1
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. Neuroimage 2025; 310:121154. [PMID: 40101866 DOI: 10.1016/j.neuroimage.2025.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/05/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, including ingestion and metabolic control. To date, no study has investigated how brain connections during exposure to food cues are association with peripheral insulin sensitivity in children. METHODS We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with lower and higher ISI, adjusted for age and BMIz. RESULTS Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on mean brain responses to food cues. CONCLUSIONS In response to food cues, children with lower peripheral insulin sensitivity exhibited distinctive patterns of neural connectivity, notably in the insula's functional connections, when contrasted with their counterparts with higher peripheral insulin sensitivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Palmieri J, Schönauer M. Sleep studies enter the real world. Nat Hum Behav 2025; 9:646-647. [PMID: 40069369 DOI: 10.1038/s41562-025-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Affiliation(s)
- Jessica Palmieri
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
- BrainLinks BrainTools, University of Freiburg, Freiburg, Germany.
- Bernstein Center Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Lee C, Wei X, Wang Z, Zhou H, Yan C, Jiang X, Shi G, Wang X, Liu C. Dynamic Functional Network Connectivity Pattern of the Amygdalohippocampal Complex in Individuals With Subjective Cognitive Decline. Hum Brain Mapp 2025; 46:e70194. [PMID: 40230021 PMCID: PMC11997012 DOI: 10.1002/hbm.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 04/16/2025] Open
Abstract
Subjective cognitive decline (SCD) is a potential early marker of cognitive decline and dementia. The amygdalohippocampal structure and function are closely related to cognitive decline, but few studies have investigated large-scale amygdalohippocampal brain functional network connectivity in individuals with SCD. Here, we aim to explore how the dynamic functional network connectivity (dFNC) between the amygdalohippocampal complex and other brain networks contributes to the understanding of early cognitive decline. Independent component analysis (ICA) and dFNC analysis were applied to functional magnetic resonance imaging (fMRI) data from 66 individuals with SCD to extract the amygdalohippocampal complex and identify distinct connectivity states. Cognitive performance was assessed through a composite Z score derived from a battery of neuropsychological tests. Correlation analyses were performed to examine the associations between the dFNC patterns and cognitive performance. Three distinct dFNC states were identified, each characterized by varying levels of within- and inter-network connectivity, with occurrences of 65%, 18%, and 17% respectively. Cognitive function, measured using a composite Z score, was positively correlated with amygdalohippocampal-sensorimotor network (SM) and amygdalohippocampal-visual network (VI) dFNC in State 2. Significant correlations were observed between the amygdalohippocampal complex and the left precentral gyrus (r = 0.517, FDR-corrected p = 0.005), postcentral gyrus (r = 0.487, FDR-corrected p = 0.034), and multiple visual network regions, including the lingual gyrus and lateral occipital cortex (all Ps < 0.05, FDR-corrected). These associations remained significant after adjusting for sex and age. These findings extend the current understanding of amygdalohippocampal dysfunction in cognitive decline and demonstrate that cognitive function is associated with distinct large-scale amygdalohippocampal network dynamics.
Collapse
Affiliation(s)
- Chih‐Kai Lee
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Xiao‐Ya Wei
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Ze‐Yi Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Hang Zhou
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Chao‐Qun Yan
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xin‐Yuan Jiang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Guang‐Xia Shi
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Xu Wang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Cun‐Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
4
|
Morrow E, Shepardson S, Hamann S. Enhanced recognition memory for emotional nonverbal sounds. Memory 2025; 33:461-473. [PMID: 40040552 DOI: 10.1080/09658211.2025.2472969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Emotion often enhances memory for emotional stimuli relative to neutral stimuli. This emotional memory enhancement effect has been studied extensively with visual and verbal stimuli, yet little is known regarding emotion's effects on memory for nonverbal (or environmental) sounds, such as dog snarls and infant cries. Additionally, emotion's enhancing effects on recognition for visual and verbal stimuli are selective to recollection (recognition with contextual retrieval) rather than familiarity (recognition based on memory strength), but whether this is also the case for nonverbal sounds is unknown. We examined recognition memory for negative and neutral nonverbal sounds, predicting that memory would be enhanced for negative sounds and this enhancement would be specific to recollection. Participants incidentally encoded negative and neutral sounds, and memory was tested with a remember-familiar recognition memory task after a 15-minute delay. As predicted, recognition memory was enhanced for negative sounds, was better for higher versus lower arousal negative sounds, and was specific to recollection. These findings suggest that key aspects of the emotional enhancement effect also extend to nonverbal sounds. We discuss how current theories of emotional memory which focus on memory for visual and verbal stimuli can be extended to accommodate findings with nonverbal emotional auditory stimuli.
Collapse
Affiliation(s)
- Erin Morrow
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | | - Stephan Hamann
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Zhai X, Jin J, Zhu T, Cabral DAR, Wang D, Chen J, Zhao Y, Wang K. Effects of acute aerobic exercise on emotional memory formation in individuals with methamphetamine use disorder: Encoding vs consolidation. PSYCHOLOGY OF SPORT AND EXERCISE 2025; 79:102842. [PMID: 40112938 DOI: 10.1016/j.psychsport.2025.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE This study investigates the effects of acute aerobic exercise on the encoding and consolidation processes of emotional memory in individuals with methamphetamine use disorder (MUD). METHODS A within-subject cross-over design was utilized for both experiments. In Experiment 1, thirty-two participants engaged in 30 min of moderate-to-high intensity (70 %-80 % of predicted HRmax) aerobic exercise and a sedentary task before completing a learning task. Following a 50-min interval, participants completed a recognition task. In Experiment 2, thirty-six participants first completed the learning task, then engaged in a 30-min session of moderate-to-high intensity aerobic exercise or a sedentary task. After a 20-min interval, participants undertook the recognition task. The recognition task assessed participants' accuracy in identifying old and new images, reaction times for recognition judgments, and confidence ratings. RESULTS In Experiment 1, participants in the aerobic exercise condition exhibited significantly higher discrimination index d' for neutral emotion images compared to those in the sedentary condition. Additionally, they demonstrated a significantly lower response bias index β for positive and neutral emotion images. Furthermore, participants in the aerobic exercise condition displayed significantly longer reaction times for both METH-related and negative images compared to those in the sedentary condition. In Experiment 2, no significant differences were observed in discrimination index d', response bias index β, and reaction times between the two task conditions. CONCLUSION This study reveals a significant impact of acute aerobic exercise on specific phases of emotional memory in individuals with MUD, particularly in enhancing encoding abilities. As a non-pharmacological intervention, exercise demonstrates the potential to alleviate addiction-related cognitive deficits and reduce the risk of relapse. The research further supports the prospect of integrating physical exercise into the treatment of substance use disorders, highlighting its critical role in promoting cognitive function recovery and overall therapeutic outcomes.
Collapse
Affiliation(s)
- Xiaohui Zhai
- Faculty of Sports Science, Ningbo University, Zhejiang, People's Republic of China
| | - Jianjing Jin
- Faculty of Sports Science, Ningbo University, Zhejiang, People's Republic of China
| | - Ting Zhu
- Mental Health Guidance Center, Ningbo University, Zhejiang, People's Republic of China
| | - Daniel A R Cabral
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Dongshi Wang
- Faculty of Sports Science, Ningbo University, Zhejiang, People's Republic of China.
| | - Jiachen Chen
- Faculty of Sports Science, Ningbo University, Zhejiang, People's Republic of China
| | - Yiyang Zhao
- Faculty of Sports Science, Ningbo University, Zhejiang, People's Republic of China
| | - Ke Wang
- Shiliping Compulsory Isolated Detoxification Center, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Constantinou M, Yankouskaya A, Burianová H. Valence Effects on Episodic Memory in Young and Old Adults Following Exposure to Emotional Stimuli. Eur J Neurosci 2025; 61:e70041. [PMID: 40029336 PMCID: PMC11875107 DOI: 10.1111/ejn.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Episodic memory benefits from arousal, with better retrieval linked to arousing to-be-remembered information. Arousal's impact on subsequent memory processes, particularly for nonarousing stimuli, remains unclear. Healthy ageing is associated with emotion regulation changes and declines in episodic memory, which may influence how arousal affects memory processes. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of valence on episodic memory in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three time points: during exposure to arousing and nonarousing images, encoding of neutral videos following image exposure, retrieval of the encoded videos. We hypothesised that valence would induce distinct neural activation across task stages, and exposure to negative stimuli would be associated with worse retrieval. Old adults were expected to show stronger neural responses to positive valence and less disruption from negative valence on memory performance. Behavioural results revealed that only negative valence was associated with impaired retrieval. fMRI results replicated age-related differences in memory performance, with old adults compensating through increased hippocampal and frontal gyri activity. Negative valence was associated with increased activity in the occipital cortex and precentral gyri, also affecting upcoming encoding with heightened activity in the left insula, precuneus and middle temporal gyrus. In old adults, positive valence prompted increasing neural engagement from initial exposure to retrieval, reflecting changes in emotion regulation strategies. Findings emphasise the enduring impact of negative valence on subsequent cognitive processes and suggest that age-related changes in emotional regulation influence memory-related neural processes.
Collapse
|
7
|
Ventura‐Bort C, Giraudier M, Weymar M. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Emotional Processing and Long-Term Recognition Memory: Electrophysiological Evidence Across Two Studies. Psychophysiology 2025; 62:e70034. [PMID: 40066789 PMCID: PMC11894791 DOI: 10.1111/psyp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
Recently, we found that continuous transcutaneous auricular vagus nerve stimulation (taVNS) facilitates the encoding and later recollection of emotionally relevant information, as indicated by differences in the late positive potential (LPP), memory performance, and late ERP Old/New effect. Here, we aimed to conceptually replicate and extend these findings by investigating the effects of different time-dependent taVNS stimulation protocols. In Study 1, an identical paradigm to our previous study was employed with interval stimulation (30-s on/off). Participants viewed unpleasant and neutral scenes on two consecutive days while receiving taVNS or sham stimulation and completed a recognition test 1 week later. Replicating previous results, unpleasant images encoded under taVNS, compared to sham stimulation, elicited larger amplitudes in an earlier window of the LPP during encoding, as well as more pronounced late Old/New differences. However, no effects of taVNS on memory performance were found. In Study 2, we followed up on these findings by synchronizing the stimulation cycle with image presentation to determine the taVNS effects for images encoded during the on and off cycles. We could replicate the enhancing effects of taVNS on brain potentials (early LPP and late Old/New differences) and found that taVNS improved recollection-based memory performance for both unpleasant and neutral images, independently of the stimulation cycle. Overall, our results suggest that taVNS increases electrophysiological correlates of emotional encoding and retrieval in a time-independent manner, substantiating the vagus nerve's role in emotional processing and memory formation, opening new venues for improving mnemonic processes in both clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carlos Ventura‐Bort
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
- Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| |
Collapse
|
8
|
Bogdan PC, Dolcos S, Federmeier KD, Lleras A, Schwarb H, Dolcos F. Emotional dissociations in temporal associations: opposing effects of arousal on memory for details surrounding unpleasant events. Cogn Emot 2025; 39:82-96. [PMID: 37988031 DOI: 10.1080/02699931.2023.2270196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 09/01/2023] [Indexed: 11/22/2023]
Abstract
Research targeting emotion's impact on relational episodic memory has largely focused on spatial aspects, but less is known about emotion's impact on memory for an event's temporal associations. The present research investigated this topic. Participants viewed a series of interspersed negative and neutral images with instructions to create stories linking successive images. Later, participants performed a surprise memory test, which measured temporal associations between pairs of consecutive pictures where one picture was negative and one was neutral. Analyses focused on how the order of negative and neutral images during encoding influenced retrieval accuracy. Converging results from a discovery study (N = 72) and pre-registered replication study (N = 150) revealed a "forward-favouring" effect of emotion in temporal memory encoding: Participants encoded associations between negative stimuli and subsequent neutral stimuli more strongly than associations between negative stimuli and preceding neutral stimuli. This finding may reflect a novel trade-off regarding emotion's effects on memory and is relevant for understanding affective disorders, as key clinical symptoms can be conceptualised as maladaptive memory retrieval of temporal details.
Collapse
Affiliation(s)
- Paul C Bogdan
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Sanda Dolcos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kara D Federmeier
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Alejandro Lleras
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Florin Dolcos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
9
|
Riegel M, Granja D, Amer T, Vuilleumier P, Rimmele U. Opposite effects of emotion and event segmentation on temporal order memory and object-context binding. Cogn Emot 2025; 39:117-135. [PMID: 37882239 DOI: 10.1080/02699931.2023.2270195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
Our daily lives unfold continuously, yet our memories are organised into distinct events, situated in a specific context of space and time, and chunked when this context changes (at event boundaries). Previous research showed that this process, termed event segmentation, enhances object-context binding but impairs temporal order memory. Physiologically, peaks in pupil dilation index event segmentation, similar to emotion-induced bursts of autonomic arousal. Emotional arousal also modulates object-context binding and temporal order memory. Yet, these two critical factors have not been systematically studied together. To address this gap, we ran a behavioural experiment using a paradigm validated to study event segmentation and extended it with emotion manipulation. During encoding, we sequentially presented greyscale objects embedded in coloured frames (colour changes defining events), with a neutral or aversive sound. During retrieval, we tested participants' memory of temporal order memory and object-colour binding. We found opposite effects of emotion and event segmentation on episodic memory. While event segmentation enhanced object-context binding, emotion impaired it. On the contrary, event segmentation impaired temporal order memory, but emotion enhanced it. These findings increase our understanding of episodic memory organisation in laboratory settings, and potentially in real life with perceptual changes and emotion fluctuations constantly interacting.
Collapse
Affiliation(s)
- Monika Riegel
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Granja
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Neurocenter, University of Geneva, Geneva, Switzerland
| | - Tarek Amer
- Psychology Department, University of Victoria, BC, Victoria, Canada
| | - Patrik Vuilleumier
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Neurocenter, University of Geneva, Geneva, Switzerland
| | - Ulrike Rimmele
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Ventura-Bort C, Katsumi Y, Wirkner J, Wendt J, Schwabe L, Hamm AO, Dolcos F, Weymar M. Disentangling emotional source memory: a mega-analysis on the effects of emotion on item-context binding in episodic long-term memory. Front Psychol 2024; 15:1459617. [PMID: 39807356 PMCID: PMC11727367 DOI: 10.3389/fpsyg.2024.1459617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction It has long been known that highly arousing emotional single items are better recollected than low arousing neutral items. Despite the robustness of this memory advantage, emotional arousing events may not always promote the retrieval of source details (i.e., source memory) or associated neutral information. Methods To shed more light on these effects, we pooled data from seven different studies (N = 333) to investigate the role of emotion on item-context binding in episodic memory, as well as potential interacting factors (e.g., encoding instructions, type of retrieval task, or acute stress). In all studies, participants incidentally encoded common neutral objects (i.e., items), overlaid on different pleasant, neutral, or unpleasant background scenes (i.e., contexts). One week later, the encoded objects were presented intermixed with new ones and memory for item and source contextual details was tested, also considering the contribution of recollection and familiarity-based processes. Results Linear mixed models revealed a recollection-based retrieval advantage for unpleasant and pleasant source contextual details compared to neutral ones. Bayes hypothesis-testing analysis further indicated decisive evidence in favor of a relevant role of emotional arousal and recollection in source contextual memory. Regarding item memory, linear mixed models revealed enhanced recollection-based memory for items encoded in pleasant contexts compared to their neutral and unpleasant counterparts. However, Bayes analysis revealed strong to moderate evidence for models without affective category (or its interactions), indicating that the affective category of contexts in which objects were paired during encoding had little influence on item memory performance. Discussion The present results are discussed in relation to existing evidence and current neurobiological models of emotional episodic memory by also emphasizing the role of predictive processing as a useful conceptual framework to understand the effects of emotion on memory for source details and associated neutral information.
Collapse
Affiliation(s)
- Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Janine Wirkner
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Alfons O. Hamm
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Florin Dolcos
- Department of Psychology, Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Krystal S, Gracia L, Piguet C, Henry C, Alonso M, Polosan M, Savatovsky J, Houenou J, Favre P. Functional connectivity of the amygdala subnuclei in various mood states of bipolar disorder. Mol Psychiatry 2024; 29:3344-3355. [PMID: 38724567 DOI: 10.1038/s41380-024-02580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 11/08/2024]
Abstract
Amygdala functional dysconnectivity lies at the heart of the pathophysiology of bipolar disorder (BD). Recent preclinical studies suggest that the amygdala is a heterogeneous group of nuclei, whose specific connectivity could drive positive or negative emotional valence. We investigated functional connectivity (FC) changes within these circuits emerging from each amygdala's subdivision in 127 patients with BD in different mood states and 131 healthy controls (HC), who underwent resting-state functional MRI. FC was evaluated between lateral and medial nuclei of amygdalae, and key subcortical regions of the emotion processing network: anterior and posterior parts of the hippocampus, and core and shell parts of the nucleus accumbens. FC was compared across groups, and subgroups of patients depending on their mood states, using linear mixed models. We also tested correlations between FC and depression (MADRS) and mania (YMRS) scores. We found no difference between the whole sample of BD patients vs. HC but a significant correlation between MADRS and right lateral amygdala /right anterior hippocampus, right lateral amygdala/right posterior hippocampus and right lateral amygdala/left anterior hippocampus FC (r = -0.44, r = -0.32, r = -0.27, respectively, all pFDR<0.05). Subgroup analysis revealed decreased right lateral amygdala/right anterior hippocampus and right lateral amygdala/right posterior hippocampus FC in depressed vs. non-depressed patients and increased left medial amygdala/shell part of the left nucleus accumbens FC in manic vs non-manic patients. These results demonstrate that acute mood states in BD concur with FC changes in individual nuclei of the amygdala implicated in distinct emotional valence processing. Overall, our data highlight the importance to consider the amygdala subnuclei separately when studying its FC patterns including patients in distinct homogeneous mood states.
Collapse
Affiliation(s)
- Sidney Krystal
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
- CHU Lille, Neuroradiology Department, Lille, France
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Laure Gracia
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chantal Henry
- Université Paris Cité, Paris, France
- GHU psychiatrie & neurosciences, Paris, France
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Mariana Alonso
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Mircea Polosan
- CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1216, 38000, Grenoble, France
- Fondation FondaMental, Créteil, France
| | - Julien Savatovsky
- Hôpital Fondation Adolphe de Rothschild, Radiology Department, Paris, France
| | - Josselin Houenou
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France
- Fondation FondaMental, Créteil, France
- DMU IMPACT de Psychiatrie et d'Addictologie, Faculté de Médecine de Créteil, APHP, Hôp Universitaires Mondor, Créteil, France
| | - Pauline Favre
- Neurospin, UNIACT lab, PsyBrain team, CEA Paris-Saclay, Gif-sur-Yvette, France.
- Translational Neuropsychiatry team, Université Paris-Est Créteil, INSERM U955, Créteil, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
12
|
Ventura-Bort C, Wirkner J, Wendt J, Schwabe L, Dolcos F, Hamm AO, Weymar M. Opposing effects of pre-encoding stress on neural substrates of item and emotional contextual source memory retrieval. Neurobiol Stress 2024; 33:100691. [PMID: 39634489 PMCID: PMC11616609 DOI: 10.1016/j.ynstr.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Although the mediating role of the stress hormone systems in memory for single- especially emotional- events is well-stablished, less is known about the influence of stress on memory for associated contextual information (source memory). Here, we investigated the impact of acute stress on the neural underpinnings of emotional contextual source memory. Participants underwent a stress or a control manipulation before they encoded objects paired with pleasant, neutral, or unpleasant backgrounds. One week later, item and contextual source memory were tested. Acute stress modulated the neural signature of item and contextual source memory in an opposite fashion: stressed participants showed larger activation in the precuneus and the medial prefrontal cortex (mPFC) during the retrieval of items, while the retrieval of contextual unpleasant information was associated with lower activation in the angular gyrus (AG) and mPFC. Furthermore, as revealed by cross-region representational similarity analyses, stress also reduced the memory reinstatement of the previously encoded visual cortex representations of object/unpleasant background pairings in the AG and mPFC. These results suggest that pre-encoding stress induction increases the activity of memory-related regions for single items but reduces the activity of these regions during the retrieval of contextual unpleasant information. Our findings provide new insights into the dissociative effects of stress on item and contextual source memory which could have clinical relevance for stress-related disorders.
Collapse
Affiliation(s)
- Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Janine Wirkner
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Florin Dolcos
- Beckman Institute for Advanced Science and Technology, Psychology Department, and Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alfons O. Hamm
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| |
Collapse
|
13
|
Caruso TJ, Rama A, Uribe-Marquez S, Mitchell JD. Pro-Con Debate: Virtual Reality Compared to Augmented Reality for Medical Simulation. Anesth Analg 2024:00000539-990000000-00997. [PMID: 39424614 DOI: 10.1213/ane.0000000000007057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Affiliation(s)
- Thomas J Caruso
- From the Division of Pediatric Anesthesiology, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine,Stanford, California
| | - Asheen Rama
- From the Division of Pediatric Anesthesiology, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine,Stanford, California
| | - Santiago Uribe-Marquez
- Department of Anesthesiology, Pain Management, and Perioperative Medicine, Henry Ford Health, Detroit, Michigan
| | - John D Mitchell
- Department of Anesthesiology, Pain Management, and Perioperative Medicine, Henry Ford Health, Detroit, Michigan
| |
Collapse
|
14
|
Wang J, Becker B, Wang Y, Ming X, Lei Y, Wikgren J. Conceptual-level disgust conditioning in contamination-based obsessive-compulsive disorder. Psychophysiology 2024; 61:e14637. [PMID: 38923525 DOI: 10.1111/psyp.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Pavlovian fear conditioning and extinction represent learning mechanisms underlying exposure-based interventions. While increasing evidence indicates a pivotal role of disgust in the development of contamination-based obsessive-compulsive disorder (C-OCD), dysregulations in conditioned disgust acquisition and maintenance, in particular driven by higher-order conceptual processes, have not been examined. Here, we address this gap by exposing individuals with high (HCC, n = 41) or low (LCC, n = 41) contamination concern to a conceptual-level disgust conditioning and extinction paradigm. Conditioned stimuli (CS+) were images from one conceptual category partially reinforced by unconditioned disgust-eliciting stimuli (US), while images from another category served as non-reinforced conditioned stimuli (CS-). Skin conductance responses (SCRs), US expectancy and CS valence ratings served as primary outcomes to quantify conditioned disgust responses. Relative to LCC, HCC individuals exhibited increased US expectancy and CS+ disgust experience, but comparable SCR levels following disgust acquisition. Despite a decrease in conditioned responses from the acquisition phase to the extinction phase, both groups did not fully extinguish the learned disgust. Importantly, the extinction resilience of acquired disgust was more pronounced in HCC individuals. Together, our findings suggest that individuals with high self-reported contamination concern exhibit increased disgust acquisition and resistance to extinction. The findings provide preliminary evidence on how dysregulated disgust learning mechanism across semantically related concepts may contribute to C-OCD.
Collapse
Affiliation(s)
- Jinxia Wang
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyvaskyla, Finland
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Yizhen Wang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Xianchao Ming
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yi Lei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jan Wikgren
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
15
|
Mo D, Zheng H, Li WZ, Chen L, Tao R, Zhong H, Liu H. A study of somatization symptoms and low-frequency amplitude fluctuations of emotional memory in adolescent depression. Psychiatry Res Neuroimaging 2024; 344:111867. [PMID: 39153231 DOI: 10.1016/j.pscychresns.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Studies have revealed that somatization symptoms are associated with emotional memory in adolescents with depressive disorders. This study investigated somatization symptoms and emotional memory among adolescents with depressive disorders using low-frequency amplitude fluctuations (ALFF). Participants were categorized into the somatization symptoms (FSS) group, non-FSS group and healthy control group (HC). The correctness of negative picture re-recognition was higher in the FFS and HC group than in the non-FSS group. The right superior occipital gyrus and right inferior temporal gyrus were significantly larger in the FSS group than those in the non-FSS and HC groups. Additionally, the ALFF in the superior occipital and inferior temporal gyrus were positively correlated with CSI score. Furthermore, the ALFF values in the temporal region positively correlated with correct negative image re-recognition. The negative image re-recognition rate was positively correlated with the ALFF in the left and right middle occipital gyri. These findings indicated that somatization symptoms in adolescent depression are associated with the superior occipital gyrus and inferior temporal gyrus. Notably, somatization symptoms play a role in memory bias within depressive disorders, with middle occipital and inferior temporal gyri potentially serving as significant brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Wen Zheng Li
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Long Chen
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Chao Hu Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao Hu Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Yao Q, Gu H, Wang S, Li X. Spatial-Frequency Characteristics of EEG Associated With the Mental Stress in Human-Machine Systems. IEEE J Biomed Health Inform 2024; 28:5904-5916. [PMID: 38959145 DOI: 10.1109/jbhi.2024.3422384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Accurate assessment of user mental stress in human-machine system plays a crucial role in ensuring task performance and system safety. However, the underlying neural mechanisms of stress in human-machine tasks and assessment methods based on physiological indicators remain fundamental challenges. In this paper, we employ a virtual unmanned aerial vehicle (UAV) control experiment to explore the reorganization of functional brain network patterns under stress conditions. The results indicate enhanced functional connectivity in the frontal theta band and central beta band, as well as reduced functional connectivity in the left parieto-occipital alpha band, which is associated with increased mental stress. Evaluation of network metrics reveals that decreased global efficiency in the theta and beta bands is linked to elevated stress levels. Subsequently, inspired by the frequency-specific patterns in the stress brain network, a cross-band graph convolutional network (CBGCN) model is constructed for mental stress brain state recognition. The proposed method captures the spatial-frequency topological relationships of cross-band brain networks through multiple branches, with the aim of integrating complex dynamic patterns hidden in the brain network and learning discriminative cognitive features. Experimental results demonstrate that the neuro-inspired CBGCN model improves classification performance and enhances model interpretability. The study suggests that the proposed approach provides a potentially viable solution for recognizing stress states in human-machine system by using EEG signals.
Collapse
|
17
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
18
|
Wang Y, Duan C, Du X, Zhu Y, Wang L, Hu J, Sun Y. Vagus Nerve and Gut-Brain Communication. Neuroscientist 2024:10738584241259702. [PMID: 39041416 DOI: 10.1177/10738584241259702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.
Collapse
Affiliation(s)
- Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenxi Duan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Du
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| | - Jun Hu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
19
|
Gao C, Ren J, Sakaki M, Jia X. Memory enhancement for emotional words is attributed to both valence and arousal. Acta Psychol (Amst) 2024; 246:104249. [PMID: 38613855 DOI: 10.1016/j.actpsy.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
We do not memorize items in our surroundings with equal priority. Previous literature has widely shown that emotional stimuli are better remembered than neutral stimuli. However, given emotional stimuli and neutral stimuli often differ in both valence and arousal dimensions, it remains unclear whether the enhancement effects can be attributed to valence, or just to arousal. Importantly, most prior studies relied on a relatively small number of stimuli and non-emotional factors such as word length, imageability and other confounds were hard to control. To address these challenges, we analyzed multiple large databases of recognition memory and free recall tasks from previous research by items with many lexical and semantic covariates included, examining the effects of valence or arousal when controlling for each other. Our results showed a U-shaped relationship between valence and memory performance for both recognition and free recall, and a linear relationship between arousal and memory performance for both tasks. These findings showed that the memory enhancement effects can be attributed to both valence and arousal. We demonstrated these effects with generalizability across many stimuli and controlled for non-emotional factors. Together, these findings disentangle the contribution of valence and arousal in emotional memory enhancement effects and provide insights for current major theories of emotional memory.
Collapse
Affiliation(s)
- Chuanji Gao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EN, the Netherlands
| | - Michiko Sakaki
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany
| | - Xi Jia
- School of Psychology, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
20
|
Bogler C, Zangrossi A, Miller C, Sartori G, Haynes J. Have you been there before? Decoding recognition of spatial scenes from fMRI signals in precuneus. Hum Brain Mapp 2024; 45:e26690. [PMID: 38703117 PMCID: PMC11069338 DOI: 10.1002/hbm.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.
Collapse
Affiliation(s)
- Carsten Bogler
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrea Zangrossi
- Department of General PsychologyUniversity of PadovaPadovaItaly
- Padova Neuroscience Center (PNC)University of PadovaPadovaItaly
| | - Chantal Miller
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | | | - John‐Dylan Haynes
- Bernstein Center for Computational NeuroscienceCharité‐Universitätsmedizin BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Max Planck School of CognitionLeipzigGermany
- Berlin Center for Advanced NeuroimagingCharité‐Universitätsmedizin BerlinBerlinGermany
- Clinic of NeurologyCharité‐Universitätsmedizin BerlinBerlinGermany
- Institute of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
- Cluster of Excellence “Science of Intelligence”Berlin Institute of TechnologyBerlinGermany
| |
Collapse
|
21
|
Denis D, Payne JD. Targeted Memory Reactivation during Nonrapid Eye Movement Sleep Enhances Neutral, But Not Negative, Components of Memory. eNeuro 2024; 11:ENEURO.0285-23.2024. [PMID: 38769012 PMCID: PMC11140657 DOI: 10.1523/eneuro.0285-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Emotionally salient components of memory are preferentially remembered at the expense of accompanying neutral information. This emotional memory trade-off is enhanced over time, and possibly sleep, through a process of memory consolidation. Sleep is believed to benefit memory through a process of reactivation during nonrapid eye movement sleep (NREM). Here, targeted memory reactivation (TMR) was used to manipulate the reactivation of negative and neutral memories during NREM sleep. Thirty-one male and female participants encoded composite scenes containing either a negative or neutral object superimposed on an always neutral background. During NREM sleep, sounds associated with the scene object were replayed, and memory for object and background components was tested the following morning. We found that TMR during NREM sleep improved memory for neutral, but not negative scene objects. This effect was associated with sleep spindle activity, with a larger spindle response following TMR cues predicting TMR effectiveness for neutral items only. These findings therefore do not suggest a role of NREM memory reactivation in enhancing the emotional memory trade-off across a 12 h period but do align with growing evidence of spindle-mediated memory reactivation in service of neutral declarative memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom,
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
22
|
Salsano I, Tain R, Giulietti G, Williams DP, Ottaviani C, Antonucci G, Thayer JF, Santangelo V. Negative emotions enhance memory-guided attention in a visual search task by increasing frontoparietal, insular, and parahippocampal cortical activity. Cortex 2024; 173:16-33. [PMID: 38354670 DOI: 10.1016/j.cortex.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Previous literature demonstrated that long-term memory representations guide spatial attention during visual search in real-world pictures. However, it is currently unknown whether memory-guided visual search is affected by the emotional content of the picture. During functional magnetic resonance imaging (fMRI), participants were asked to encode the position of high-contrast targets embedded in emotional (negative or positive) or neutral pictures. At retrieval, they performed a visual search for targets presented at the same location as during encoding, but at a much lower contrast. Behaviorally, participants detected more accurately targets presented in negative pictures compared to those in positive or neutral pictures. They were also faster in detecting targets presented at encoding in emotional (negative or positive) pictures than in neutral pictures, or targets not presented during encoding (i.e., memory-guided attention effect). At the neural level, we found increased activation in a large circuit of regions involving the dorsal and ventral frontoparietal cortex, insular and parahippocampal cortex, selectively during the detection of targets presented in negative pictures during encoding. We propose that these regions might form an integrated neural circuit recruited to select and process previously encoded target locations (i.e., memory-guided attention sustained by the frontoparietal cortex) embedded in emotional contexts (i.e., emotional contexts recollection supported by the parahippocampal cortex and emotional monitoring supported by the insular cortex). Ultimately, these findings reveal that negative emotions can enhance memory-guided visual search performance by increasing neural activity in a large-scale brain circuit, contributing to disentangle the complex relationship between emotion, attention, and memory.
Collapse
Affiliation(s)
- Ilenia Salsano
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - Rongwen Tain
- Campus Center of Neuroimaging, University of California, Irvine, CA, USA
| | - Giovanni Giulietti
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - DeWayne P Williams
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | | | - Gabriella Antonucci
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Contractor AA, Slavish DC, Straup ML, Miguel-Alvaro A. Daily-level associations between posttraumatic stress disorder symptoms and reactions to retrieving positive autobiographical memories. J Anxiety Disord 2024; 103:102842. [PMID: 38325241 DOI: 10.1016/j.janxdis.2024.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Trauma survivors with posttraumatic stress disorder (PTSD) report difficulties accessing and describing positive memories. To understand these patterns, we examined daily-level relations of PTSD symptoms with affective, cognitive (dwelling/rumination; pushing memory out of one's mind; suppression; avoidance; distraction; thinking about something else; remembering negative or positive memories/events; negative or positive thoughts; accepting or disapproving memory; reinterpreting memory), and behavioral (using alcohol/drugs; smoking cigarettes; cravings for or seeking out cigarettes/alcohol/drugs; craving, seeking out, or consuming large amounts of food; dissociation; engaging in risky behaviors; sharing memories; interference with ongoing task; arousal) reactions to retrieving positive memories. Eighty-eight trauma survivors (Mage= 39.89 years; 59.1% female) completed 7 daily measures of PTSD and reactions to retrieving positive memories. Days with more PTSD severity were associated with higher odds of same-day suppression, avoidance, distraction, thinking about something else, smoking cigarettes, craving substances, craving, seeking out, or consuming large amounts of food, dissociation, remembering negative memories/events/thoughts, engaging in risky behaviors, interference with ongoing tasks, and arousal (ORs=1.10-1.22); and greater negative affect (β = 0.27). Supplemental lagged analyses indicated some associations between previous-day reactions to positive memory retrieval and next-day PTSD severity and vice versa. Trauma survivors with PTSD symptoms report negative and avoidance-oriented reactions to retrieving positive memories.
Collapse
Affiliation(s)
| | - Danica C Slavish
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Madison L Straup
- Department of Psychology, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
24
|
Xin C, Zhang L. Emotion and prospective memory: effects of emotional targets and contexts. PSYCHOLOGICAL RESEARCH 2024; 88:987-1006. [PMID: 38147076 DOI: 10.1007/s00426-023-01903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Event-based prospective memory (PM) refers to the ability to remember to perform a delayed and intended action when an event is encountered in the future. Whether emotional targets promote PM performance is still controversial. The reason for these inconsistent findings may be related to the degree of target arousal and context valence (the valence of ongoing task trials) in the previous studies. This study aimed to investigate the separate and combined effects of target valence, arousal, and context valence on event-based PM through two experiments. The results showed that the participants were faster and more accurate in responding to positive, negative, and high-arousal PM targets. Interestingly, an interaction effect of target valence, arousal, and context valence was observed, implying that their individual effects on PM performance cannot be understood in isolation. These findings demonstrate that positive, negative, and high-arousal PM targets can enhance PM performance. In addition, the results provided support for both the emotion enhancement account and the emotion-saliency account, depending upon whether the valence of the PM target matched or did not match the valence of the context. Moreover, context valence can modulate the effect of arousal on PM across different target valences.
Collapse
Affiliation(s)
- Cong Xin
- School of Psychology, Nanjing Normal University, No. 122 Ninghai Road Gulou District, Nanjing, 210097, China.
| | - Lin Zhang
- Jiangsu Normal University Affiliated Experimental School, Xuzhou, China
| |
Collapse
|
25
|
Qin K, Pan N, Lei D, Zhang F, Yu Y, Sweeney JA, DelBello MP, Gong Q. Common and distinct neural correlates of emotional processing in individuals at familial risk for major depressive disorder and bipolar disorder: A comparative meta-analysis. J Affect Disord 2024; 348:97-106. [PMID: 38113944 PMCID: PMC10846904 DOI: 10.1016/j.jad.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Individuals at familial risk for mood disorders exhibit deficits in emotional processing and associated brain dysfunction prior to illness onset. However, such brain-behavior abnormalities related to familial predisposition remain poorly understood. To investigate robust abnormal functional activation patterns during emotional processing in unaffected at-risk relatives of patients with major depressive disorder (UAR-MDD) and bipolar disorder (UAR-BD), we performed a meta-analysis of task-based functional magnetic resonance imaging studies using Seed-based d Mapping (SDM) toolbox. Common and distinct patterns of abnormal functional activation between UAR-MDD and UAR-BD were detected via conjunction and differential analyses. A total of 17 studies comparing 481 UAR and 670 healthy controls (HC) were included. Compared with HC, UAR-MDD exhibited hyperactivation in the parahippocampal gyrus, amygdala and cerebellum, while UAR-BD exhibited parahippocampal hyperactivation and hypoactivation in the striatum and middle occipital gyrus (MOG). Conjunction analysis revealed shared hyperactivated PHG in both groups. Differential analysis indicated that the activation patterns of amygdala and MOG significantly differed between UAR-MDD and UAR-BD. These findings provide novel insights into common and distinct neural phenotypes for familial risk and associated risk mechanisms in MDD and BD, which may have implications in guiding precise prevention strategies tailored to the family context.
Collapse
Affiliation(s)
- Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America; College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States of America
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China.
| |
Collapse
|
26
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579924. [PMID: 38405878 PMCID: PMC10888780 DOI: 10.1101/2024.02.12.579924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Objective Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, e.g. ingestion and metabolic control. To date, no study has investigated whether brain responses to food cues in children are associated with peripheral insulin sensitivity. Methods We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with low and high ISI, adjusted for age and BMIz. Results Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on whole-brain food-cue reactivity. Conclusions Children with low peripheral insulin sensitivity showed differences in food cue evoked response particularly in insula functional connectivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Mayo O, Shamay-Tsoory S. Dynamic mutual predictions during social learning: A computational and interbrain model. Neurosci Biobehav Rev 2024; 157:105513. [PMID: 38135267 DOI: 10.1016/j.neubiorev.2023.105513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
During social interactions, we constantly learn about the thoughts, feelings, and personality traits of our interaction partners. Learning in social interactions is critical for bond formation and acquiring knowledge. Importantly, this type of learning is typically bi-directional, as both partners learn about each other simultaneously. Here we review the literature on social learning and propose a new computational and neural model characterizing mutual predictions that take place within and between interactions. According to our model, each partner in the interaction attempts to minimize the prediction error of the self and the interaction partner. In most cases, these inferential models become similar over time, thus enabling mutual understanding to develop. At the neural level, this type of social learning may be supported by interbrain plasticity, defined as a change in interbrain coupling over time in neural networks associated with social learning, among them the mentalizing network, the observation-execution system, and the hippocampus. The mutual prediction model constitutes a promising means of providing empirically verifiable accounts of how relationships develop over time.
Collapse
Affiliation(s)
- Oded Mayo
- The Department of Psychology, University of Haifa, Haifa, Israel.
| | | |
Collapse
|
28
|
Reeck C, LaBar KS. Retrieval-induced forgetting of emotional memories. Cogn Emot 2024; 38:131-147. [PMID: 37926986 DOI: 10.1080/02699931.2023.2279156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Long-term memory manages its contents to facilitate adaptive behaviour, amplifying representations of information relevant to current goals and expediting forgetting of information that competes with relevant memory traces. Both mnemonic selection and inhibition maintain congruence between the contents of long-term memory and an organism's priorities. However, the capacity of these processes to modulate affective mnemonic representations remains ambiguous. Three empirical experiments investigated the consequences of mnemonic selection and inhibition on affectively charged and neutral mnemonic representations using an adapted retrieval practice paradigm. Participants encoded neutral cue words and affectively negative or neutral associates and then selectively retrieved a subset of these associates multiple times. The consequences of selection and inhibitory processes engaged during selective retrieval were evaluated on a final memory test in which recall for all studied associates was probed. Analyses of memory recall indicated that both affectively neutral and negative mnemonic representations experienced similar levels of enhancement and impairment following selective retrieval, demonstrating the susceptibility of affectively salient memories to these mnemonic processes. These findings indicate that although affective memories may be more strongly encoded in memory, they remain amenable to inhibition and flexibly adaptable to the evolving needs of the organism.
Collapse
Affiliation(s)
- Crystal Reeck
- Fox School of Business, Department of Marketing, Temple University, Philadelphia, PA, USA
| | - Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Constantinou M, Karadachka K, Marstaller L, Burianová H. The effect of negative arousal on declarative memory. Neuropsychologia 2024; 193:108759. [PMID: 38096981 DOI: 10.1016/j.neuropsychologia.2023.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Arousing events influence retrieval success, with a number of studies supporting a context-dependent effect of arousal on episodic memory retrieval. An improvement in speed and accuracy of episodic memories is observed when negative arousal is attached to them. In contrast, enhancing effects of negative arousal have not been reported to improve semantic memory retrieval. Episodic and semantic memory are highly interactive and yet differ based on their embedded contextual content. Although differences in brain activity exist between episodic and semantic memory, the two types of memory retrieval are part of a common long-term memory system. Considering the shared processes between episodic and semantic memory, the objectives of the current study were twofold: i) to examine, employing a novel paradigm, whether performance on episodic and semantic memory retrieval would be influenced differently by varying levels of arousal, between negative and neutral valence; and ii) to explore the neural patterns underlying these processes. Forty-seven healthy young adults were recruited and completed the experiment in the MRI scanner. The results demonstrated a negative arousal effect on the brain circuitry subserving both memory conditions as well as on behavioural performance, as indicated by better accuracy and faster reaction times. The study provides an insight into the role of negative arousal in memory processes and contributes to our understanding of the interplay between cognitive and emotional factors in memory modulation. Our work also highlights the highly interactive nature of episodic and semantic memory, and emphasises the importance in understanding how negative arousal interacts with the contextual content of a memory, on a behavioural and neurofunctional level.
Collapse
Affiliation(s)
| | - Katherine Karadachka
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | | | - Hana Burianová
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
30
|
Martschuk N, Harris DA, Powell MB, Goodman-Delahunty J. Early childhood memories of individuals convicted of sexual offences. Memory 2024; 32:1-10. [PMID: 37922396 DOI: 10.1080/09658211.2023.2276977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/21/2023] [Indexed: 11/05/2023]
Abstract
This study used innovative transdisciplinary methods to describe the nature and extent of early childhood memories recalled by 84 adults convicted of sexual offences. The timing of the memories, level of detail recalled and way memories were recollected were largely consistent with extant memory research. One important finding, however, was that more than 30% of our participants recalled particularly traumatic and distressing childhood experiences - a much higher proportion than previously observed in nonoffending samples. The extent to which these memories laid the foundation for subsequent emotional content and feature in the evolution of cognitive schemata is not yet well understood. With that in mind, we consider the implications of our findings for the event centrality in self-narratives. We recommend the inclusion of treatment modalities that maximise as yet unrecognised and undervalued narrative inclinations and story-telling abilities of a complicated population of individuals with rich lived experience that stands to benefit greatly from such approaches.
Collapse
Affiliation(s)
- Natalie Martschuk
- Griffith Criminology Institute, Griffith University, Brisbane, Australia
| | | | - Martine B Powell
- Centre for Investigative Interviewing, Griffith University, Brisbane, Australia
| | | |
Collapse
|
31
|
Simon SS, Varangis E, Lee S, Gu Y, Gazes Y, Razlighi QR, Habeck C, Stern Y. In vivo tau is associated with change in memory and processing speed, but not reasoning, in cognitively unimpaired older adults. Neurobiol Aging 2024; 133:28-38. [PMID: 38376885 PMCID: PMC10879688 DOI: 10.1016/j.neurobiolaging.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 02/21/2024]
Abstract
The relationship between tau deposition and cognitive decline in cognitively healthy older adults is still unclear. The tau PET tracer 18F-MK-6240 has shown favorable imaging characteristics to identify early tau deposition in aging. We evaluated the relationship between in vivo tau levels (18F-MK-6240) and retrospective cognitive change over 5 years in episodic memory, processing speed, and reasoning. For tau quantification, a set of regions of interest (ROIs) was selected a priori based on previous literature: (1) total-ROI comprising selected areas, (2) medial temporal lobe-ROI, and (3) lateral temporal lobe-ROI and cingulate/parietal lobe-ROI. Higher tau burden in most ROIs was associated with a steeper decline in memory and speed. There were no associations between tau and reasoning change. The novelty of this finding is that tau burden may affect not only episodic memory, a well-established finding but also processing speed. Our finding reinforces the notion that early tau deposition in areas related to Alzheimer's disease is associated with cognitive decline in cognitively unimpaired individuals, even in a sample with low amyloid-β pathology.
Collapse
Affiliation(s)
- Sharon Sanz Simon
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eleanna Varangis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yian Gu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
32
|
Antony JW, Van Dam J, Massey JR, Barnett AJ, Bennion KA. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat Hum Behav 2023; 7:2152-2168. [PMID: 37322234 DOI: 10.1038/s41562-023-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Neurobiological and psychological models of learning emphasize the importance of prediction errors (surprises) for memory formation. This relationship has been shown for individual momentary surprising events; however, it is less clear whether surprise that unfolds across multiple events and timescales is also linked with better memory of those events. We asked basketball fans about their most positive and negative autobiographical memories of individual plays, games and seasons, allowing surprise measurements spanning seconds, hours and months. We used advanced analytics on National Basketball Association play-by-play data and betting odds spanning 17 seasons, more than 22,000 games and more than 5.6 million plays to compute and align the estimated surprise value of each memory. We found that surprising events were associated with better recall of positive memories on the scale of seconds and months and negative memories across all three timescales. Game and season memories could not be explained by surprise at shorter timescales, suggesting that long-term, multi-event surprise correlates with memory. These results expand notions of surprise in models of learning and reinforce its relevance in real-world domains.
Collapse
Affiliation(s)
- James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Jacob Van Dam
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jarett R Massey
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Kelly A Bennion
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
33
|
Nguyen GH, Oh S, Schneider C, Teoh JY, Engstrom M, Santana-Gonzalez C, Porter D, Quevedo K. Neurofeedback and Affect Regulation Circuitry in Depressed and Healthy Adolescents. BIOLOGY 2023; 12:1399. [PMID: 37997998 PMCID: PMC10669603 DOI: 10.3390/biology12111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Neurodevelopmental psychopathology seeks to understand higher-order emotion regulation circuitry to develop new therapies for adolescents with depression. Depressed (N = 34) and healthy youth (N = 19) completed neurofeedback (NF) training and exhibited increased bilateral amygdala and hippocampus activity in the region of interest (ROI) analyses by recalling positive autobiographical memories. We tested factors supportive of the engagement of emotion regulation's neural areas during NF (i.e., parental support, medication, and gender effects upon anterior cingulate cortex (ACC) engagement). Whole-brain analyses yielded effects of NF vs. control condition and effects of diagnosis. Youth showed higher amygdala and hippocampus (AMYHIPPO) activity during the NF vs. control condition, particularly in the left hippocampus. ACC's activity was also higher during NF vs. control. Higher average ACC activity was linked to better parental support, absent depression, female gender, and absent medication. Control youth showed higher average AMYHIPPO and ACC activity throughout the task and a faster decline in activity vs. depressed youths. Whole-brain level analyses showed higher activity in the frontotemporal network during the NF vs. control conditions, suggesting targeting their connectivity in future neurofeedback trials.
Collapse
Affiliation(s)
- Giang H. Nguyen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Sewon Oh
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29208, USA;
| | - Corey Schneider
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Jia Y. Teoh
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Maggie Engstrom
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Carmen Santana-Gonzalez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - David Porter
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Karina Quevedo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| |
Collapse
|
34
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
35
|
Duek O, Korem N, Li Y, Kelmendi B, Amen S, Gordon C, Milne M, Krystal JH, Levy I, Harpaz-Rotem I. Long term structural and functional neural changes following a single infusion of Ketamine in PTSD. Neuropsychopharmacology 2023; 48:1648-1658. [PMID: 37270621 PMCID: PMC10517133 DOI: 10.1038/s41386-023-01606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
NMDA receptor antagonists have a vital role in extinction, learning, and reconsolidation processes. During the reconsolidation window, memories are activated into a labile state and can be reconsolidated in an altered form. This concept might have significant clinical implications in treating PTSD. In this pilot study we tested the potential of a single infusion of ketamine, followed by brief exposure therapy, to enhance post-retrieval extinction of PTSD trauma memories. 27 individuals diagnosed with PTSD were randomly assigned to receive either ketamine (0.5 mg/kg 40 min; N = 14) or midazolam (0.045 mg/kg; N = 13) after retrieval of the traumatic memory. 24 h following infusion, participants received a four-day trauma-focused psychotherapy. Symptoms and brain activity were assessed before treatment, at the end of treatment, and at 30-day follow-up. Amygdala activation to trauma scripts (a major biomarker of fear response) served as the main study outcome. Although PTSD symptoms improved equally in both groups, post-treatment, ketamine recipients showed a lower amygdala (-0.33, sd = 0.13, 95%HDI [-0.56,-0.04]) and hippocampus (-0.3 (sd = 0.19), 95%HDI [-0.65, 0.04]; marginal effect) reactivation to trauma memories, compared to midazolam recipients. Post-retrieval ketamine administration was also associated with decreased connectivity between the amygdala and hippocampus (-0.28, sd = 0.11, 95%HDI [-0.46, -0.11]), with no change in amygdala-vmPFC connectivity. Moreover, reduction in fractional anisotropy in bi-lateral uncinate fasciculus was seen in the Ketamine recipients compared with the midazolam recipients (right: post-treatment: -0.01108, 95% HDI [-0.0184,-0.003]; follow-up: -0.0183, 95% HDI [-0.02719,-0.0107]; left: post-treatment: -0.019, 95% HDI [-0.028,-0.011]; follow-up: -0.017, 95% HDI [-0.026,-0.007]). Taken together it is possible that ketamine may enhance post-retrieval extinction of the original trauma memories in humans. These preliminary findings show promising direction toward the capacity to rewrite human traumatic memories and modulate the fear response for at least 30 days post-extinction. When combined with psychotherapy for PTSD, further investigation of ketamine dose, timing of administration, and frequency of administration, is warranted.
Collapse
Affiliation(s)
- Or Duek
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
| | - Nachshon Korem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
| | - Yutong Li
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - Ben Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Shelley Amen
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Madison Milne
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University School of Medicine, New-Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New-Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Yüvrük E, Starns J, Kapucu A. Does misremembering drive false alarms for emotional lures? A diffusion model investigation. Q J Exp Psychol (Hove) 2023; 76:1973-1989. [PMID: 36305086 DOI: 10.1177/17470218221137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Previous evidence has shown that, in a recognition memory task, emotion leads participants to make more false alarms and decreases response times (RTs) for false alarm responses. This pattern could arise because participants adopt more liberal responding for emotional stimuli and/or because emotional lures are more likely than neutral lures to produce misleading memory retrieval. Recently, Starns et al. designed a new recognition memory paradigm and found that the speed of memory errors shows the influence of misleading information resulting in unavoidable memory errors. This study investigates the basis of false alarms to emotional lures by testing predictions of the diffusion model for a recognition paradigm similar to that by Starns et al. Participants studied lists of emotional words and then completed an old-new recognition memory test. After each old-new decision, participants were asked to make a forced-choice recognition decision that provided a chance to correct possible errors on the preceding old-new decision. Under the assumption that emotion promotes misremembering, the diffusion model predicts that forced-choice accuracy should be lower for pairs with emotional versus neutral lures and that faster old-new errors should be associated with lower forced-choice accuracy. This study tested these predictions, providing theoretical insights into how emotion affects memory retrieval and further developing a new methodology for measuring recognition performance.
Collapse
Affiliation(s)
- Elif Yüvrük
- Department of Psychology, Ege University, Izmir, Turkey
| | - Jeffrey Starns
- Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Aycan Kapucu
- Department of Psychology, Ege University, Izmir, Turkey
| |
Collapse
|
37
|
Gao H, Zhang H, Wang L, Zhang C, Feng Z, Li Z, Tong L, Yan B, Hu G. Altered amygdala functional connectivity after real-time functional MRI emotion self-regulation training. Neuroreport 2023; 34:537-545. [PMID: 37384933 DOI: 10.1097/wnr.0000000000001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Real-time functional MRI neurofeedback (rtfMRI-NF) is a noninvasive technique that extracts concurrent brain states and provides feedback to subjects in an online method. Our study aims to investigate the effect of rtfMRI-NF on amygdala-based emotion self-regulation by analyzing resting-state functional connectivity. We conducted a task experiment to train subjects in self-regulating amygdala activity in response to emotional stimuli. Twenty subjects were divided into two groups. The up-regulate group (URG) viewed positive stimulus, while the down-regulate group (DRG) viewed negative stimulus. The rtfMRI-NF experiment paradigm consisted of three conditions. The URG's percent amplitude fluctuation (PerAF) scores are significant, indicating that positive emotions may be a partial side effect, with increased activity in the left hemisphere. Resting-state functional connectivity was analyzed via a paired-sample t-test before and after neurofeedback training. Brain network properties and functional connectivity analysis showed a significant difference between the default mode network (DMN) and the brain region associated with the limbic system. These results reveal to some extent the mechanism of neurofeedback training to improve individuals' emotional regulate regulation ability. Our study has shown that rtfMRI-neurofeedback training can effectively enhance the ability to voluntarily control brain responses. Furthermore, the results of the functional analysis have revealed distinct changes in the amygdala functional connectivity circuits following rtfMRI-neurofeedback training. These findings may suggest the potential clinical applications of rtfMRI-neurofeedback as a new therapy for emotionally related mental disorders.
Collapse
Affiliation(s)
- Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| | - Huan Zhang
- Research Center for Human-Machine Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| | - Zhiyuan Feng
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
- No.988 Hospital of Joint Logistic Support Force
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| | - Guoen Hu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou
| |
Collapse
|
38
|
Burrows M, Kotoula V, Dipasquale O, Stringaris A, Mehta MA. Ketamine-induced changes in resting state connectivity, 2 h after the drug administration in patients with remitted depression. J Psychopharmacol 2023; 37:784-794. [PMID: 37491833 DOI: 10.1177/02698811231189432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Resting state connectivity studies link ketamine's antidepressant effects with normalisation of the brain connectivity changes that are observed in depression. These changes, however, usually co-occur with improvement in depressive symptoms, making it difficult to attribute these changes to ketamine's effects per se. AIMS Our aim is to examine the effects of ketamine in brain connectivity, 2 h after its administration in a cohort of volunteers with remitted depression. Any significant changes observed in this study could provide insight of ketamine's antidepressant mechanism as they are not accompanied by symptom changes. METHODS In total, 35 participants with remitted depression (21 females, mean age = 28.5 years) participated in a double-blind, placebo-controlled study of ketamine (0.5 mg/kg) or saline. Resting state scans were acquired approximately 2 h after the ketamine infusion. Brain connectivity was examined using a seed-based approach (ventral striatum, amygdala, hippocampus, posterior cingulate cortex and subgenual anterior cingulate cortex (sgACC)) and a brain network analysis (independent component analysis). RESULTS Decreased connectivity between the sgACC and the amygdala was observed approximately 2 h after the ketamine infusion, compared to placebo (pFWE < 0.05). The executive network presented with altered connectivity with different cortical and subcortical regions. Within the network, the left hippocampus and right amygdala had decreased connectivity (pFWE < 0.05). CONCLUSIONS Our findings support a model whereby ketamine would change the connectivity of brain areas and networks that are important for cognitive processing and emotional regulation. These changes could also be an indirect indicator of the plasticity changes induced by the drug.
Collapse
Affiliation(s)
- Matthew Burrows
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda, MA, USA
| | - Ottavia Dipasquale
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Argyris Stringaris
- Division of Psychiatry and Department of Clinical, Educational & Health Psychology, UCL, London, UK
- First Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| |
Collapse
|
39
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
40
|
Pasqualitto F, Panin F, Maidhof C, Thompson N, Fachner J. Neuroplastic Changes in Addiction Memory-How Music Therapy and Music-Based Intervention May Reduce Craving: A Narrative Review. Brain Sci 2023; 13:259. [PMID: 36831802 PMCID: PMC9953876 DOI: 10.3390/brainsci13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Recent findings indicate that Music Therapy (MT) and Music-Based Interventions (MBIs) may reduce craving symptoms in people with Substance Use Disorders (SUD). However, MT/MBIs can lead SUD clients to recall memories associated with their drug history and the corresponding strong emotions (addiction memories). Craving is a central component of SUD, possibly linked to relapse and triggered by several factors such as the recall of memories associated with the drug experience. Therefore, to address the topic of what elements can account for an improvement in craving symptoms after MT/MBIs, we conducted a narrative review that (1) describes the brain correlates of emotionally salient autobiographical memories evoked by music, (2) outlines neuroimaging and neurophysiological studies suggesting how the experience of craving may encompass the recall of emotionally filled moments, and (3) points out the role of perineuronal nets (PNNs) in addiction memory neuroplasticity. We highlight how autobiographical memory retrieval, music-evoked autobiographical memories, and craving share similar neural activations with PNNs which represent a causal element in the processing of addiction memory. We finally conclude by considering how the neuroplastic characteristics of addiction memory might represent the ground to update and/or recalibrate, within the therapy, the emotional content related to the recall.
Collapse
Affiliation(s)
- Filippo Pasqualitto
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Francesca Panin
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Naomi Thompson
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
41
|
Bradley MM, Sambuco N. Emotional Memory and Amygdala Activation. Front Behav Neurosci 2022; 16:896285. [PMID: 35769628 PMCID: PMC9234481 DOI: 10.3389/fnbeh.2022.896285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| | - Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Kim H. Attention- versus significance-driven memory formation: Taxonomy, neural substrates, and meta-analyses. Neurosci Biobehav Rev 2022; 138:104685. [PMID: 35526692 DOI: 10.1016/j.neubiorev.2022.104685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Functional neuroimaging data on episodic memory formation have expanded rapidly over the last 30 years, which raises the need for an integrative framework. This study proposes a taxonomy of episodic memory formation to address this need. At the broadest level, the taxonomy distinguishes between attention-driven vs. significance-driven memory formation. The three subtypes of attention-driven memory formation are selection-, fluctuation-, and level-related. The three subtypes of significance-driven memory formation are novelty-, emotion-, and reward-related. Meta-analytic data indicated that attention-driven memory formation affects the functioning of the extra-medial temporal lobe more strongly than the medial temporal lobe (MTL) regions. In contrast, significance-driven memory formation affects the functioning of the MTL more strongly than the extra-MTL regions. This study proposed a model in which attention has a stronger impact on the formation of neocortical traces than hippocampus/MTL traces, whereas significance has a stronger impact on the formation of hippocampus/MTL traces than neocortical traces. Overall, the taxonomy and model provide an integrative framework in which to place diverse encoding-related findings into a proper perspective.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, Republic of Korea.
| |
Collapse
|
43
|
Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci 2022; 55:2632-2650. [PMID: 33511691 DOI: 10.1111/ejn.15132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Y Kim
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah M Kark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | | | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
44
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
45
|
Hoseini FS, Alimoradi K, Jamshidi F. Help them pass a stormy road: A preliminary study of emotional memory management training on executive functions and difficulties in emotional regulation in adolescents. COUNSELLING & PSYCHOTHERAPY RESEARCH 2022. [DOI: 10.1002/capr.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Caruso TJ, Armstrong-Carter E, Rama A, Neiman N, Taylor K, Madill M, Lawrence K, Hemphill SF, Guo N, Domingue BW. The Physiologic and Emotional Effects of 360-Degree Video Simulation on Head-Mounted Display Versus In-Person Simulation: A Noninferiority, Randomized Controlled Trial. Simul Healthc 2022; 17:e105-e112. [PMID: 34120135 DOI: 10.1097/sih.0000000000000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION A key simulation component is its capability to elicit physiological changes, improving recall. The primary aim was to determine whether parasympathetic responses to head-mounted display simulations (HMDs) were noninferior to in-person simulations. The secondary aims explored sympathetic and affective responses and learning effectiveness. METHODS The authors conducted a noninferiority trial. Hospital providers who did not use chronotropic medications, have motion sickness, or have seizures were included. The authors randomized participants to in-person or HMD simulation. Biometric sensors collected respiratory sinus arrhythmia and skin conductance levels to measure parasympathetic and sympathetic states at baseline, during, and after the simulation. Affect was measured using a schedule. The authors measured 3-month recall of learning points and used split-plot analysis of variance and Mann-Whitney U tests to analyze. RESULTS One hundred fifteen participants qualified, and the authors analyzed 56 in each group. Both groups experienced a significant change in mean respiratory sinus arrhythmia from baseline to during and from during to afterward. The difference of change between the groups from baseline to during was 0.134 (95% confidence interval = 0.142 to 0.410, P = 0.339). The difference of change from during the simulation to after was -0.060 (95% confidence interval = -0.337 to 0.217, P = 0.670). Noninferiority was not established for either period. Sympathetic arousal did not occur in either group. Noninferiority was not established for the changes in affect that were demonstrated. The mean scores of teaching effectiveness and achievement scores were not different. CONCLUSIONS Although a parasympathetic and affective response to the video simulation on an HMD did occur, it was not discernibly noninferior to in-person in this study.
Collapse
Affiliation(s)
- Thomas J Caruso
- From the Department of Anesthesiology, Perioperative, and Pain Medicine (T.J.C., A.R., N.N., K.T., N.G.), Stanford University School of Medicine; Stanford University Graduate School of Education (E.A.-C., B.D.), Stanford, CA; University of Pittsburgh School of Medicine (M.M.), Pittsburgh, PA; Department of Internal Medicine, Legacy Emanuel Medical Center (K.L.), Portland, OR; and Stanford University School of Medicine (S.F.H.), Stanford, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Implicit and explicit emotional memory recall in anxiety and depression: Role of basolateral amygdala and cortisol-norepinephrine interaction. Psychoneuroendocrinology 2022; 136:105598. [PMID: 34894424 DOI: 10.1016/j.psyneuen.2021.105598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
Anxiety and depression are linked to both explicit and implicit memory biases, which are defined as the tendency to preferentially recall emotionally negative information at conscious and subconscious levels, respectively. Functional connectivity (FC) of the basolateral amygdala (BLA) and related stress hormones (i.e., cortisol and norepinephrine) are purportedly implicated in these biases. However, previous findings on memory biases in anxiety and depression have been inconsistent, likely due to their symptomatic complications. Therefore, the underlying neurobiological mechanism remains unclear. We thus investigated whether anxiety and depression as premorbid predispositions are related to the memory biases, and whether FC of BLA, cortisol, and 3-methoxy-4-hydroxyphenylglycol (MHPG: a major metabolite of norepinephrine) would affect the anxiety/depression-related biased memory recall in 100 participants without psychiatric symptomatology. Psycho-behavioral assessment, resting-state fMRI scans, and saliva collection at 10-points-in-time across two days were conducted. Correlations of memory biases with anxiety/depression and neurobiological markers were explored. As a result, neither anxiety nor depression were correlated with explicit memory bias to negative (vs. positive) information, although depression was associated with better recall of the negative stimuli only when they were perceived as self-relevant. In contrast, both anxiety and depression were correlated with implicit memory bias; however, the effects were solely explained by anxiety. Furthermore, FC of the BLA with subgenual anterior cingulate cortex (sgACC) and the synergetic effect of cortisol and MHPG uniquely affected the implicit memory bias. These findings suggest that anxiety facilitates an initial snapshot of negative information and can be accompanied by depression when the information creates negative semantic associations with the self. The BLA-sgACC neural connectivity and cortisol-norepinephrine interaction that are associated with the implicit memory bias might be one of the important neurobiological targets in the prevention and treatment for comorbid anxiety and depressive disorders.
Collapse
|
48
|
Riegel M, Wierzba M, Wypych M, Ritchey M, Jednoróg K, Grabowska A, Vuilleumier P, Marchewka A. Distinct medial-tempora lobe mechanisms of encoding and amygdala-mediated memory reinstatement for disgust and fear. Neuroimage 2022; 251:118889. [PMID: 35065268 DOI: 10.1016/j.neuroimage.2022.118889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Current models of episodic memory posit that retrieval involves the reenactment of encoding processes. Recent evidence has shown that this reinstatement process - indexed by subsequent encoding-retrieval similarity of brain activity patterns - is related to the activity in the hippocampus during encoding. However, we tend to re-experience emotional events in memory more richly than dull events. The role of amygdala - a critical hub of emotion processing - in reinstatement of emotional events was poorly understood. To investigate it, we leveraged a previously overlooked divergence in the role of amygdala in memory modulation by distinct emotions - disgust and fear. Here we used a novel paradigm in which participants encoded complex events (word pairs) and their memory was tested after 3 weeks, both phases during fMRI scanning. Using representational similarity analysis and univariate analyses, we show that the strength of amygdala activation during encoding was correlated with memory reinstatement of individual event representations in emotion-specific regions. Critically, amygdala modulated reinstatement more for disgust than fear. This was in line with other differences observed at the level of memory performance and neural mechanisms of encoding. Specifically, amygdala and perirhinal cortex were more involved during encoding of disgust-related events, whereas hippocampus and parahippocampal gyrus during encoding of fear-related events. Together, these findings shed a new light on the role of the amygdala and medial temporal lobe regions in encoding and reinstatement of specific emotional memories.
Collapse
Affiliation(s)
- Monika Riegel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland; Department of Psychology, Columbia University, New York 10027, United States of America; Centre interfacultaire de gérontologie et d'études des vulnerabilities, University of Geneva, CH-Geneva 1211, Switzerland.
| | - Małgorzata Wierzba
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, United States of America
| | - Katarzyna Jednoróg
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Grabowska
- SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland
| | - Patrik Vuilleumier
- Department of Neuroscience, University Medical Center, Geneva CH-1211, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-Geneva 1211, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva CH-1211, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
49
|
Ferguson LA, Leal SL. Interactions of Emotion and Memory in the Aging Brain: Neural and Psychological Correlates. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-021-00245-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Xie M, Liu Z, Guo C. Effect of the congruity of emotional contexts at encoding on source memory: Evidence from ERPs. Int J Psychophysiol 2022; 173:45-57. [PMID: 34999142 DOI: 10.1016/j.ijpsycho.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Emotion's influence on source memory has proven more elusive and the lack of studies investigates the effect of the congruent emotional contexts on source memory. Here, we investigated these issues using event-related potentials (ERPs) to assess emotional-induced neural correlates. During encoding, congruent word-picture (a word 'shoes' - a picture described shoes) and incongruent word-picture (a word 'pepper' - a picture described shoes) with a prompt (Common? or Natural?) were presented. At retrieval, participants indicated which prompts were concomitantly presented with the word during encoding. Behavioral results revealed that source memory accuracy was enhanced in the neutral contexts compared to the negative contexts, and enhanced in the incongruent condition relative to the congruent condition, suggesting that emotional contexts impaired source memory performance, and incongruent information enhanced source memory. ERPs results showed that early P2 old/new effect (150-250 ms) and FN400 old/new effect (300-450 ms) were observed for words with correct source that had been encoded in the congruent emotional contexts, and that a larger parietal old/new effect, between 500 and 700 ms, was observed for words with correct source that had been encoded in the incongruent condition than in the congruent condition, irrespective the nature of context. The ERPs results indicate that retrieval of source details for the associated emotionally congruent information supports the idea that emotional events could attract more attentional resources, and reflects the contribution of familiarity-based process. Meanwhile, retrieval of source details for the associated incongruent information reflects a stronger contribution of recollection-based process.
Collapse
Affiliation(s)
- Miaomiao Xie
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Zejun Liu
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Chunyan Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China.
| |
Collapse
|