masahiro Hirai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Kohei Suzuki
- Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yusuke Kassai
- Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan
| | - Yoshiyuki Konishi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Industrial Innovation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui, Japan; Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
12
|
Jang EH, Choi H, Hur EM. Microtubule function and dysfunction in the nervous system. Mol Cells 2024; 47:100111. [PMID: 39265797 PMCID: PMC11474369 DOI: 10.1016/j.mocell.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Microtubules are core components of the neuronal cytoskeleton, providing structural support for the complex cytoarchitecture of neurons and serving as tracks for long-distance transport. The properties and functions of neuronal microtubules are controlled by tubulin isoforms and a variety of post-translational modifications, collectively known as the "tubulin code." The tubulin code exerts direct control over the intrinsic properties of neuronal microtubules and regulates the repertoire of proteins that read the code, which in turn, has a significant impact on microtubule stability and dynamics. Here, we review progress in the understanding of the tubulin code in the nervous system, with a particular focus on tubulin post-translational modifications that have been proposed as potential contributors to the development and maintenance of the mammalian nervous system. Furthermore, we also discuss the potential links between disruptions in the tubulin code and neurological disorders, including neurodevelopmental abnormalities and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Harryn Choi
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
13
|
Bagdadi N, Wu J, Delaroche J, Serre L, Delphin C, De Andrade M, Carcel M, Nawabi H, Pinson B, Vérin C, Couté Y, Gory-Fauré S, Andrieux A, Stoppin-Mellet V, Arnal I. Stable GDP-tubulin islands rescue dynamic microtubules. J Cell Biol 2024; 223:e202307074. [PMID: 38758215 PMCID: PMC11101955 DOI: 10.1083/jcb.202307074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/26/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.
Collapse
Affiliation(s)
- Nassiba Bagdadi
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Juliette Wu
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Julie Delaroche
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Laurence Serre
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Christian Delphin
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Manon De Andrade
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Marion Carcel
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Homaira Nawabi
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Benoît Pinson
- Metabolic Analyses Service, TBMCore—Université de Bordeaux—CNRS UAR 3427—INSERM US005, Bordeaux, France
| | - Claire Vérin
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048, Grenoble, France
| | - Sylvie Gory-Fauré
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Annie Andrieux
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Virginie Stoppin-Mellet
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Isabelle Arnal
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| |
Collapse
|
14
|
Smith IM, Ursitti JA, Majeti P, Givpoor N, Stemberger MB, Hengen A, Banerjee S, Stains J, Martin SS, Ward C, Stroka KM. High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599307. [PMID: 38948841 PMCID: PMC11212920 DOI: 10.1101/2024.06.17.599307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cellular mechanical properties influence cellular functions across pathological and physiological systems. The observation of these mechanical properties is limited in part by methods with a low throughput of acquisition or with low accessibility. To overcome these limitations, we have designed, developed, validated, and optimized a microfluidic cellular deformation system (MCDS) capable of mechanotyping suspended cells on a population level at a high throughput rate of ∼300 cells pers second. The MCDS provides researchers with a viable method for efficiently quantifying cellular mechanical properties towards defining prognostic implications of mechanical changes in pathology or screening drugs to modulate cytoskeletal integrity.
Collapse
|
15
|
Bak J, Brummelkamp TR, Perrakis A. Decoding microtubule detyrosination: enzyme families, structures, and functional implications. FEBS Lett 2024; 598:1453-1464. [PMID: 38811347 DOI: 10.1002/1873-3468.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.
Collapse
Affiliation(s)
- Jitske Bak
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Konietzny A, Han Y, Popp Y, van Bommel B, Sharma A, Delagrange P, Arbez N, Moutin MJ, Peris L, Mikhaylova M. Efficient axonal transport of endolysosomes relies on the balanced ratio of microtubule tyrosination and detyrosination. J Cell Sci 2024; 137:jcs261737. [PMID: 38525600 PMCID: PMC11112122 DOI: 10.1242/jcs.261737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes.
Collapse
Affiliation(s)
- Anja Konietzny
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin 10115, Germany
- Guest Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yuhao Han
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin 10115, Germany
- Guest Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg 22607, Germany
- Structural Cell Biology of Viruses, Leibniz Institute of Virology (LIV), Hamburg 20251, Germany
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin 10115, Germany
- Guest Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Bas van Bommel
- Guest Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Aditi Sharma
- University Grenoble Alpes, Inserm U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Nicolas Arbez
- Institut de Recherche Servier, Croissy 78290, France
| | - Marie-Jo Moutin
- University Grenoble Alpes, Inserm U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- University Grenoble Alpes, Inserm U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin 10115, Germany
- Guest Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
17
|
Ziak J, Dorskind JM, Trigg B, Sudarsanam S, Jin XO, Hand RA, Kolodkin AL. Microtubule-binding protein MAP1B regulates interstitial axon branching of cortical neurons via the tubulin tyrosination cycle. EMBO J 2024; 43:1214-1243. [PMID: 38388748 PMCID: PMC10987652 DOI: 10.1038/s44318-024-00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial (or collateral) axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs). This method allows for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. These data suggest a cell-autonomous molecular regulation of cortical neuron axon morphology, in which GSK3β can release a MAP1B-mediated brake on interstitial axon branching upstream of the posttranslational tubulin code.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Novartis Institutes for BioMedical Research, Boston, MA, USA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Xinyu O Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Randal A Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Prilenia Therapeutics, Boston, MA, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
19
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Ziak J, Dorskind J, Trigg B, Sudarsanam S, Hand R, Kolodkin AL. MAP1B Regulates Cortical Neuron Interstitial Axon Branching Through the Tubulin Tyrosination Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560024. [PMID: 37873083 PMCID: PMC10592918 DOI: 10.1101/2023.10.02.560024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs), allowing for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. We propose that MAP1B functions as a brake on axon branching that can be released by GSK3β activation, regulating the tubulin code and thereby playing an integral role in sculpting cortical neuron axon morphology.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Joelle Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Novartis Institutes for BioMedical Research, Boston, MA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Randal Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Prilenia Therapeutics, Boston, MA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| |
Collapse
|
21
|
Lavrsen K, Rajendraprasad G, Leda M, Eibes S, Vitiello E, Katopodis V, Goryachev AB, Barisic M. Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc Natl Acad Sci U S A 2023; 120:e2300322120. [PMID: 37216553 PMCID: PMC10235987 DOI: 10.1073/pnas.2300322120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Elisa Vitiello
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Vasileios Katopodis
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| |
Collapse
|
22
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
23
|
Sun X, Wang T. Research progress on the pathogenesis of CDKL5 pathogenic variants and related encephalopathy. Eur J Pediatr 2023:10.1007/s00431-023-05006-z. [PMID: 37166538 DOI: 10.1007/s00431-023-05006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a gene encoding a serine/threonine kinase that possesses an N-terminal catalytic domain and a large C-terminal domain and is located on the short arm of the X-chromosome at position 22 (Xp22). CDKL5 regulates neuronal migration, axonal growth, dendritic morphogenesis, and synaptic development and affects synaptic function. Pathogenic variants include deletions, truncations, splice variants, and missense variants. The specificity of CDKL5 is mainly determined by the shared sequence of amino acid residues, which is the phosphorylation site of the target protein with the motif Arg-Pro-X-Ser/Thr-Ala/Pro/Gly/Ser (R-P-X-[S/T]-[A/G/P/S]). Developmental encephalopathy caused by pathogenic variants of CDKL5 has a variety of nervous system symptoms, such as epilepsy, hypotonia, growth retardation, dyskinesia, cortical visual impairment, sleep disorders, and other clinical symptoms. This review summarizes the mechanism of CDKL5-induced allogeneic lesions in the nervous system and the clinical manifestations of related encephalopathy. Conclusion: This review clarifies CDKL5's participation in neurodevelopmental diseases as well as its crucial function in dividing cells, cultured neurons, knockout mice, and human iPSC-derived neurons. CDKL5 variants help identify clinical diagnostic biomarkers. Although a few direct substrates of CDKL5 have been identified, more must be found in order to fully comprehend the signaling pathways connected to CDKL5 in the brain and the mechanisms that underlie its activities.
Collapse
Affiliation(s)
- Xuyan Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Tiancheng Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Song Z, Mao H, Liu J, Sun W, Wu S, Lu X, Jin C, Yang J. Lanthanum Chloride Induces Axon Abnormality Through LKB1-MARK2 and LKB1-STK25-GM130 Signaling Pathways. Cell Mol Neurobiol 2023; 43:1181-1196. [PMID: 35661286 PMCID: PMC11414431 DOI: 10.1007/s10571-022-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.
Collapse
Affiliation(s)
- Zeli Song
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Haoyue Mao
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
25
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
27
|
Hotta T, Plemmons A, Gebbie M, Ziehm TA, Blasius TL, Johnson C, Verhey KJ, Pearring JN, Ohi R. Mechanistic Analysis of CCP1 in Generating ΔC2 α-Tubulin in Mammalian Cells and Photoreceptor Neurons. Biomolecules 2023; 13:357. [PMID: 36830726 PMCID: PMC9952995 DOI: 10.3390/biom13020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
An important post-translational modification (PTM) of α-tubulin is the removal of amino acids from its C-terminus. Removal of the C-terminal tyrosine residue yields detyrosinated α-tubulin, and subsequent removal of the penultimate glutamate residue produces ΔC2-α-tubulin. These PTMs alter the ability of the α-tubulin C-terminal tail to interact with effector proteins and are thereby thought to change microtubule dynamics, stability, and organization. The peptidase(s) that produces ΔC2-α-tubulin in a physiological context remains unclear. Here, we take advantage of the observation that ΔC2-α-tubulin accumulates to high levels in cells lacking tubulin tyrosine ligase (TTL) to screen for cytosolic carboxypeptidases (CCPs) that generate ΔC2-α-tubulin. We identify CCP1 as the sole peptidase that produces ΔC2-α-tubulin in TTLΔ HeLa cells. Interestingly, we find that the levels of ΔC2-α-tubulin are only modestly reduced in photoreceptors of ccp1-/- mice, indicating that other peptidases act synergistically with CCP1 to produce ΔC2-α-tubulin in post-mitotic cells. Moreover, the production of ΔC2-α-tubulin appears to be under tight spatial control in the photoreceptor cilium: ΔC2-α-tubulin persists in the connecting cilium of ccp1-/- but is depleted in the distal portion of the photoreceptor. This work establishes the groundwork to pinpoint the function of ΔC2-α-tubulin in proliferating and post-mitotic mammalian cells.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Plemmons
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margo Gebbie
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trevor A. Ziehm
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jillian N. Pearring
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
29
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
30
|
Imanaka C, Shimada S, Ito S, Kamada M, Iguchi T, Konishi Y. A model for generating differences in microtubules between axonal branches depending on the distance from terminals. Brain Res 2023; 1799:148166. [PMID: 36402177 DOI: 10.1016/j.brainres.2022.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
In the remodeling of axonal arbor, the growth and retraction of branches are differentially regulated within a single axon. Although cell-autonomously generated differences in microtubule (MT) turnover are thought to be involved in selective branch regulation, the cellular system whereby neurons generate differences of MTs between axonal branches has not been clarified. Because MT turnover tends to be slower in longer branches compared with neighboring shorter branches, feedback regulation depending on branch length is thought to be involved. In the present study, we generated a model of MT lifetime in axonal terminal branches by adapting a length-dependent model in which parameters for MT dynamics were constant in the arbor. The model predicted that differences in MT lifetime between neighboring branches could be generated depending on the distance from terminals. In addition, the following points were predicted. Firstly, destabilization of MTs throughout the arbor decreased the differences in MT lifetime between branches. Secondly, differences of MT lifetime existed even before MTs entered the branch point. In axonal MTs in primary neurons, treatment with a low concentration of nocodazole significantly decreased the differences of detyrosination (deTyr) and tyrosination (Tyr) of tubulins, indicators of MT turnover. Expansion microscopy of the axonal shaft before the branch point revealed differences in deTyr/Tyr modification on MTs. Our model recapitulates the differences in MT turnover between branches and provides a feedback mechanism for MT regulation that depends on the axonal arbor geometry.
Collapse
Affiliation(s)
- Chiaki Imanaka
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Shimada
- Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shino Ito
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Marina Kamada
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Tokuichi Iguchi
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan; Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui 910-3190, Japan
| | - Yoshiyuki Konishi
- Department of Applied Chemistry and Biotechnology, Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan.
| |
Collapse
|
31
|
Ramirez-Rios S, Choi SR, Sanyal C, Blum TB, Bosc C, Krichen F, Denarier E, Soleilhac JM, Blot B, Janke C, Stoppin-Mellet V, Magiera MM, Arnal I, Steinmetz MO, Moutin MJ. VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules. J Cell Biol 2022; 222:213744. [PMID: 36512346 PMCID: PMC9750192 DOI: 10.1083/jcb.202205096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Sung Ryul Choi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Thorsten B. Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Fatma Krichen
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Jean-Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Carsten Janke
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Virginie Stoppin-Mellet
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Maria M. Magiera
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland,Biozentrum, University of Basel, Basel, Switzerland
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France,Correspondence to Marie-Jo Moutin:
| |
Collapse
|
32
|
Makarov D, Kielkowski P. Chemical Proteomics Reveals Protein Tyrosination Extends Beyond the Alpha-Tubulins in Human Cells. Chembiochem 2022; 23:e202200414. [PMID: 36218090 PMCID: PMC10099736 DOI: 10.1002/cbic.202200414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Indexed: 01/25/2023]
Abstract
Tubulin detyrosination-tyrosination cycle regulates the stability of microtubules. With respect to α-tubulins, the tyrosination level is maintained by a single tubulin-tyrosine ligase (TTL). However, the precise dynamics and tubulin isoforms which undergo (de)tyrosination in neurons are unknown. Here, we exploit the substrate promiscuity of the TTL to introduce an O-propargyl-l-tyrosine to neuroblastoma cells and neurons. Mass spectrometry-based chemical proteomics in neuroblastoma cells using the O-propargyl-l-tyrosine probe revealed previously discussed tyrosination of TUBA4A, MAPRE1, and other non-tubulin proteins. This finding was further corroborated in differentiating neurons. Together we present the method for tubulin tyrosination profiling in living cells. Our results show that detyrosination-tyrosination is not restricted to α-tubulins with coded C-terminal tyrosine and is thus involved in fine-tuning of the tubulin and non-tubulin proteins during neuronal differentiation.
Collapse
Affiliation(s)
- Dmytro Makarov
- LMU München, Department of Chemistry, Institute for Chemical Epigenetics - Munich (ICEM), Würmtalstrasse 201, 81375, Munich, Germany
| | - Pavel Kielkowski
- LMU München, Department of Chemistry, Institute for Chemical Epigenetics - Munich (ICEM), Würmtalstrasse 201, 81375, Munich, Germany
| |
Collapse
|
33
|
Hosseini S, van Ham M, Erck C, Korte M, Michaelsen-Preusse K. The role of α-tubulin tyrosination in controlling the structure and function of hippocampal neurons. Front Mol Neurosci 2022; 15:931859. [PMCID: PMC9627282 DOI: 10.3389/fnmol.2022.931859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are central components of the neuronal cytoskeleton and play a critical role in CNS integrity, function, and plasticity. Neuronal MTs are diverse due to extensive post-translational modifications (PTMs), particularly detyrosination/tyrosination, in which the C-terminal tyrosine of α-tubulin is cyclically removed by a carboxypeptidase and reattached by a tubulin-tyrosine ligase (TTL). The detyrosination/tyrosination cycle of MTs has been shown to be an important regulator of MT dynamics in neurons. TTL-null mice exhibit impaired neuronal organization and die immediately after birth, indicating TTL function is vital to the CNS. However, the detailed cellular role of TTL during development and in the adult brain remains elusive. Here, we demonstrate that conditional deletion of TTL in the neocortex and hippocampus during network development results in a pathophysiological phenotype defined by incomplete development of the corpus callosum and anterior commissures due to axonal growth arrest. TTL loss was also associated with a deficit in spatial learning, impaired synaptic plasticity, and reduced number of spines in hippocampal neurons, suggesting that TTL also plays a critical role in hippocampal network development. TTL deletion after postnatal development, specifically in the hippocampus and in cultured hippocampal neurons, led to a loss of spines and impaired spine structural plasticity. This indicates a novel and important function of TTL for synaptic plasticity in the adult brain. In conclusion, this study reveals the importance of α-tubulin tyrosination, which defines the dynamics of MTs, in controlling proper network formation and suggests TTL-mediated tyrosination as a new key determinant of synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Erck
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kristin Michaelsen-Preusse,
| |
Collapse
|
34
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
35
|
Martínez-Hernández J, Parato J, Sharma A, Soleilhac JM, Qu X, Tein E, Sproul A, Andrieux A, Goldberg Y, Moutin MJ, Bartolini F, Peris L. Crosstalk between acetylation and the tyrosination/detyrosination cycle of α-tubulin in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:926914. [PMID: 36092705 PMCID: PMC9459041 DOI: 10.3389/fcell.2022.926914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) support a variety of neuronal functions, such as maintenance of cell structure, transport, and synaptic plasticity. Neuronal MTs are highly heterogeneous due to several tubulin isotypes and the presence of multiple post-translational modifications, such as detyrosination and acetylation. The tubulin tyrosination/detyrosination cycle is a key player in the maintenance of MT dynamics, as tyrosinated tubulin is associated with more dynamic MTs, while detyrosinated tubulin is linked to longer lived, more stable MTs. Dysfunction of tubulin re-tyrosination was recently correlated to Alzheimer’s disease progression. The implication of tubulin acetylation in Alzheimer’s disease has, however, remained controversial. Here, we demonstrate that tubulin acetylation accumulates in post-mortem brain tissues from Alzheimer’s disease patients and human neurons harboring the Alzheimer’s familial APP-V717I mutation. We further show that tubulin re-tyrosination, which is defective in Alzheimer’s disease, can control acetylated tubulin in primary neurons irrespective of the levels of the enzymes regulating tubulin acetylation, suggesting that reduced MT dynamics associated with impaired tubulin re-tyrosination might contribute to the accumulation of tubulin acetylation that we detected in Alzheimer’s disease.
Collapse
Affiliation(s)
- José Martínez-Hernández
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Natural Sciences, SUNY Empire State College, Brooklyn, NY, United States
| | - Aditi Sharma
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Jean-Marc Soleilhac
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Ellen Tein
- Taub Institute for Research Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Taub Institute for Research Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Annie Andrieux
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Yves Goldberg
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Marie-Jo Moutin
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Leticia Peris, ; Francesca Bartolini,
| | - Leticia Peris
- Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
- *Correspondence: Leticia Peris, ; Francesca Bartolini,
| |
Collapse
|
36
|
Müller M, Gorek L, Kamm N, Jacob R. Manipulation of the Tubulin Code Alters Directional Cell Migration and Ciliogenesis. Front Cell Dev Biol 2022; 10:901999. [PMID: 35903547 PMCID: PMC9315229 DOI: 10.3389/fcell.2022.901999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Conjunction of epithelial cells into monolayer sheets implies the ability to migrate and to undergo apicobasal polarization. Both processes comprise reorganization of cytoskeletal elements and rearrangements of structural protein interactions. We modulated expression of tubulin tyrosin ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, to study the role of tubulin detyrosination/-tyrosination in the orientation of cell motility and in epithelial morphogenesis. Oriented cell migration and the organization of focal adhesions significantly lose directionality with diminishing amounts of microtubules enriched in detyrosinated tubulin. On the other hand, increasing quantities of detyrosinated tubulin results in faster plus end elongation of microtubules in migrating and in polarized epithelial cells. These plus ends are decorated by the plus end binding protein 1 (EB1), which mediates interaction between microtubules enriched in detyrosinated tubulin and the integrin-ILK complex at focal adhesions. EB1 accumulates at the apical cell pole at the base of the primary cilium following apicobasal polarization. Polarized cells almost devoid of detyrosinated tubulin form stunted primary cilia and multiluminal cysts in 3D-matrices. We conclude that the balance between detyrosinated and tyrosinated tubulin alters microtubule dynamics, affects the orientation of focal adhesions and determines the organization of primary cilia on epithelial cells.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Gorek
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
- *Correspondence: Ralf Jacob,
| |
Collapse
|
37
|
Grignard J, Lamamy V, Vermersch E, Delagrange P, Stephan JP, Dorval T, Fages F. Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design. PLoS Comput Biol 2022; 18:e1010236. [PMID: 35759459 PMCID: PMC9236252 DOI: 10.1371/journal.pcbi.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.
Collapse
Affiliation(s)
- Jeremy Grignard
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - Véronique Lamamy
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Eva Vermersch
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Philippe Delagrange
- Therapeutic Area Neuropsychiatry and Immunoinflammation, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Jean-Philippe Stephan
- In Vitro Pharmacology Unit, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Thierry Dorval
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - François Fages
- Team Project Lifeware, Institut National de Recherche en Informatique et Automatique, Inria Saclay, Palaiseau, France
- * E-mail: (JG); (TD); (FF)
| |
Collapse
|
38
|
Landskron L, Bak J, Adamopoulos A, Kaplani K, Moraiti M, van den Hengel LG, Song JY, Bleijerveld OB, Nieuwenhuis J, Heidebrecht T, Henneman L, Moutin MJ, Barisic M, Taraviras S, Perrakis A, Brummelkamp TR. Posttranslational modification of microtubules by the MATCAP detyrosinase. Science 2022; 376:eabn6020. [PMID: 35482892 DOI: 10.1126/science.abn6020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.
Collapse
Affiliation(s)
- Lisa Landskron
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Jitske Bak
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Athanassios Adamopoulos
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Konstantina Kaplani
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Maria Moraiti
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Joppe Nieuwenhuis
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Linda Henneman
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Marie-Jo Moutin
- Université Grenoble Alpes, INSERM, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Anastassis Perrakis
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| |
Collapse
|
39
|
Higgs VE, Das RM. Establishing neuronal polarity: microtubule regulation during neurite initiation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac007. [PMID: 38596701 PMCID: PMC10913830 DOI: 10.1093/oons/kvac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 04/11/2024]
Abstract
The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-date picture of this vital stage in neuronal development.
Collapse
Affiliation(s)
- Victoria E Higgs
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Raman M Das
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Bär J, Popp Y, Koudelka T, Tholey A, Mikhaylova M. Regulation of microtubule detyrosination by calcium and conventional calpains. J Cell Sci 2022; 135:274960. [DOI: 10.1242/jcs.259108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Detyrosination is a major post-translational modification of microtubules (MTs), which has significant impact on MT function in cell division, differentiation, growth, migration, and intracellular trafficking. Detyrosination of α-tubulin occurs mostly via the recently identified complex of vasohibin1/2 (VASH1/2) and small vasohibin binding protein (SVBP). However, there is still remaining detyrosinating activity in the absence of VASH1/2:SVBP, and little is known about the regulation of detyrosination. Here, we found that intracellular calcium is required for efficient MT detyrosination. Furthermore, we show that calcium-dependent proteases calpains 1 and 2 regulate MT detyrosination in VASH1:SVBP overexpressing human embryonal kidney (HEK293T) cells. We identified new calpain cleavage sites in the N-terminal disordered region of VASH1. However, this cleavage did not affect the enzymatic activity of VASH. In conclusion, we suggest that the regulation of VASH1-mediated MT detyrosination by calpains could occur independent of VASH catalytic activity or via another yet unknown tubulin carboxypeptidase. Importantly, calpains’ calcium dependency could allow a fine regulation of MT detyrosination. Thus, identifying the calpain-regulated pathway of MT detyrosination can be of major importance for basic and clinical research.
Collapse
Affiliation(s)
- Julia Bär
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Guest Group “Neuronal Protein Transport”, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yannes Popp
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Guest Group “Neuronal Protein Transport”, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Guest Group “Neuronal Protein Transport”, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119241. [PMID: 35181405 DOI: 10.1016/j.bbamcr.2022.119241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Microtubules (MTs) mediate various cellular functions such as structural support, chromosome segregation, and intracellular transport. To achieve this, the pivotal properties of MTs have to be changeable and tightly controlled. This is enabled by a high variety of tubulin posttranslational modifications, which influence MT properties directly, via altering the MT lattice structurally, or indirectly by changing MT interaction partners. Here, the distinction between these direct and indirect effects of MT PTMs are exemplified by acetylation of the luminal α-tubulin K40 resulting in decreased rigidity of MTs, and by MT detyrosination which decreases interaction with depolymerizing proteins, thus causing more stable MTs. We discuss how these PTMs are reversed and regulated, e.g. on the level of enzyme transcription, localization, and activity via various signalling pathways including the conventional calcium-dependent proteases calpains and how advances in microscopy techniques and development of live-sensors facilitate the understanding of MT PTM interaction and effects.
Collapse
Affiliation(s)
- Julia Bär
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Michael Bucher
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
42
|
Kimmerlin Q, Strassel C, Eckly A, Lanza F. The tubulin code in platelet biogenesis. Semin Cell Dev Biol 2022; 137:63-73. [PMID: 35148939 DOI: 10.1016/j.semcdb.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably β1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.
Collapse
Affiliation(s)
- Quentin Kimmerlin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| |
Collapse
|
43
|
Flores-Martin JB, Bonnet LV, Palandri A, Zamanillo Hermida S, Hallak MH, Galiano MR. The 19S proteasome subunit Rpt5 reversibly associates with cold-stable microtubules in glial cells at low temperatures. FEBS Lett 2022; 596:1165-1177. [PMID: 35114005 DOI: 10.1002/1873-3468.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
The ubiquitin-proteasome system (UPS) degrades intracellular proteins through the 26S proteasome. We analyzed how cold stress affects the UPS in glial cells. Together with a reduction in the 20S proteolytic activity and increased levels of polyubiquitinated proteins, exposure of glial cell cultures to cold induces a partial disassembly of the 26S proteasome. In particular, we found that Rpt5, a subunit of the 19S proteasome, relocates to cold-stable microtubules, although no apparent cytoskeletal redistribution was detected for other analyzed subunits of the 19S or 20S complexes. Furthermore, we demonstrate that both the expression of the microtubule-associated protein MAP6 and the post-translational acetylation of α-tubulin modulate the association of Rpt5 with microtubules. This reversible association could be related to functional preservation of the proteolytic complex during cold stress.
Collapse
Affiliation(s)
- Jésica B Flores-Martin
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Laura V Bonnet
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Anabela Palandri
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Sofía Zamanillo Hermida
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Marta H Hallak
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Mauricio R Galiano
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
44
|
Gadadhar S, Hirschmugl T, Janke C. The tubulin code in mammalian sperm development and function. Semin Cell Dev Biol 2022; 137:26-37. [PMID: 35067438 DOI: 10.1016/j.semcdb.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Microtubules are cytoskeletal elements that play key roles throughout the different steps of sperm development. As an integral part of the sperm flagellum, the molecular machine that generates sperm motility, microtubules are also essential for the progressive swimming of sperm to the oocyte, which is a prerequisite for fertilisation. Given the central role of microtubules in all steps of spermatogenesis, their functions need to be tightly controlled. Recent work has showcased tubulin posttranslational modifications as key players in sperm development and function, with aberrations often leading to male infertility with a broad spectrum of sperm defects. Posttranslational modifications are part of the tubulin code, a mechanism that can control microtubule functions by modulating the properties of their molecular building blocks, the tubulin proteins. Here we review the current knowledge on the implications of the tubulin code in sperm development and functions and its importance for male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
45
|
Peris L, Parato J, Qu X, Soleilhac JM, Lanté F, Kumar A, Pero ME, Martínez-Hernández J, Corrao C, Falivelli G, Payet F, Gory-Fauré S, Bosc C, Blanca Ramirez M, Sproul A, Brocard J, Di Cara B, Delagrange P, Buisson A, Goldberg Y, Moutin MJ, Bartolini F, Andrieux A. OUP accepted manuscript. Brain 2022; 145:2486-2506. [PMID: 35148384 PMCID: PMC9337816 DOI: 10.1093/brain/awab436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer’s disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer’s disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer’s disease.
Collapse
Affiliation(s)
- Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Natural Sciences, SUNY ESC, Brooklyn, NY 11201, USA
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jean Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - José Martínez-Hernández
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Corrao
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Giulia Falivelli
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Floriane Payet
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marian Blanca Ramirez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yves Goldberg
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
46
|
Smith BJ, Carregari VC. Post-Translational Modifications During Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:29-38. [DOI: 10.1007/978-3-031-05460-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Trisciuoglio D, Degrassi F. The Tubulin Code and Tubulin-Modifying Enzymes in Autophagy and Cancer. Cancers (Basel) 2021; 14:cancers14010006. [PMID: 35008169 PMCID: PMC8750717 DOI: 10.3390/cancers14010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Microtubules are tubulin polymers that constitute the structure of eukaryotic cells. They control different cell functions that are often deregulated in cancer, such as cell shape, cell motility and the intracellular movement of organelles. Here, we focus on the crucial role of tubulin modifications in determining different cancer characteristics, including metastatic cell migration and therapy resistance. We also discuss the influence of microtubule modifications on the autophagic process—the cellular degradation pathway that influences cancer growth. We discuss findings showing that inducing microtubule modifications can be used as a means to kill cancer cells by inhibiting autophagy. Abstract Microtubules are key components of the cytoskeleton of eukaryotic cells. Microtubule dynamic instability together with the “tubulin code” generated by the choice of different α- and β- tubulin isoforms and tubulin post-translational modifications have essential roles in the control of a variety of cellular processes, such as cell shape, cell motility, and intracellular trafficking, that are deregulated in cancer. In this review, we will discuss available evidence that highlights the crucial role of the tubulin code in determining different cancer phenotypes, including metastatic cell migration, drug resistance, and tumor vascularization, and the influence of modulating tubulin-modifying enzymes on cancer cell survival and aggressiveness. We will also discuss the role of post-translationally modified microtubules in autophagy—the lysosomal-mediated cellular degradation pathway—that exerts a dual role in many cancer types, either promoting or suppressing cancer growth. We will give particular emphasis to the role of tubulin post-translational modifications and their regulating enzymes in controlling the different stages of the autophagic process in cancer cells, and consider how the experimental modulation of tubulin-modifying enzymes influences the autophagic process in cancer cells and impacts on cancer cell survival and thereby represents a new and fruitful avenue in cancer therapy.
Collapse
|
48
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
49
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
50
|
Sun L, Wang G, Wu Z, Xie Y, Zhou L, Xiao L, Wang H. Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. Pharmacol Biochem Behav 2021; 211:173285. [PMID: 34626621 DOI: 10.1016/j.pbb.2021.173285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
While swimming exercise has been shown to positively affect the development of the nervous system, it still remains unclear whether it reduces the vulnerability to stress. In this study, male C57BL/6 mice were exposed to swimming training for 5 weeks, and then subjected to chronic unpredictable mild stress (CUMS) for 4 weeks. We found that swimming exercise prevented anxiety-like and depressive phenotypes induced by CUMS, including increased anxiety-like behavior in the open field test (OFT) and elevated plus-maze (EPM) test and increased despair behavior in the tail suspension test (TST). Moreover, the control+stress group showed reduced expression of phosphorylated AKT kinase (p-AKT), phosphorylated glycogen synthase kinase-3β (p-GSK3β), and tubulin-tyrosine ligase (Tyr-tubulin) and increased protein expression of phosphorylated collapsin response mediator protein 2 (p-CRMP-2); the control+control, swim+control, and swim+stress groups exhibited higher expression of these proteins than the control+stress group. This study confirmed that swimming exercise could reduce the vulnerability of individuals to stress and that it contributes to the AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics mediated protective effects on neuroplasticity. The AKT/GSK-3β/CRMP-2 pathway and microtubule dynamics may be involved in resilience to stress.
Collapse
Affiliation(s)
- Limin Sun
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Yumeng Xie
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Lin Zhou
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan 430060, China
| |
Collapse
|