1
|
Zhang Z, Huang J, Lin C, Liang R. Identification and validation of LY6H and GRM3 as candidate biomarkers for Glioma-related epilepsy. Sci Rep 2025; 15:12833. [PMID: 40229486 PMCID: PMC11997038 DOI: 10.1038/s41598-025-97333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with epilepsy serving as a frequent clinical manifestation. Glioma-related epilepsy (GRE) significantly affects patients' quality of life and prognosis. In this study, we integrated bioinformatics and multiple machine learning methods to perform a proteomic analysis of brain tumor samples from patients with GRE and from those with gliomas none epilepsy (GNE). Our findings identified LY6H and GRM3 as potential signature proteins of GRE. Further investigation showed that LY6H and GRM3 expression levels were markedly reduced in GRE samples, with favorable diagnostic performance according to ROC curve analyses. Finally, we conducted an independent external validation using the Bluk-RNA dataset GSE199759, and the results corroborated our prior analyses. This work not only provides new biomarkers for the early detection of GRE but also offers valuable insights into its molecular mechanisms and potential therapeutic strategies.
Collapse
Affiliation(s)
- Zhenpan Zhang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jianhuang Huang
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Caihou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Risheng Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
2
|
O’Brien BCV, Thao S, Weber L, Danielson HL, Boldt AD, Hueffer K, Weltzin MM. The human alpha7 nicotinic acetylcholine receptor is a host target for the rabies virus glycoprotein. Front Cell Infect Microbiol 2024; 14:1394713. [PMID: 38836054 PMCID: PMC11148329 DOI: 10.3389/fcimb.2024.1394713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4β2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.
Collapse
Affiliation(s)
- Brittany C. V. O’Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Shelly Thao
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Helen L. Danielson
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Agatha D. Boldt
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Maegan M. Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
3
|
Khalek IS, Senji Laxme RR, Nguyen YTK, Khochare S, Patel RN, Woehl J, Smith JM, Saye-Francisco K, Kim Y, Misson Mindrebo L, Tran Q, Kędzior M, Boré E, Limbo O, Verma M, Stanfield RL, Menzies SK, Ainsworth S, Harrison RA, Burton DR, Sok D, Wilson IA, Casewell NR, Sunagar K, Jardine JG. Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins. Sci Transl Med 2024; 16:eadk1867. [PMID: 38381847 DOI: 10.1126/scitranslmed.adk1867] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.
Collapse
Affiliation(s)
- Irene S Khalek
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - R R Senji Laxme
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Yen Thi Kim Nguyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rohit N Patel
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jordan Woehl
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Jessica M Smith
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoojin Kim
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Laetitia Misson Mindrebo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Quoc Tran
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Mateusz Kędzior
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Evy Boré
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oliver Limbo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Megan Verma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefanie K Menzies
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Joseph G Jardine
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| |
Collapse
|
4
|
Severyukhina MS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Synthetic Peptide Fragments of the Wtx Toxin Reduce Blood Pressure in Rats under General Anesthesia. DOKL BIOCHEM BIOPHYS 2023; 513:319-323. [PMID: 37700213 PMCID: PMC10808285 DOI: 10.1134/s1607672923700497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
Previously, it was shown that the non-conventional toxin WTX from the venom of the cobra Naja kaouthia, when administered intravenously, caused a decrease in blood pressure (BP) and an increase in heart rate (HR) in rats [13]. To identify the site of the toxin molecule responsible for these effects, we studied the influence of synthetic peptide fragments of the WTX on BP and HR in normotensive male Sprague-Dawley rats under general anesthesia induced by Telazol and Xylazine. It was found that peptides corresponding to the WTX central polypeptide loop, stabilized by a disulfide bond, at intravenous injection at concentrations from 0.1 to 1.0 mg/mL caused a dose-dependent decrease in BP, with the HR increasing only in the first 5-10 min after administration. Thus, WTX fragments corresponding to the central polypeptide loop reproduce the decrease in blood pressure caused by the toxin.
Collapse
Affiliation(s)
- M S Severyukhina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- Pushchino State Natural-Science Institute, Pushchino, Russia
| | - A M Ismailova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - E R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - I A Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - N S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A N Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Discovery and optimization of a broadly-neutralizing human monoclonal antibody against long-chain α-neurotoxins from snakes. Nat Commun 2023; 14:682. [PMID: 36755049 PMCID: PMC9908967 DOI: 10.1038/s41467-023-36393-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.
Collapse
|
6
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Lian M, Hueffer K, Weltzin MM. Interactions between the rabies virus and nicotinic acetylcholine receptors: A potential role in rabies virus induced behavior modifications. Heliyon 2022; 8:e10434. [PMID: 36091963 PMCID: PMC9450143 DOI: 10.1016/j.heliyon.2022.e10434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marianne Lian
- University of Alaska Fairbanks, Department of Veterinary Medicine, 2141 Koyukuk Drive, Fairbanks, AK, 99775, USA
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Koppang, NO-2480, Norway
| | - Karsten Hueffer
- University of Alaska Fairbanks, Department of Veterinary Medicine, 2141 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Maegan M. Weltzin
- University of Alaska Fairbanks, Department of Chemistry and Biochemistry, 1930 Yukon Dr. Fairbanks, AK, 99775, USA
- Corresponding author.
| |
Collapse
|
8
|
Mechanisms of inhibition and activation of extrasynaptic αβ GABA A receptors. Nature 2022; 602:529-533. [PMID: 35140402 PMCID: PMC8850191 DOI: 10.1038/s41586-022-04402-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7–12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA–Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling. Cryo-electron microscopy structures are used to identify mechanisms underlying distinct features of extrasynaptic type A γ-aminobutyric acid receptors.
Collapse
|
9
|
Development of Antibody Detection ELISA Based on Immunoreactive Toxins and Toxin-Derived Peptides to Evaluate the Neutralization Potency of Equine Plasma against Naja atra in Taiwan. Toxins (Basel) 2021; 13:toxins13110818. [PMID: 34822602 PMCID: PMC8622849 DOI: 10.3390/toxins13110818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28–42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.
Collapse
|
10
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
11
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
13
|
Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane. Sci Rep 2020; 10:11996. [PMID: 32686737 PMCID: PMC7371702 DOI: 10.1038/s41598-020-68947-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and regarded as potential therapeutic targets for neurodegenerative conditions, such as Alzheimer's disease and schizophrenia. Yet, despite the assumed pathophysiological importance of the α7 nAChR, molecular physiological characterization remains poorly advanced because α7 nAChR cannot be properly folded and sorted to the plasma membranes in most mammalian cell lines, thus preventing the analyses in heterologous expression system. Recently, ER-resident membrane protein NACHO was discovered as a strong chaperone for the functional expression of α7 nAChR in non-permissive cells. Ly6H, a brain-enriched GPI-anchored neurotoxin-like protein, was reported as a novel modulator regulating intracellular trafficking of α7 nAChR. In this study, we established cell lines that stably and robustly express surface α7 nAChR by introducing α7 nAChR, Ric-3, and NACHO cDNA into HEK293 cells (Triple α7 nAChR/RIC-3/NACHO cells; TARO cells), and re-evaluated the function of Ly6H. We report here that Ly6H binds with α7 nAChRs on the cell membrane and modulates the channel activity without affecting intracellular trafficking of α7 nAChR.
Collapse
|
14
|
Albulescu LO, Kazandjian T, Slagboom J, Bruyneel B, Ainsworth S, Alsolaiss J, Wagstaff SC, Whiteley G, Harrison RA, Ulens C, Kool J, Casewell NR. A Decoy-Receptor Approach Using Nicotinic Acetylcholine Receptor Mimics Reveals Their Potential as Novel Therapeutics Against Neurotoxic Snakebite. Front Pharmacol 2019; 10:848. [PMID: 31417406 PMCID: PMC6683245 DOI: 10.3389/fphar.2019.00848] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes 138,000 deaths each year. Neurotoxic snake venoms contain small neurotoxins, including three-finger toxins (3FTxs), which can cause rapid paralysis in snakebite victims by blocking postsynaptic transmission via nicotinic acetylcholine receptors (nAChRs). These toxins are typically weakly immunogenic and thus are often not effectively targeted by current polyclonal antivenom therapies. We investigated whether nAChR mimics, also known as acetylcholine binding proteins (AChBPs), could effectively capture 3FTxs and therefore be developed as a novel class of snake-generic therapeutics for combatting neurotoxic envenoming. First, we identified the binding specificities of 3FTx from various medically important elapid snake venoms to nAChR using two recombinant nAChR mimics: the AChBP from Lymnaea stagnalis and a humanized neuronal α7 version (α7-AChBP). We next characterized these AChBP-bound and unbound fractions using SDS-PAGE and mass spectrometry. Interestingly, both mimics effectively captured long-chain 3FTxs from multiple snake species but largely failed to capture the highly related short-chain 3FTxs, suggesting a high level of binding specificity. We next investigated whether nAChR mimics could be used as snakebite therapeutics. We showed that while α7-AChBP alone did not protect against Naja haje (Egyptian cobra) venom lethality in vivo, it significantly prolonged survival times when coadministered with a nonprotective dose of antivenom. Thus, nAChR mimics are capable of neutralizing specific venom toxins and may be useful adjunct therapeutics for improving the safety and affordability of existing snakebite treatments by reducing therapeutic doses. Our findings justify exploring the future development of AChBPs as potential snakebite treatments.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Taline Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julien Slagboom
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ben Bruyneel
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Abstract
Three-finger toxins (TFTs) are well-recognized non-enzymatic venom proteins found in snakes. However, although TFTs exhibit accelerated evolution, the drivers of this evolution remain poorly understood. The structural complexes between long-chain α-neurotoxins, a subfamily of TFTs, and their nicotinic acetylcholine receptor targets have been determined in previous research, providing an opportunity to address such questions. In the current study, we observed several previously identified positively selected sites (PSSs) and the highly variable C-terminal loop of these toxins at the toxin/receptor interface. Of interest, analysis of the molecular adaptation of the toxin-recognition regions in the corresponding receptors provided no statistical evidence for positive selection. However, these regions accumulated abundant amino acid variations in the receptors from the prey of snakes, suggesting that accelerated substitution of TFTs could be a consequence of adaptation to these variations. To the best of our knowledge, this atypical evolution, initially discovered in scorpions, is reported in snake toxins for the first time and may be applicable for the evolution of toxins from other venomous animals.
Collapse
Affiliation(s)
- Xian-Hong Ji
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang-Fei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:
| | - Shun-Yi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:
| |
Collapse
|
16
|
Identification of Immunoreactive Peptides of Toxins to Simultaneously Assess the Neutralization Potency of Antivenoms against Neurotoxicity and Cytotoxicity of Naja atra Venom. Toxins (Basel) 2017; 10:toxins10010010. [PMID: 29295601 PMCID: PMC5793097 DOI: 10.3390/toxins10010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
Assessing the neutralization capability of nonlethal but medically relevant toxins in venom has been a challenging task. Nowadays, neutralization efficacy is evaluated based simply on the survival rates of animals injected with antivenom together with a predefined dose of venom, which can determine potency against neurotoxicity but not validate the capability to neutralize cytotoxin-induced complications. In this study, a high correlation with in-vivo and in-vitro neutralization assays was established using the immunoreactive peptides identified from short-chain neurotoxin and cytotoxin A3. These peptides contain conserved residues associated with toxin activities and a competition assay indicated that these peptides could specifically block the antibody binding to toxin and affect the neutralization potency of antivenom. Moreover, the titers of peptide-specific antibody in antivenoms or mouse antisera were determined by enzyme-linked immunosorbent assay (ELISA) simultaneously, and the results indicated that Taiwanese bivalent antivenom (BAV) and Vietnamese snake antivenom-Naja (SAV-Naja) exhibited superior neutralization potency against the lethal effect of short-chain neurotoxin (sNTX) and cytotoxicity of cardiotoxin/cytotoxin (CTX), respectively. Thus, the reported peptide ELISA shows not only its potential for antivenom prequalification use, but also its capability of justifying the cross-neutralization potency of antivenoms against Naja atra venom toxicity.
Collapse
|
17
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
18
|
Lyukmanova EN, Shulepko MA, Shenkarev ZO, Kasheverov IE, Chugunov AO, Kulbatskii DS, Myshkin MY, Utkin YN, Efremov RG, Tsetlin VI, Arseniev AS, Kirpichnikov MP, Dolgikh DA. Central loop of non-conventional toxin WTX from Naja kaouthia is important for interaction with nicotinic acetylcholine receptors. Toxicon 2016; 119:274-9. [PMID: 27343701 DOI: 10.1016/j.toxicon.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
'Three-finger' toxin WTX from Naja kaouthia interacts with nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Mutagenesis and competition experiments with (125)I-α-bungarotoxin revealed that Arg31 and Arg32 residues from the WTX loop II are important for binding to Torpedo californica and human α7 nAChRs. Computer modeling suggested that loop II occupies the orthosteric binding site at α7 nAChR. The similar toxin interface was previously described as a major determinant of allosteric interactions with mAChRs.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation.
| | - Mikhail A Shulepko
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Anton O Chugunov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dmitrii S Kulbatskii
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Mikhail Yu Myshkin
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Mikhail P Kirpichnikov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dmitry A Dolgikh
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
19
|
Hassan-Puttaswamy V, Adams DJ, Kini RM. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom. ACS Chem Biol 2015; 10:2805-15. [PMID: 26448325 DOI: 10.1021/acschembio.5b00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Snake venom α-neurotoxins from the three-finger toxin (3FTx) family are competitive antagonists with nanomolar affinity and high selectivity for nicotinic acetylcholine receptors (nAChR). Here, we report the characterization of a new group of competitive nAChR antagonists: Ω-neurotoxins. Although they belong to the 3FTx family, the characteristic functional residues of α-neurotoxins are not conserved. We evaluated the subtype specificity and structure-function relationships of Oh9-1, an Ω-neurotoxin from Ophiophagus hannah venom. Recombinant Oh9-1 showed reversible postsynaptic neurotoxicity in the micromolar range. Experiments with different nAChR subtypes expressed in Xenopus oocytes indicated Oh9-1 is selective for rat muscle type α1β1εδ (adult) and α1β1γδ (fetal) and rat neuronal α3β2 subtypes. However, Oh9-1 showed low or no affinity for other human and rat neuronal subtypes. Twelve individual alanine-scan mutants encompassing all three loops of Oh9-1 were evaluated for binding to α1β1εδ and α3β2 subtypes. Oh9-1's loop-II residues (M25, F27) were the most critical for interactions and formed the common binding core. Mutations at T23 and F26 caused a significant loss in activity at α1β1εδ receptors but had no effect on the interaction with the α3β2 subtype. Similarly, mutations at loop-II (H7, K22, H30) and -III (K45) of Oh9-1 had a distinctly different impact on its activity with these subtypes. Thus, Oh9-1 interacts with these nAChRs via distinct residues. Unlike α-neurotoxins, the tip of loop-II is not involved. We reveal a novel mode of interaction, where both sides of the β-strand of Oh9-1's loop-II interact with α1β1εδ, but only one side interacts with α3β2. Phylogenetic analysis revealed functional organization of the Ω-neurotoxins independent of α-neurotoxins. Thus, Ω-neurotoxin: Oh9-1 may be a new, structurally distinct class of 3FTxs that, like α-neurotoxins, antagonize nAChRs. However, Oh9-1 binds to the ACh binding pocket via a different set of functional residues.
Collapse
Affiliation(s)
| | - David J. Adams
- Health
Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - R. Manjunatha Kini
- Department
of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
20
|
Wang CIA, Reeks T, Vetter I, Vergara I, Kovtun O, Lewis RJ, Alewood PF, Durek T. Isolation and structural and pharmacological characterization of α-elapitoxin-Dpp2d, an amidated three finger toxin from black mamba venom. Biochemistry 2014; 53:3758-66. [PMID: 24867092 DOI: 10.1021/bi5004475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We isolated a novel, atypical long-chain three-finger toxin (TFT), α-elapitoxin-Dpp2d (α-EPTX-Dpp2d), from black mamba (Dendroaspis polylepis polylepis) venom. Proteolytic digestion with trypsin and V8 protease, together with MS/MS de novo sequencing, indicated that the mature toxin has an amidated C-terminal arginine, a posttranslational modification rarely observed for snake TFTs. α-EPTX-Dpp2d was found to potently inhibit α7 neuronal nicotinic acetylcholine receptors (nAChR; IC₅₀, 58 ± 24 nM) and muscle-type nAChR (IC₅₀, 114 ± 37 nM) but did not affect α3β2 and α3β4 nAChR isoforms at 1 μM concentrations. Competitive radioligand binding assays demonstrated that α-EPTX-Dpp2d competes with epibatidine binding to the Lymnea stagnalis acetylcholine-binding protein (Ls-AChBP; IC₅₀, 4.9 ± 2.3 nM). The activity profile and binding data are reminiscent of classical long-chain TFTs with a free carboxyl termini, suggesting that amidation does not significantly affect toxin selectivity. The crystal structure of α-EPTX-Dpp2d was determined at 1.7 Å resolution and displayed a dimeric toxin assembly with each monomer positioned in an antiparallel orientation. The dimeric structure is stabilized by extensive intermolecular hydrogen bonds and electrostatic interactions, which raised the possibility that the toxin may exist as a noncovalent homodimer in solution. However, chemical cross-linking and size-exclusion chromatography coupled with multiangle laser light scattering (MALLS) data indicated that the toxin is predominantly monomeric under physiological conditions. Because of its high potency and selectivity, we expect this toxin to be a valuable pharmacological tool for studying the structure and function of nAChRs.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia , Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors. Biochem J 2013; 454:311-21. [PMID: 23802200 DOI: 10.1042/bj20130638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr¹⁸⁴ in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr¹⁸⁴ depends on local residues, we generated mutations in an α7/5HT(3A) (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured ¹²⁵I-labelled α-btx binding. The results show that mutations of individual residues near Tyr¹⁸⁴ do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr¹⁸⁴ to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr¹⁸⁴ to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr¹⁸⁴ and local residues contributes to high-affinity subtype-selective α-btx binding.
Collapse
|
22
|
Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem J 2013; 454:303-310. [PMID: 23800261 DOI: 10.1042/bj20130636] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Ų (1 Å=0.1 nm) of surface area, within which Arg³⁶ and Phe³² from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr¹⁸⁴ from loop-C of α7, while Asp³⁰ of α-btx forms a hydrogen bond with the hydroxy group of Tyr¹⁸⁴. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr¹⁸⁴ with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.
Collapse
|
23
|
Maïga A, Vera L, Marchetti C, Lorphelin A, Bellanger L, Mourier G, Servent D, Gilles N, Stura EA. Crystallization of recombinant green mamba ρ-Da1a toxin during a lyophilization procedure and its structure determination. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:704-9. [PMID: 23722859 PMCID: PMC3668600 DOI: 10.1107/s1744309113011470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
Abstract
ρ-Da1a toxin from eastern green mamba (Dendroaspis angusticeps) venom is a polypeptide of 65 amino acids with a strong affinity for the G-protein-coupled α(1A)-adrenoceptor. This neurotoxin has been crystallized from resolubilized lyophilized powder, but the best crystals grew spontaneously during lyophilization. The crystals belonged to the trigonal space group P3(1)21, with unit-cell parameters a = b = 37.37, c = 66.05 Å, and diffracted to 1.95 Å resolution. The structure solved by molecular replacement showed strong similarities to green mamba muscarinic toxins.
Collapse
Affiliation(s)
- Arhamatoulaye Maïga
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Laura Vera
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Charles Marchetti
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Alain Lorphelin
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Laurent Bellanger
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Gilles Mourier
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Denis Servent
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Nicolas Gilles
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Enrico Adriano Stura
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Blanchet G, Upert G, Mourier G, Gilquin B, Gilles N, Servent D. New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba. Toxicon 2013; 75:160-7. [PMID: 23648423 DOI: 10.1016/j.toxicon.2013.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/19/2013] [Indexed: 12/28/2022]
Abstract
Despite their isolation more than fifteen years ago from the venom of the African mamba Dendroaspis polylepis, very few data are known on the functional activity of MTβ and CM-3 toxins. MTβ was initially classified as a muscarinic toxin interacting non-selectively and with low affinity with the five muscarinic receptor subtypes while no biological function was determined for CM-3. Recent results highlight the multifunctional activity of three-finger fold toxins for muscarinic and adrenergic receptors and reveal some discrepancies in the pharmacological profiles of their venom-purified and synthetic forms. Here, we report the pharmacological characterization of chemically-synthesized MTβ and CM-3 toxins on nine subtypes of muscarinic and adrenergic receptors and demonstrate their high potency for α-adrenoceptors and in particular a sub-nanomolar affinity for the α1A-subtype. Strikingly, no or very weak affinity were found for muscarinic receptors, highlighting that pharmacological characterizations of venom-purified peptides may be risky due to possible contaminations. The biological profile of these two homologous toxins looks like that one previously reported for the Dendroaspis angusticeps ρ-Da1a toxin. Nevertheless, MTβ and CM-3 interact more potently than ρ-Da1a with α1B- and α1D-AR subtypes. A computational analysis of the stability of the MTβ structure suggests that mutation S38I, could be involved in this gain in function.
Collapse
Affiliation(s)
- Guillaume Blanchet
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif sur Yvette, France; UFR Sciences de la Vie, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Lyukmanova EN, Shulepko MA, Buldakova SL, Kasheverov IE, Shenkarev ZO, Reshetnikov RV, Filkin SY, Kudryavtsev DS, Ojomoko LO, Kryukova EV, Dolgikh DA, Kirpichnikov MP, Bregestovski PD, Tsetlin VI. Water-soluble LYNX1 residues important for interaction with muscle-type and/or neuronal nicotinic receptors. J Biol Chem 2013; 288:15888-99. [PMID: 23585571 DOI: 10.1074/jbc.m112.436576] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D'Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618-10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its "non-classical" binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Three-finger toxins (TFTs) are the main venom components of snakes from Elapidae family. Amino acid sequences of more than five hundreds TFTs are determined; these toxins form one of the largest protein families present in snake venoms. The first TFT α-bungarotoxin was isolated almost half a century ago and so far it remains a valuable tool in the study of nicotinic acetylcholine receptors. TFTs possess diverse biological activities; for example, α-neurotoxins bind specifically with high affinity to nicotinic acetylcholine receptors, while cytotoxins induce non-specific lysis in great variety of cells. These toxins are widely used as instruments in different branches of life sciences. In this review the main landmarks in TFT study are considered. These are the discovery and isolation of TFTs, determination of their structure and mode of action as well as evolution and relationship within the family.
Collapse
Affiliation(s)
- Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| |
Collapse
|
27
|
Girish VM, Kumar S, Joseph L, Jobichen C, Kini RM, Sivaraman J. Identification and structural characterization of a new three-finger toxin hemachatoxin from Hemachatus haemachatus venom. PLoS One 2012; 7:e48112. [PMID: 23144733 PMCID: PMC3483290 DOI: 10.1371/journal.pone.0048112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 09/19/2012] [Indexed: 01/26/2023] Open
Abstract
Snake venoms are rich sources of biologically active proteins and polypeptides. Three-finger toxins are non-enzymatic proteins present in elapid (cobras, kraits, mambas and sea snakes) and colubrid venoms. These proteins contain four conserved disulfide bonds in the core to maintain the three-finger folds. Although all three-finger toxins have similar fold, their biological activities are different. A new three-finger toxin (hemachatoxin) was isolated from Hemachatus haemachatus (Ringhals cobra) venom. Its amino acid sequence was elucidated, and crystal structure was determined at 2.43 Å resolution. The overall fold is similar to other three-finger toxins. The structure and sequence analysis revealed that the fold is maintained by four highly conserved disulfide bonds. It exhibited highest similarity to particularly P-type cardiotoxins that are known to associate and perturb the membrane surface with their lipid binding sites. Also, the increased B value of hemachotoxin loop II suggests that loop II is flexible and may remain flexible until its interaction with membrane phospholipids. Based on the analysis, we predict hemachatoxin to be cardiotoxic/cytotoxic and our future experiments will be directed to characterize the activity of hemachatoxin.
Collapse
Affiliation(s)
| | - Sundramurthy Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Lissa Joseph
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RMK); (JS)
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail: (RMK); (JS)
| |
Collapse
|
28
|
Marquer C, Fruchart-Gaillard C, Letellier G, Marcon E, Mourier G, Zinn-Justin S, Ménez A, Servent D, Gilquin B. Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor. J Biol Chem 2011; 286:31661-75. [PMID: 21685390 DOI: 10.1074/jbc.m111.261404] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554-1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409-420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target.
Collapse
Affiliation(s)
- Catherine Marquer
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes (SB2SM), CNRS Unité de Recherche Associée 2096, Gif sur Yvette F-91191, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of the nicotinic acetylcholine receptors by cobra venom α-neurotoxins: is there a perspective in lung cancer treatment? PLoS One 2011; 6:e20695. [PMID: 21695184 PMCID: PMC3113800 DOI: 10.1371/journal.pone.0020695] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/07/2011] [Indexed: 01/23/2023] Open
Abstract
Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the α7 subtype are present on a wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted, we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated. We determined the activity of α-neurotoxins from Naja atra (short-chain neurotoxin, α-cobrotoxin) and Naja kaouthia (long-chain neurotoxin, α-cobratoxin) in vitro by cytotoxicity measurements in 5 lung cancer cell lines, by colony formation assay with α7nAChRs expressing and non-expressing cell lines and in vivo by assessing tumor growth in an orthotopic Non-Obese Diabetic/Severe Combined Immunodeficient (NOD/SCID) mouse model system utilizing different treatment schedules and dosages. No statistically significant reduction in tumor growth was observed in the treatment arms in comparison to the control for both toxins. Paradoxically α-cobrotoxin from Naja atra showed the tendency to enhance tumor growth although, even in this case, the statistical significance was not reached. In conclusion our results show that, in contrast with other reports, the nAChR inhibitors α-cobratoxin from N. kaouthia and α-cobrotoxin from N. atra neither suppressed tumor growth nor prolonged the survival of the treated animals.
Collapse
|
30
|
The muscarinic M(4) receptor is the functionally predominant subtype in rat and mouse striatum as demonstrated using [(35)S] GTPγS binding. Eur J Pharmacol 2010; 652:1-6. [PMID: 21114972 DOI: 10.1016/j.ejphar.2010.10.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/15/2010] [Accepted: 10/31/2010] [Indexed: 01/08/2023]
Abstract
We have used selective muscarinic receptor antagonists and M(2) and M(4) receptor knockout (KO) mouse tissue to define the functional muscarinic acetylcholine receptor populations in rodent striatum. [(3)H] NMS binding studies in rat and mouse striatum demonstrated that approximately 30% of muscarinic acetylcholine receptors expressed are M(1) receptors. Radioligand binding studies suggest that the remaining muscarinic acetylcholine receptor population is largely M(4) with small levels of M(2). In agreement, carbachol-induced GTPγS binding studies in M(2) and M(4) receptor KO mouse striatum implicated the M(4) receptor as the predominant functional receptor subtype. Based on these data we have developed a novel, native tissue M(4) receptor [(35)S] GTPγS binding assay. Pharmacological assessment of M(4) receptor agonist and positive 3modulators revealed clear differences in the potencies observed in a human recombinant CHO-M(4) receptor [(35)S] GTPγS binding assay as compared to the native tissue [(35)S] GTPγS binding assay. These differences are believed to reflect differences in receptor reserve between the assay systems as well as differences in compound pharmacology (relative contribution of compound affinity and efficacy to observed potency). These studies have demonstrated the importance of understanding the pharmacology of test compounds in a native environment when predicting in vivo response.
Collapse
|
31
|
Dimitropoulos N, Papakyriakou A, Dalkas GA, Chasapis CT, Poulas K, Spyroulias GA. A computational investigation on the role of glycosylation in the binding of alpha1 nicotinic acetylcholine receptor with two alpha-neurotoxins. Proteins 2010; 79:142-52. [DOI: 10.1002/prot.22867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Zhan C, Yan Z, Xie C, Lu W. Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm 2010; 7:1940-7. [PMID: 20964364 DOI: 10.1021/mp100238j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-finger snake neurotoxins have been widely investigated for their high binding affinities with nicotinic acetylcholine receptors (nAChRs), which are widely expressed in the central nervous system including the blood-brain barrier and thus mediate intracranial drug delivery. The loop 2 segments of three-finger snake neurotoxins are considered as the binding domain with nAChRs, and thus, they may have the potential to enhance drug or drug delivery system intracranial transport. In the present work, binding of the synthetic peptides to the neuronal nAChRs was assessed by measuring their ability to inhibit the binding of (125)I-α-bungarotoxin to the receptor. The loop 2 segment of Ophiophagus hannah toxin b (KC2S) showed high binding affinity, and the competitive binding IC(50) value was 32.51 nM. Furthermore, the brain targeting efficiency of KC2S had been investigated in vitro and in vivo. The specific uptake by brain capillary endothelial cells (BCECs) demonstrated that KC2S could be endocytosized after binding with nAChRs. In vivo, the qualitative and quantitative biodistribution results of fluorescent dyes (DiR or coumarin-6) indicated that KC2S modified poly(ethylene glycol)-poly(lactic acid) micelles (KC2S-PEG-PLA micelles) could enhance intracranial drug delivery. Furthermore, intravenous treatment with paclitaxel-encapsulated KC2S-PEG-PLA micelles (KC2S-PEG-PLA-PTX micelles) afforded robust inhibition of intracranial glioblastoma. The median survival time of KC2S-PEG-PLA-PTX-micelle-treated mice (47.5 days) was significantly longer than that of mice treated by mPEG-PLA-PTX micelles (41.5 days), Taxol (38.5 days), or saline (34 days). Compared with the short peptide derived from rabies virus glycoprotein (RVG29) that has been previously reported as an excellent brain targeting ligand, KC2S has a similar binding affinity with neuronal nAChRs but fewer amino acid residues. Thus, we concluded that the loop 2 segment of Ophiophagus hannah toxin b could bind with neuronal nAChRs and thus enhance intracranial drug delivery for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Changyou Zhan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | |
Collapse
|
33
|
|
34
|
Roy A, Zhou X, Chong MZ, D'hoedt D, Foo CS, Rajagopalan N, Nirthanan S, Bertrand D, Sivaraman J, Kini RM. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra). J Biol Chem 2010; 285:8302-15. [PMID: 20071329 DOI: 10.1074/jbc.m109.074161] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sgrignani J, Bonaccini C, Grazioso G, Chioccioli M, Cavalli A, Gratteri P. Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations. J Comput Chem 2009; 30:2443-54. [PMID: 19360794 DOI: 10.1002/jcc.21251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A combined quantum mechanical (QM)-polarized docking and molecular dynamics approach to study the binding mode and to predict the binding affinity of ligands acting at the alpha4beta2-nAChR is presented. The results obtained in this study indicate that the quantum mechanical/molecular mechanics docking protocol well describes the charge-driven interactions occurring in the binding of nicotinic agonists, and it is able to represent the polarization effects on the ligand exerted by the surrounding atoms of the receptor at the binding site. This makes it possible to properly score agonists of alpha4beta2-nAChR and to reproduce the experimental binding affinity data with good accuracy, within a mean error of 2.2 kcal/mol. Moreover, applying the QM-polarized docking to an ensemble of nAChR conformations obtained from MD simulations enabled us to accurately capture nAChR-ligand induced-fit effects.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
36
|
Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8:733-50. [PMID: 19721446 DOI: 10.1038/nrd2927] [Citation(s) in RCA: 542] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Collapse
|
37
|
Paleari L, Cesario A, Fini M, Russo P. alpha7-Nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and Mesothelioma? Drug Discov Today 2009; 14:822-36. [PMID: 19616116 DOI: 10.1016/j.drudis.2009.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/26/2022]
Abstract
Of the human solid cancers, Non-Small Cell Lung Cancer (NSCLC) and Malignant Pleural Mesothelioma (MPM) display a natural history supporting the concept that they develop from multiple preneoplastic pathways. Recently, new evidence suggested that nicotinic Acetylcholine Receptors (nAChRs) play a significant role in lung cancer predisposition and natural history. This review is based on some translational research aimed at evaluating the potential therapeutic effect of nAChR antagonists on NSCLC and MPM. The background and rationale of this approach are based on the experimental observations that: (a) NSCLC and MPM cells express nAChRs and (b) the activation of these receptors by agonists, namely nicotine, inhibits apoptosis, whereas receptor antagonists have a pro-apoptotic effect.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy.
| | | | | | | |
Collapse
|
38
|
Paleari L, Sessa F, Catassi A, Servent D, Mourier G, Doria-Miglietta G, Ognio E, Cilli M, Dominioni L, Paolucci M, Calcaterra A, Cesario A, Margaritora S, Granone P, Russo P. Inhibition of non-neuronal alpha7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts. Int J Cancer 2009; 125:199-211. [PMID: 19326440 DOI: 10.1002/ijc.24299] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are expressed on bronchial epithelial and non-small cell lung cancer cells and are involved in cell growth regulation. Nicotine (classical nAChR agonist) induced cell proliferation, whereas nAChR antagonists, d- tubocurarine or alpha-cobratoxin (alpha-CbT), induced cell death. In the current study, we further explored the antitumor potential mechanisms and activities of alpha-CbT. NOD/SCID mice were grafted intraperitoneally or orthotopically and treated with alpha-CbT. alpha-CbT treatment [0.04 ng/kg or 0.12 ng/kg] induced a strong reduction in tumor size ( approximately 90%) in comparison with mice treated with the vehicle alone. Tumor inhibition was related to severe induction of apoptosis. Moreover, neoangiogenesis was strongly inhibited (reduction of cells positive to vascular endothelial growth factor and CD31). Biochemical analyses of the cells, isolated by the primary lung tumor in alpha-CbT-treated mice, showed apoptosis features characterized by: (i) inhibition of BAD phosphorylation at Ser(112) and Ser(136); (ii) BAD dissociation from 14-3-3; (iii) BAD association with BCL-XL; and (iv) cleavage of caspase-9. Moreover, these cells were unable to grow in soft agar and develop tumor, when reinjected into mice. The small interfering RNA-mediated silencing of the alpha7-nAChR gene confirmed that alpha-CbT specifically inhibited the alpha7-nAChR-mediated survival pathway in A549 cells. Furthermore, the specificity of alpha-CbT is reinforced by the lack of effect of short chain toxin (Erabutoxin-a). Once more, the no effect of the low-affinity R33E-modified alpha-CbT strengthened the specificity of this inhibition. Although alpha7-nAChR antagonists, such as alpha-CbT, are unlikely to be a primary therapy, it may provide lead compounds for the design of clinically useful drugs.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lyukmanova E, Kopeina G, Shulepko M, Shenkarev Z, Arseniev A, Dolgikh D, Kirpichnikov M. Cell-free Production of the Extracellular Domain of the Nicotinic Acetylcholine Receptor. Acta Naturae 2009; 1:96-8. [PMID: 22649592 PMCID: PMC3347502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- E.N. Lyukmanova
- Shemyakin-Ovchinnikov Insitute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklucho-Maklaya str., Moscow, Russia;
| | - G.S. Kopeina
- Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991
| | - M.A. Shulepko
- Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991
| | - Z.O. Shenkarev
- Shemyakin-Ovchinnikov Insitute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklucho-Maklaya str., Moscow, Russia;
| | - A.S. Arseniev
- Shemyakin-Ovchinnikov Insitute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklucho-Maklaya str., Moscow, Russia;
| | - D.A. Dolgikh
- Shemyakin-Ovchinnikov Insitute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklucho-Maklaya str., Moscow, Russia;
,Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991
| | - M.P. Kirpichnikov
- Shemyakin-Ovchinnikov Insitute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklucho-Maklaya str., Moscow, Russia;
,Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991
| |
Collapse
|
40
|
Nasiripourdori A, Ranjbar B, Naderi-Manesh H. Binding of long-chain alpha-neurotoxin would stabilize the resting state of nAChR: a comparative study with alpha-conotoxin. Theor Biol Med Model 2009; 6:3. [PMID: 19210780 PMCID: PMC2649906 DOI: 10.1186/1742-4682-6-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 02/11/2009] [Indexed: 11/27/2022] Open
Abstract
Background The details of interaction in a complex between potent antagonists such as long chain α-neurotoxins and α-conotoxins with nicotinic acetylcholine receptor (nAChR), and conformational changes induced by these antagonists, are not yet clear. Modeling In order to uncover some of these critical structural features, we conducted a docking simulation and a molecular dynamics simulation (MD) of a model of the ligand binding domain of nAChR in complex with a long-chain α-neurotoxin and an α-conotoxin. Results Our docking results confirm the claim that T.nAChR is in the basal or resting state, which favors binding to the alpha-neurotoxins. Moreover, more correct "hits" for the α/γ interface upon docking for conotoxin-nAChR confirm the preference of conotoxin GI for the α/γ interface. More importantly, upon binding of α-neurotoxin, ligand-bonded nAChR is less dynamic in certain domains than the apo form of the conotoxin-AChR complex. Some critical interactions in the binding site such as the salt bridge formed between K145/D200 in the neurotoxin-nAChR complex is further stabilized during the MD simulation, while it is obviously more labile in the apo form. Conclusion These observations could support the claim that alpha neurotoxins stabilize the nAChR resting state.
Collapse
Affiliation(s)
- Adak Nasiripourdori
- Department of Biophysics, Faculty of Science, Tarbiat Modares University, P,O, Box 14115-175, Tehran, Iran.
| | | | | |
Collapse
|
41
|
Paleari L, Negri E, Catassi A, Cilli M, Servent D, D'Angelillo R, Cesario A, Russo P, Fini M. Inhibition of nonneuronal alpha7-nicotinic receptor for lung cancer treatment. Am J Respir Crit Care Med 2009; 179:1141-50. [PMID: 19151195 DOI: 10.1164/rccm.200806-908oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Studies strongly suggest that the nicotinic acetylcholine receptors for nicotine (nAChRs) play a significant role in lung cancer predisposition and natural history. The nAChR alpha7 subunit has been found to be pivotal in the control of nicotine-induced lung cancer development and in growth signal transduction induced by nicotine binding to nAChRs. OBJECTIVES To investigate the anticancer effects of alpha7-nAChR antagonists. METHODS (1) To check the correlation between alpha7-nAChR presence and alpha-cobratoxin (alpha-CbT) sensitivity, binding experiments were performed in various normal human cells, lung cancer cell lines, and primary tumoral cells; (2) to demonstrate that alpha-CbT might be an efficient adjuvant therapy for non-small cell lung cancer (NSCLC) we expanded our previous observations to a panel of NSCLCs of various subtypes orthotopically grafted on nonobese diabetic/severe combined immunodeficient mice; (3) to gain insight into the mechanism of alpha-CbT-induced tumor reduction, the cells obtained after enzymatic digestion of tumors were analyzed for procaspase-9, Bax, Bad, and Bcl-X(L) protein; and (4) Snail/E-cadherin expression was evaluated to acquire information about the chemoresistance of cancer cells to alpha-CbT. MEASUREMENTS AND MAIN RESULTS We report herein the results of an experimental strategy aimed at investigating the antitumor effects of a powerful alpha7-nAChR antagonist, alpha-CbT, in an in vivo setting set to mimic the clinical setting of lung cancer; in addition, a possible explanation for alpha-CbT selectivity toward cancer cells is presented. CONCLUSIONS We report the prolonged survival of alpha-CbT-treated animals in our mouse model of NSCLC, which is most likely the result of multiple mechanisms, including various antiproliferative and antiangiogenic effects.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, Department of Advanced Technology, Diagnostic National Cancer Research Institute, Largo Rosanna Benzi 10, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grazioso G, Cavalli A, De Amici M, Recanatini M, De Micheli C. Alpha7 nicotinic acetylcholine receptor agonists: prediction of their binding affinity through a molecular mechanics Poisson-Boltzmann surface area approach. J Comput Chem 2008; 29:2593-602. [PMID: 18478580 DOI: 10.1002/jcc.21019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A group of agonists for the alpha7 neuronal nicotinic acetylcholine receptors (nAChRs) was investigated, and their free energies of binding DeltaG(bind) were calculated by applying the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach. This method, based on molecular dynamics simulations of fully solvated protein-ligand complexes, allowed us to estimate the contribution of both polar and nonpolar terms as well as the entropy to the overall free energy of binding. The calculated results were in a good agreement with the experimentally determined DeltaG(bind) values, thereby pointing to the MM-PBSA protocol as a valuable computational tool for the rational design of specific agents targeting the neuronal alpha7 nAChR subtypes.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Istituto di Chimica Farmaceutica e Tossicologica "Pietro Pratesi", Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
43
|
Fruchart-Gaillard C, Mourier G, Marquer C, Stura E, Birdsall NJM, Servent D. Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied states. Mol Pharmacol 2008; 74:1554-63. [PMID: 18784346 DOI: 10.1124/mol.108.050773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Muscarinic MT7 toxin is a highly selective and potent antagonist of the M(1) subtype of muscarinic receptor and acts by binding to an allosteric site. To identify the molecular determinants by which MT7 toxin interacts with this receptor in its free and NMS-occupied states, the effect on toxin potency of alanine substitution was evaluated in equilibrium and kinetic binding experiments as well as in functional assays. The determination of the crystallographic structure of an MT7-derivative (MT7-diiodoTyr51) allowed the selection of candidate residues that are accessible and present on both faces of the three toxin loops. The equilibrium binding data are consistent with negative cooperativity between N-methylscopolamine (NMS) and wild-type or modified MT7 and highlight the critical role of the tip of the central loop of the toxin (Arg34, Met35 Tyr36) in its interaction with the unoccupied receptor. Examination of the potency of wild-type and modified toxins to allosterically decrease the dissociation rate of [(3)H]NMS allowed the identification of the MT7 residues involved in its interaction with the NMS-occupied receptor. In contrast to the results with the unoccupied receptor, the most important residue for this interaction was Tyr36 in loop II, assisted by Trp10 in loop I and Arg52 in loop III. The critical role of the tips of the MT7 loops was also confirmed in functional experiments. The high specificity of the MT7-M(1) receptor interaction exploits several MT7-specific residues and reveals a different mode of interaction of the toxin with the free and NMS-occupied states of the receptor.
Collapse
Affiliation(s)
- Carole Fruchart-Gaillard
- Commissariat à l'Energie Atomique, Institut de Biologie et de Tecnologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologie, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
44
|
Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P. Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif 2008; 41:936-59. [PMID: 19040571 PMCID: PMC9531952 DOI: 10.1111/j.1365-2184.2008.00566.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Lung cancer is the most common cause of cancer death in the world. Cigarette smoking represents the major risk factor. Nicotine, an active component of cigarettes, can induce cell proliferation, angiogenesis and apoptosis resistance. All these events are mediated through the nicotinic acetylcholine receptor (nAChR) expressed on lung cancer cells. We speculate that new insights into the pathophysiological roles of nAChR may lead to new therapeutic avenues to reduce non-small cell lung cancer (NSCLC) tumour growth. MATERIALS AND METHODS Human samples of NSCLC, cell lines and mouse models were utilized in Western blotting, reverse transcriptase polymerase chain reaction and apoptosis studies. RESULTS Human NSCLC tissues expressed alpha7-nAChR. This expression was higher in smoking patients with squamous carcinomas than those with adenocarcinomas and in male smoking patients than in females. All the data support the hypothesis that major expression of alpha7-nAChR is related to major activation of the Rb-Raf-1/phospho-ERK/phospho-p90RSK pathway. alpha7-nAChR antagonists, via mitochondria associated apoptosis, inhibited proliferation of human NSCLC primary and established cells. Nicotine stimulates tumour growth in a murine model, A549 cells orthotopically grafted. The effects of nicotine were associated with increases in phospho-ERK in tumours. Proliferation effects of nicotine could be blocked by inhibition of alpha7-nAChR by the high affinity ligand alpha-cobratoxin. CONCLUSION These results showed that alpha7-nAChR plays an important role in NSCLC cell growth and tumour progression as well as in cell death.
Collapse
Affiliation(s)
- L. Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - A. Catassi
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy,,University of Insubria, Varese, Italy
| | - M. Ciarlo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - Z. Cavalieri
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - C. Bruzzo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - D. Servent
- CEA, iBiTecS, Service d’Ingénierie Moleculaire des Protéines (SIMOPRO), Gif sur Yvette, France
| | - A. Cesario
- IRCCS ‘San Raffaele’, Rome, Italy,,Thoracic Surgery Unit, Catholic University, Rome, Italy
| | - L. Chessa
- Animal Facility Unit, National Cancer Research Institute, Genoa, Italy, and
| | - M. Cilli
- Transplant Thoracic Surgery Unit, ‘San Martino’ Hospital, Genoa, Italy
| | - F. Piccardi
- Transplant Thoracic Surgery Unit, ‘San Martino’ Hospital, Genoa, Italy
| | | | - P. Russo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| |
Collapse
|
45
|
Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Ménez R, Foo CS, Ménez A, Nirthanan S, Kini RM. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J 2008; 23:534-45. [PMID: 18952712 DOI: 10.1096/fj.08-113555] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel heterodimeric three-finger neurotoxin, irditoxin, was isolated from venom of the brown treesnake Boiga irregularis (Colubridae). Irditoxin subunit amino acid sequences were determined by Edman degradation and cDNA sequencing. The crystal structure revealed two subunits with a three-finger protein fold, typical for "nonconventional" toxins such as denmotoxin, bucandin, and candoxin. This is the first colubrid three-finger toxin dimer, covalently connected via an interchain disulfide bond. Irditoxin showed taxon-specific lethality toward birds and lizards and was nontoxic toward mice. It produced a potent neuromuscular blockade at the avian neuromuscular junction (IC(50)=10 nM), comparable to alpha-bungarotoxin, but was three orders of magnitude less effective at the mammalian neuromuscular junction. Covalently linked heterodimeric three-finger toxins found in colubrid venoms constitute a new class of venom peptides, which may be a useful source of new neurobiology probes and therapeutic leads.
Collapse
Affiliation(s)
- Joanna Pawlak
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Dr. 4, Singapore 117543
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Spontaneous conformational change and toxin binding in alpha7 acetylcholine receptor: insight into channel activation and inhibition. Proc Natl Acad Sci U S A 2008; 105:8280-5. [PMID: 18541920 DOI: 10.1073/pnas.0710530105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic AChRs (nAChRs) represent a paradigm for ligand-gated ion channels. Despite intensive studies over many years, our understanding of the mechanisms of activation and inhibition for nAChRs is still incomplete. Here, we present molecular dynamics (MD) simulations of the alpha7 nAChR ligand-binding domain, both in apo form and in alpha-Cobratoxin-bound form, starting from the respective homology models built on crystal structures of the acetylcholine-binding protein. The toxin-bound form was relatively stable, and its structure was validated by calculating mutational effects on the toxin-binding affinity. However, in the apo form, one subunit spontaneously moved away from the conformation of the other four subunits. This motion resembles what has been proposed for leading to channel opening. At the top, the C loop and the adjacent beta7-beta8 loop swing downward and inward, whereas at the bottom, the F loop and the C terminus of beta10 swing in the opposite direction. These swings appear to tilt the whole subunit clockwise. The resulting changes in solvent accessibility show strong correlation with experimental results by the substituted cysteine accessibility method upon addition of acetylcholine. Our MD simulation results suggest a mechanistic model in which the apo form, although predominantly sampling the "closed" state, can make excursions into the "open" state. The open state has high affinity for agonists, leading to channel activation, whereas the closed state upon distortion has high affinity for antagonists, leading to inhibition.
Collapse
|
48
|
Samson AO, Levitt M. Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics. Biochemistry 2008; 47:4065-70. [PMID: 18327915 DOI: 10.1021/bi702272j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the prototype of ligand-gated ion channels. Here, we calculate the dynamics of the muscle AChR using normal modes. The calculations reveal a twist-like gating motion responsible for channel opening. The ion channel diameter is shown to increase with this twist motion. Strikingly, the twist motion and the increase in channel diameter are not observed for the AChR in complex with two alpha-bungarotoxin (alphaBTX) molecules. The toxins seems to lock together neighboring receptor subunits, thereby inhibiting channel opening. Interestingly, one alphaBTX molecule suffices to prevent the twist motion. These results shed light on the gating mechanism of the AChR and present a complementary inhibition mechanism by snake-venom-derived alpha-neurotoxins.
Collapse
Affiliation(s)
- Abraham O Samson
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
49
|
Changeux JP, Taly A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med 2008; 14:93-102. [PMID: 18262468 DOI: 10.1016/j.molmed.2008.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 01/20/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) was the first ion channel and membrane receptor of a neurotransmitter to be isolated and chemically identified and is one of the best known membrane proteins involved in signal transduction. Subsequently, nAChRs have been a target for drug discovery because of their potential to impact numerous brain diseases and disorders. Here, we consider recent developments in our understanding of nAChR structure and of the conformational transitions that link the acetylcholine (ACh)-binding site and the ion channel to mediate fast neurotransmission. The knowledge of such allosteric mechanisms is essential to understand pathologies such as congenital myasthenia, autosomal dominant nocturnal frontal lobe epilepsies, sudden infant death syndrome, attention deficit hyperactivity disorder and nicotine addiction and to design novel therapies.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Research unit, National Center of Scientific Research 2182, Department of Neuroscience, Pasteur Institute, Paris, France.
| | | |
Collapse
|
50
|
Gay EA, Giniatullin R, Skorinkin A, Yakel JL. Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. J Physiol 2007; 586:1105-15. [PMID: 18096596 DOI: 10.1113/jphysiol.2007.149492] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rat alpha7 nicotinic acetylcholine receptor (nAChR) can undergo rapid onset of desensitization; however, the mechanisms of desensitization are largely unknown. The contribution of a tryptophan (W) residue at position 55 of the rat alpha7 nAChR subunit, which lies within the beta2 strand, was studied by mutating it to other hydrophobic and/or aromatic amino acids, followed by voltage-clamp experiments in Xenopus oocytes. When mutated to alanine, the alpha7-W55A nAChR desensitized more slowly, and recovered from desensitization more rapidly, than wildtype alpha7 nAChRs. The contribution of desensitization was validated by kinetic modelling. Mutating W55 to other aromatic residues (phenylalanine or tyrosine) had no significant effect on the kinetics of desensitization, whereas mutation to various hydrophobic residues (alanine, cysteine or valine) significantly decreased the rate of onset and increased the rate of recovery from desensitization. To gain insight into possible structural rearrangements during desensitization, we probed the accessibility of W55 by mutating W55 to cysteine (alpha7-W55C) and testing the ability of various sulfhydryl reagents to react with this cysteine. Several positively charged sulfhydryl reagents blocked ACh-induced responses for alpha7-W55C nAChRs, whereas a neutral sulfhydryl reagent potentiated responses; residue C55 was not accessible for modification in the desensitized state. These data suggest that W55 plays an important role in both the onset and recovery from desensitization in the rat alpha7 nAChR, and that aromatic residues at position 55 are critical for maintaining rapid desensitization. Furthermore, these data suggest that W55 may be a potential target for modulatory agents operating via hydrophobic interactions.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|