1
|
Bryan C, Le J, Wei X, Yang K. Saccharomyces cerevisiae apurinic/apyrimidinic endonuclease 1 repairs abasic site-mediated DNA-peptide/protein cross-links. DNA Repair (Amst) 2023; 126:103501. [PMID: 37075541 DOI: 10.1016/j.dnarep.2023.103501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Saccharomyces cerevisiae apurinic/apyrimidinic (AP) endonuclease 1 (yApn1) is a key player of the base excision repair pathway. This multifunctional enzyme is an AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and participates in nucleotide incision repair. To the best of our knowledge, the known substrates of yApn1 are small DNA lesions such as AP sites and 3'-phospho-α,β-unsaturated aldehyde (3'-PUA). Here, we wish to report in vitro findings that yApn1 repairs bulky DNA-peptide cross-links (DpCs) and DNA-protein cross-links (DPCs) arising from AP sites and 3'-PUA. We chemically synthesized stable and linkage-defined DpCs and DPCs by oxime ligation and reductive amination, respectively. Our steady-state kinetic data showed that yApn1 repairs a 10-mer peptide-conjugated AP site and 3'-PUA with comparable efficiencies to that of processing the unconjugated lesions. We demonstrated that yApn1 is the predominant enzyme that incises AP-DpC in yeast cell extracts. We also demonstrated that yApn1 incises AP-DPCs in a DPC size-dependent manner, and prior DPC proteolysis by trypsin facilitates the repair. We further found that yApn1 removes 3'-PUA-histone DPCs with moderate efficiencies. Together, our results uncovered a novel role of yApn1 in DPC repair, and support the emerging model that proteolysis is required for efficient DPC repair.
Collapse
Affiliation(s)
- Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jennifer Le
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Perry M, Ghosal G. Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease. Front Mol Biosci 2022; 9:916697. [PMID: 35782873 PMCID: PMC9240642 DOI: 10.3389/fmolb.2022.916697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are deleterious DNA lesions that occur when proteins are covalently crosslinked to the DNA by the action of variety of agents like reactive oxygen species, aldehydes and metabolites, radiation, and chemotherapeutic drugs. Unrepaired DPCs are blockades to all DNA metabolic processes. Specifically, during DNA replication, replication forks stall at DPCs and are vulnerable to fork collapse, causing DNA breakage leading to genome instability and cancer. Replication-coupled DPC repair involves DPC degradation by proteases such as SPRTN or the proteasome and the subsequent removal of DNA-peptide adducts by nucleases and canonical DNA repair pathways. SPRTN is a DNA-dependent metalloprotease that cleaves DPC substrates in a sequence-independent manner and is also required for translesion DNA synthesis following DPC degradation. Biallelic mutations in SPRTN cause Ruijs-Aalfs (RJALS) syndrome, characterized by hepatocellular carcinoma and segmental progeria, indicating the critical role for SPRTN and DPC repair pathway in genome maintenance. In this review, we will discuss the mechanism of replication-coupled DPC repair, regulation of SPRTN function and its implications in human disease and cancer.
Collapse
Affiliation(s)
- Megan Perry
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Fred and Pamela Buffett Cancer Center, Omaha, NE, United States,*Correspondence: Gargi Ghosal,
| |
Collapse
|
3
|
In vitro eradication of abasic site-mediated DNA-peptide/protein cross-links by Escherichia coli long-patch base excision repair. J Biol Chem 2022; 298:102055. [PMID: 35605665 PMCID: PMC9234237 DOI: 10.1016/j.jbc.2022.102055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.
Collapse
|
4
|
Pujari SS, Wu M, Thomforde J, Wang ZA, Chao C, Olson NM, Erber L, Pomerantz WCK, Cole P, Tretyakova NY. Site‐Specific 5‐Formyl Cytosine Mediated DNA‐Histone Cross‐Links: Synthesis and Polymerase Bypass by Human DNA Polymerase η. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suresh S. Pujari
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Mingxuan Wu
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
- Current address: School of Science Westlake University Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road, 310024 Hangzhou Zhejiang Province China
| | - Jenna Thomforde
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Zhipeng A. Wang
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
| | - Christopher Chao
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Noelle M. Olson
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | | | - Philip Cole
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
5
|
Pujari SS, Wu M, Thomforde J, Wang ZA, Chao C, Olson N, Erber L, Pomerantz WCK, Cole P, Tretyakova NY. Site-Specific 5-Formyl Cytosine Mediated DNA-Histone Cross-Links: Synthesis and Polymerase Bypass by Human DNA Polymerase η. Angew Chem Int Ed Engl 2021; 60:26489-26494. [PMID: 34634172 PMCID: PMC8775767 DOI: 10.1002/anie.202109418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Indexed: 01/16/2023]
Abstract
DNA-protein cross-links (DPCs) between DNA epigenetic mark 5-formylC and lysine residues of histone proteins spontaneously form in human cells. Such conjugates are likely to influence chromatin structure and mediate DNA replication, transcription, and repair, but are challenging to study due to their reversible nature. Here we report the construction of site specific, hydrolytically stable DPCs between 5fdC in DNA and K4 of histone H3 and an investigation of their effects on DNA replication. Our approach employs oxime ligation, allowing for site-specific conjugation of histones to DNA under physiological conditions. Primer extension experiments revealed that histone H3-DNA crosslinks blocked DNA synthesis by hPol η polymerase, but were bypassed following proteolytic processing.
Collapse
Affiliation(s)
- Suresh S. Pujari
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mingxuan Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Jenna Thomforde
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Zhipeng A. Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Christopher Chao
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Noelle Olson
- Department of Chemistry, University of Minnesota, Minnesota 55455, USA
| | - Luke Erber
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Philip Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
6
|
Wei X, Peng Y, Bryan C, Yang K. Mechanisms of DNA-protein cross-link formation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140669. [PMID: 33957291 DOI: 10.1016/j.bbapap.2021.140669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Covalent binding of DNA to proteins produces DNA-protein cross-links (DPCs). DPCs are formed as intermediates of enzymatic processes, generated from the reactions of protein nucleophiles with DNA electrophiles, and produced by endogenous and exogenous cross-linking agents. DPCs are heterogeneous due to the variations of DNA conjugation sites, flanking DNA structures, protein sizes, and cross-link bonds. Unrepaired DPCs are toxic because their bulky sizes physically block DNA replication and transcription, resulting in impaired genomic integrity. Compared to other types of DNA lesions, DPC repair is less understood. Emerging evidence suggests a general repair model that DPCs are proteolyzed by the proteasome and/or DPC proteases, followed by the peptide removal through canonical repair pathways. Herein, we first describe the recently discovered DPCs. We then review the mechanisms of DPC proteolysis with the focus on recently identified DPC proteases. Finally, distinct pathways that bypass or remove the cross-linked peptides following proteolysis are discussed.
Collapse
Affiliation(s)
- Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
7
|
Pachva MC, Kisselev AF, Matkarimov BT, Saparbaev M, Groisman R. DNA-Histone Cross-Links: Formation and Repair. Front Cell Dev Biol 2021; 8:607045. [PMID: 33409281 PMCID: PMC7779557 DOI: 10.3389/fcell.2020.607045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The nucleosome is a stretch of DNA wrapped around a histone octamer. Electrostatic interactions and hydrogen bonds between histones and DNA are vital for the stable organization of nucleosome core particles, and for the folding of chromatin into more compact structures, which regulate gene expression via controlled access to DNA. As a drawback of tight association, under genotoxic stress, DNA can accidentally cross-link to histone in a covalent manner, generating a highly toxic DNA-histone cross-link (DHC). DHC is a bulky lesion that can impede DNA transcription, replication, and repair, often with lethal consequences. The chemotherapeutic agent cisplatin, as well as ionizing and ultraviolet irradiations and endogenously occurring reactive aldehydes, generate DHCs by forming either stable or transient covalent bonds between DNA and side-chain amino groups of histone lysine residues. The mechanisms of DHC repair start to unravel, and certain common principles of DNA-protein cross-link (DPC) repair mechanisms that participate in the removal of cross-linked histones from DNA have been described. In general, DPC is removed via a two-step repair mechanism. First, cross-linked proteins are degraded by specific DPC proteases or by the proteasome, relieving steric hindrance. Second, the remaining DNA-peptide cross-links are eliminated in various DNA repair pathways. Delineating the molecular mechanisms of DHC repair would help target specific DNA repair proteins for therapeutic intervention to combat tumor resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Alexei F Kisselev
- Department Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Murat Saparbaev
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Regina Groisman
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
8
|
Hu Q, Klages-Mundt N, Wang R, Lynn E, Kuma Saha L, Zhang H, Srivastava M, Shen X, Tian Y, Kim H, Ye Y, Paull T, Takeda S, Chen J, Li L. The ARK Assay Is a Sensitive and Versatile Method for the Global Detection of DNA-Protein Crosslinks. Cell Rep 2020; 30:1235-1245.e4. [PMID: 31995761 PMCID: PMC7069250 DOI: 10.1016/j.celrep.2019.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 11/03/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are a frequent form of DNA lesion and are strongly inhibitive in diverse DNA transactions. Despite recent developments, the biochemical detection of DPCs remains a limiting factor for the in-depth mechanistic understanding of DPC repair. Here, we develop a sensitive and versatile assay, designated ARK, for the quantitative analysis of DPCs in cells. ARK uses sequential chaotropic and detergent-based isolation of DPCs and substantially enhances sample purity, resulting in a 5-fold increase in detection sensitivity and a 10-fold reduction in background reading. We validate the ARK assay with genetic mutants with established deficiencies in DPC repair and demonstrate its robustness by using common DPC-inducing reagents, including formaldehyde, camptothecin, and etoposide. In addition, we show that the Fanconi anemia pathway contributes to the repair of DPCs. Thus, ARK is expected to facilitate various studies aimed at understanding both fundamental biology and translational applications of DNA-protein crosslink repair. Hu et al. develop a protocol to analyze DNA-protein crosslinking (DPC) damage. Designated the ARK assay, this method outperforms widely used assays by allowing the detection of global DPCs with improved sensitivity and expanded readout. Defective DPC repair is detected in Fanconi anemia mutant cells by this protocol.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Naeh Klages-Mundt
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica Lynn
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Liton Kuma Saha
- Department of Radiation Genetics, Kyoto University, Kyoto, Japan
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanyan Tian
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyeung Kim
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanya Paull
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Kyoto, Japan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Zhang H, Xiong Y, Chen J. DNA-protein cross-link repair: what do we know now? Cell Biosci 2020; 10:3. [PMID: 31921408 PMCID: PMC6945406 DOI: 10.1186/s13578-019-0366-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
When a protein is covalently and irreversibly bound to DNA (i.e., a DNA–protein cross-link [DPC]), it may obstruct any DNA-based transaction, such as transcription and replication. DPC formation is very common in cells, as it can arise from endogenous factors, such as aldehyde produced during cell metabolism, or exogenous sources like ionizing radiation, ultraviolet light, and chemotherapeutic agents. DPCs are composed of DNA, protein, and their cross-linked bonds, each of which can be targeted by different repair pathways. Many studies have demonstrated that nucleotide excision repair and homologous recombination can act on DNA molecules and execute nuclease-dependent DPC repair. Enzymes that have evolved to deal specifically with DPC, such as tyrosyl-DNA phosphodiesterases 1 and 2, can directly reverse cross-linked bonds and release DPC from DNA. The newly identified proteolysis pathway, which employs the proteases Wss1 and SprT-like domain at the N-terminus (SPRTN), can directly hydrolyze the proteins in DPCs, thus offering a new venue for DPC repair in cells. A deep understanding of the mechanisms of each pathway and the interplay among them may provide new guidance for targeting DPC repair as a therapeutic strategy for cancer. Here, we summarize the progress in DPC repair field and describe how cells may employ these different repair pathways for efficient repair of DPCs.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
10
|
Ji S, Park D, Kropachev K, Kolbanovskiy M, Fu I, Broyde S, Essawy M, Geacintov NE, Tretyakova NY. 5-Formylcytosine-induced DNA-peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells. J Biol Chem 2019; 294:18387-18397. [PMID: 31597704 DOI: 10.1074/jbc.ra119.009834] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/26/2019] [Indexed: 11/06/2022] Open
Abstract
5-Formylcytosine (5fC) is an endogenous epigenetic DNA mark introduced via enzymatic oxidation of 5-methyl-dC in DNA. We and others recently reported that 5fC can form reversible DNA-protein conjugates with histone proteins, likely contributing to regulation of nucleosomal organization and gene expression. The protein component of DNA-protein cross-links can be proteolytically degraded, resulting in smaller DNA-peptide cross-links. Unlike full-size DNA-protein cross-links that completely block replication and transcription, DNA-peptide cross-links can be bypassed by DNA and RNA polymerases and can potentially be repaired via the nucleotide excision repair (NER) pathway. In the present work, we constructed plasmid molecules containing reductively stabilized, site-specific 5fC-polypeptide lesions and employed a quantitative MS-based assay to assess their effects on transcription in cells. Our results revealed that the presence of DNA-peptide cross-link significantly inhibits transcription in human HEK293T cells but does not induce transcription errors. Furthermore, transcription efficiency was similar in WT and NER-deficient human cell lines, suggesting that the 5fC-polypeptide lesion is a weak substrate for NER. This finding was confirmed by in vitro NER assays in cell-free extracts from human HeLa cells, suggesting that another mechanism is required for 5fC-polypeptide lesion removal. In summary, our findings indicate that 5fC-mediated DNA-peptide cross-links dramatically reduce transcription efficiency, are poor NER substrates, and do not cause transcription errors.
Collapse
Affiliation(s)
- Shaofei Ji
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | - Iwen Fu
- Department of Biology, New York University, New York, New York 10003
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003
| | - Maram Essawy
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
11
|
Ji S, Fu I, Naldiga S, Shao H, Basu AK, Broyde S, Tretyakova NY. 5-Formylcytosine mediated DNA-protein cross-links block DNA replication and induce mutations in human cells. Nucleic Acids Res 2019; 46:6455-6469. [PMID: 29905846 PMCID: PMC6061883 DOI: 10.1093/nar/gky444] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA–protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130–14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and –1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.
Collapse
Affiliation(s)
- Shaofei Ji
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iwen Fu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Hongzhao Shao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan. Cell Rep 2019; 26:3336-3346.e4. [DOI: 10.1016/j.celrep.2019.02.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
|
13
|
Chesner LN, Campbell C. A Simple, Rapid, and Quantitative Assay to Measure Repair of DNA-protein Crosslinks on Plasmids Transfected into Mammalian Cells. J Vis Exp 2018. [PMID: 29553515 PMCID: PMC5898435 DOI: 10.3791/57413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The purpose of this method is to provide a flexible, rapid, and quantitative technique to examine the kinetics of DNA-protein crosslink (DPC) repair in mammalian cell lines. Rather than globally assaying removal of xenobiotic-induced or spontaneous chromosomal DPC removal, this assay examines the repair of a homogeneous, chemically defined lesion specifically introduced at one site within a plasmid DNA substrate. Importantly, this approach avoids the use of radioactive materials and is not dependent on expensive or highly-specialized technology. Instead, it relies on standard recombinant DNA procedures and widely available real-time, quantitative polymerase chain reaction (qPCR) instrumentation. Given the inherent flexibility of the strategy utilized, the size of the crosslinked protein, as well as the nature of the chemical linkage and the precise DNA sequence context of the attachment site can be varied to address the respective contributions of these parameters to the overall efficiency of DPC repair. Using this method, plasmids containing a site-specific DPC were transfected into cells and low molecular weight DNA recovered at various times post-transfection. Recovered DNA is then subjected to strand-specific primer extension (SSPE) using a primer complementary to the damaged strand of the plasmid. Since the DPC lesion blocks Taq DNA polymerase, the ratio of repaired to un-repaired DNA can be quantitatively assessed using qPCR. Cycle threshold (CT) values are used to calculate percent repair at various time points in the respective cell lines. This SSPE-qPCR method can also be used to quantitatively assess the repair kinetics of any DNA adduct that blocks Taq polymerase.
Collapse
|
14
|
Chesner LN, Campbell C. A quantitative PCR-based assay reveals that nucleotide excision repair plays a predominant role in the removal of DNA-protein crosslinks from plasmids transfected into mammalian cells. DNA Repair (Amst) 2018; 62:18-27. [PMID: 29413806 DOI: 10.1016/j.dnarep.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
DNA-protein crosslinks (DPCs) are complex DNA lesions that induce mutagenesis and cell death. DPCs are created by common antitumor drugs, reactive oxygen species, and endogenous aldehydes. Since these agents create other types of DNA damage in addition to DPCs, identification of the mechanisms of DPC repair is challenging. In this study, we created plasmid substrates containing site-specific DPC lesions, as well as plasmids harboring lesions that are selectively repaired by the base excision or nucleotide excision repair (NER) pathways. These substrates were transfected into mammalian cells and a quantitative real-time PCR assay employed to study their repair. This assay revealed that DPC lesions were rapidly repaired in wild-type human and Chinese hamster derived cells, as were plasmids harboring an oxoguanine residue (base excision repair substrate) or cholesterol lesion (NER substrate). Interestingly, the DPC substrate was repaired in human cells nearly three times as efficiently as in Chinese hamster cells (>75% vs ∼25% repair at 8 h post-transfection), while there was no significant species-specific difference in the efficiency with which the cholesterol lesion was repaired (∼60% repair). Experiments revealed that both human and hamster cells deficient in NER due to mutations in the xeroderma pigmentosum A or D genes were five to ten-fold less able to repair the cholesterol and DPC lesions than were wild-type control clones, and that both the global genome and transcription-coupled sub-pathways of NER were capable of repairing DPCs. In addition, analyses using this PCR-based assay revealed that a 4 kDa peptide DNA crosslink was repaired nearly twice as efficiently as was a ∼38 kDa DPC, suggesting that proteolytic degradation of crosslinked proteins occurs during DPC repair. These results highlight the utility of this PCR-based assay to study DNA repair and indicate that the NER machinery rapidly and efficiently repairs plasmid DPC lesions in mammalian cells.
Collapse
Affiliation(s)
- Lisa N Chesner
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Klages-Mundt NL, Li L. Formation and repair of DNA-protein crosslink damage. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1065-1076. [PMID: 29098631 DOI: 10.1007/s11427-017-9183-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
DNA is constantly exposed to a wide array of genotoxic agents, generating a variety of forms of DNA damage. DNA-protein crosslinks (DPCs)-the covalent linkage of proteins with a DNA strand-are one of the most deleterious and understudied forms of DNA damage, posing as steric blockades to transcription and replication. If not properly repaired, these lesions can lead to mutations, genomic instability, and cell death. DPCs can be induced endogenously or through environmental carcinogens and chemotherapeutic agents. Endogenously, DPCs are commonly derived through reactions with aldehydes, as well as through trapping of various enzymatic intermediates onto the DNA. Proteolytic cleavage of the protein moiety of a DPC is a general strategy for removing the lesion. This can be accomplished through a DPC-specific protease and and/or proteasome-mediated degradation. Nucleotide excision repair and homologous recombination are each involved in repairing DPCs, with their respective roles likely dependent on the nature and size of the adduct. The Fanconi anemia pathway may also have a role in processing DPC repair intermediates. In this review, we discuss how these lesions are formed, strategies and mechanisms for their removal, and diseases associated with defective DPC repair.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Vaz B, Popovic M, Ramadan K. DNA-Protein Crosslink Proteolysis Repair. Trends Biochem Sci 2017; 42:483-495. [PMID: 28416269 DOI: 10.1016/j.tibs.2017.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer.
Collapse
Affiliation(s)
- Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Marta Popovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
17
|
Wickramaratne S, Ji S, Mukherjee S, Su Y, Pence MG, Lior-Hoffmann L, Fu I, Broyde S, Guengerich FP, Distefano M, Schärer OD, Sham YY, Tretyakova N. Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases. J Biol Chem 2016; 291:23589-23603. [PMID: 27621316 DOI: 10.1074/jbc.m116.745257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
DNA-protein cross-links (DPCs) are bulky DNA lesions that form both endogenously and following exposure to bis-electrophiles such as common antitumor agents. The structural and biological consequences of DPCs have not been fully elucidated due to the complexity of these adducts. The most common site of DPC formation in DNA following treatment with bis-electrophiles such as nitrogen mustards and cisplatin is the N7 position of guanine, but the resulting conjugates are hydrolytically labile and thus are not suitable for structural and biological studies. In this report, hydrolytically stable structural mimics of N7-guanine-conjugated DPCs were generated by reductive amination reactions between the Lys and Arg side chains of proteins/peptides and aldehyde groups linked to 7-deazaguanine residues in DNA. These model DPCs were subjected to in vitro replication in the presence of human translesion synthesis DNA polymerases. DPCs containing full-length proteins (11-28 kDa) or a 23-mer peptide blocked human polymerases η and κ. DPC conjugates to a 10-mer peptide were bypassed with nucleotide insertion efficiency 50-100-fold lower than for native G. Both human polymerase (hPol) κ and hPol η inserted the correct base (C) opposite the 10-mer peptide cross-link, although small amounts of T were added by hPol η. Molecular dynamics simulation of an hPol κ ternary complex containing a template-primer DNA with dCTP opposite the 10-mer peptide DPC revealed that this bulky lesion can be accommodated in the polymerase active site by aligning with the major groove of the adducted DNA within the ternary complex of polymerase and dCTP.
Collapse
Affiliation(s)
| | - Shaofei Ji
- From the Masonic Cancer Center and.,the Departments of Chemistry
| | | | - Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Matthew G Pence
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lee Lior-Hoffmann
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - Iwen Fu
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003-6688, and
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - Orlando D Schärer
- Chemistry, Stony Brook University, Stony Brook, New York 11794.,Departments of Pharmacological Sciences and
| | | | - Natalia Tretyakova
- From the Masonic Cancer Center and .,Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
18
|
Kadirvel R, Sundaram K, Mani S, Samuel S, Elango N, Panneerselvam C. Supplementation of ascorbic acid and α-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Hum Exp Toxicol 2016; 26:939-46. [DOI: 10.1177/0960327107087909] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Contamination of arsenic in drinking water is associated with several human diseases including cancer. It has been reported that oxidative stress plays a vital role in arsenic-induced biochemical and molecular alterations. The aim of the present study was to improve the understanding of arsenic-induced oxidative damage to proteins and to DNA and the role of antioxidants such as ascorbic acid and α-tocopherol in alleviating arsenic-induced damages in experimental rats. A significant increase in the levels of protein oxidation, DNA strand breaks, and DNA–protein cross-links was observed in blood, liver, and kidney of rats exposed to arsenic (100 ppm in drinking water) for 30 days. Co-administration of ascorbic acid and α-tocopherol to arsenic-exposed rats showed a substantial reduction in the levels of arsenic-induced oxidative products of protein and DNA. The results of this study support that free radical–mediated toxic manifestations of arsenic and also suggest that ascorbic acid and α-tocopherol supplementation can improve the arsenic-induced molecular alterations.
Collapse
Affiliation(s)
- R Kadirvel
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India; Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - K Sundaram
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - S Mani
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - S Samuel
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - N Elango
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | - C Panneerselvam
- Department of Medical Biochemistry, Dr. AL Mudhaliar PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| |
Collapse
|
19
|
Sang PB, Srinath T, Patil AG, Woo EJ, Varshney U. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res 2015; 43:8452-63. [PMID: 26304551 PMCID: PMC4787834 DOI: 10.1093/nar/gkv854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.
Collapse
Affiliation(s)
- Pau Biak Sang
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Aravind Goud Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Eui-Jeon Woo
- Functional Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Yuseongu, Daejeon, South Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
20
|
Krasich R, Wu SY, Kuo HK, Kreuzer KN. Functions that protect Escherichia coli from DNA-protein crosslinks. DNA Repair (Amst) 2015; 28:48-59. [PMID: 25731940 DOI: 10.1016/j.dnarep.2015.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensitivity was verified to depend on methyltransferase expression. We isolated hypersensitive mutants that were uncovered in previous studies (recA, recBC, recG, and uvrD), hypersensitive mutants that apparently activate phage Mu Gam expression, and novel hypersensitive mutants in genes involved in DNA metabolism, cell division, and tRNA modification (dinG, ftsK, xerD, dnaJ, hflC, miaA, mnmE, mnmG, and ssrA). Inactivation of SbcCD, which can cleave DNA at protein-DNA complexes, did not cause hypersensitivity. We previously showed that tmRNA pathway defects cause aza-C hypersensitivity, implying that DPCs block coupled transcription/translation complexes. Here, we show that mutants in tRNA modification functions miaA, mnmE and mnmG cause defects in aza-C-induced tmRNA tagging, explaining their hypersensitivity. In order for tmRNA to access a stalled ribosome, the mRNA must be cleaved or released from RNA polymerase. Mutational inactivation of functions involved in mRNA processing and RNA polymerase elongation/release (RNase II, RNaseD, RNase PH, RNase LS, Rep, HepA, GreA, GreB) did not cause aza-C hypersensitivity; the mechanism of tmRNA access remains unclear.
Collapse
Affiliation(s)
- Rachel Krasich
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Sunny Yang Wu
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States.
| |
Collapse
|
21
|
Wickramaratne S, Boldry EJ, Buehler C, Wang YC, Distefano MD, Tretyakova NY. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine. J Biol Chem 2014; 290:775-87. [PMID: 25391658 DOI: 10.1074/jbc.m114.613638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.
Collapse
Affiliation(s)
- Susith Wickramaratne
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily J Boldry
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and
| | - Charles Buehler
- Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yen-Chih Wang
- Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark D Distefano
- From the Masonic Cancer Center, Departments of Medicinal Chemistry and Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
22
|
Yeo JE, Wickramaratne S, Khatwani S, Wang YC, Vervacke J, Distefano MD, Tretyakova NY. Synthesis of site-specific DNA-protein conjugates and their effects on DNA replication. ACS Chem Biol 2014; 9:1860-8. [PMID: 24918113 PMCID: PMC4136702 DOI: 10.1021/cb5001795] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
DNA–protein
cross-links (DPCs) are bulky, helix-distorting
DNA lesions that form in the genome upon exposure to common antitumor
drugs, environmental/occupational toxins, ionizing radiation, and
endogenous free-radical-generating systems. As a result of their considerable
size and their pronounced effects on DNA–protein interactions,
DPCs can interfere with DNA replication, transcription, and repair,
potentially leading to mutagenesis, genotoxicity, and cytotoxicity.
However, the biological consequences of these ubiquitous lesions are
not fully understood due to the difficulty of generating DNA substrates
containing structurally defined, site-specific DPCs. In the present
study, site-specific cross-links between the two biomolecules were
generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click
reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil
in DNA and an azide group within engineered proteins/polypeptides.
The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases
η, κ, ν, and ι. We found that DPC lesions
to the green fluorescent protein and a 23-mer peptide completely blocked
DNA replication, while the cross-link to a 10-mer peptide was bypassed.
These results indicate that the polymerases cannot read through the
larger DPC lesions and further suggest that proteolytic degradation
may be required to remove the replication block imposed by bulky DPC
adducts.
Collapse
Affiliation(s)
- Jung Eun Yeo
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susith Wickramaratne
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Santoshkumar Khatwani
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yen-Chih Wang
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeffrey Vervacke
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D. Distefano
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Masonic Cancer Center and Departments of †Medicinal Chemistry and ‡Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
A DNA-Dependent Protease Involved in DNA-Protein Crosslink Repair. Cell 2014; 158:327-338. [DOI: 10.1016/j.cell.2014.04.053] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
|
24
|
McKibbin PL, Fleming AM, Towheed MA, Van Houten B, Burrows CJ, David SS. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J Am Chem Soc 2013; 135:13851-61. [PMID: 23930966 PMCID: PMC3906845 DOI: 10.1021/ja4059469] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An important feature of the common DNA oxidation product 8-oxo-7,8-dihydroguanine (OG) is its susceptibility to further oxidation that produces guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) lesions. In the presence of amines, G or OG oxidation produces hydantoin amine adducts. Such adducts may form in cells via interception of oxidized intermediates by protein-derived nucleophiles or naturally occurring amines that are tightly associated with DNA. Gh and Sp are known to be substrates for base excision repair (BER) glycosylases; however, large Sp-amine adducts would be expected to be more readily repaired by nucleotide excision repair (NER). A series of Sp adducts differing in the size of the attached amine were synthesized to evaluate the relative processing by NER and BER. The UvrABC complex excised Gh, Sp, and the Sp-amine adducts from duplex DNA, with the greatest efficiency for the largest Sp-amine adducts. The affinity of UvrA for all of the lesion duplexes was found to be similar, whereas the efficiency of UvrB loading tracked with the efficiency of UvrABC excision. In contrast, the human BER glycosylase NEIL1 exhibited robust activity for all Sp-amine adducts irrespective of size. These studies suggest that both NER and BER pathways mediate repair of a diverse set of hydantoin lesions in cells.
Collapse
Affiliation(s)
- Paige L. McKibbin
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| | - Aaron M. Fleming
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Mohammad Atif Towheed
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Cynthia J. Burrows
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Sheila S. David
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| |
Collapse
|
25
|
Wickramaratne S, Mukherjee S, Villalta PW, Schärer OD, Tretyakova NY. Synthesis of sequence-specific DNA-protein conjugates via a reductive amination strategy. Bioconjug Chem 2013; 24:1496-506. [PMID: 23885807 DOI: 10.1021/bc400018u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DNA-protein cross-links (DPCs) are ubiquitous, structurally diverse DNA lesions formed upon exposure to bis-electrophiles, transition metals, UV light, and reactive oxygen species. Because of their superbulky, helix distorting nature, DPCs interfere with DNA replication, transcription, and repair, potentially contributing to mutagenesis and carcinogenesis. However, the biological implications of DPC lesions have not been fully elucidated due to the difficulty in generating site-specific DNA substrates representative of DPC lesions formed in vivo. In the present study, a novel approach involving postsynthetic reductive amination has been developed to prepare a range of hydrolytically stable lesions structurally mimicking the DPCs produced between the N7 position of guanine in DNA and basic lysine or arginine side chains of proteins and peptides.
Collapse
Affiliation(s)
- Susith Wickramaratne
- Masonic Cancer Center and the Departments of Chemistry and †Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
26
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
27
|
Tretyakova NY, Michaelson-Richie ED, Gherezghiher TB, Kurtz J, Ming X, Wickramaratne S, Campion M, Kanugula S, Pegg AE, Campbell C. DNA-reactive protein monoepoxides induce cell death and mutagenesis in mammalian cells. Biochemistry 2013; 52:3171-81. [PMID: 23566219 DOI: 10.1021/bi400273m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.
Collapse
Affiliation(s)
- Natalia Y Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fang Q. DNA-protein crosslinks processed by nucleotide excision repair and homologous recombination with base and strand preference in E. coli model system. Mutat Res 2013; 741-742:1-10. [PMID: 23500083 DOI: 10.1016/j.mrfmmm.2013.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/24/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Bis-electrophiles including dibromoethane and epibromohydrin can react with O(6)-alkylguanine-DNA alkyltransferase (AGT) and form AGT-DNA crosslinks in vitro and in vivo. The presence of human AGT (hAGT) paradoxically increases the mutagenicity and cytotoxicity of bis-electrophiles in cells. Here we establish a bacterial system to study the repair mechanism and cellular responses to DNA-protein crosslinks (DPCs) in vivo. Results show that both nucleotide excision repair (NER) and homologous recombination (HR) pathways can process hAGT-DNA crosslinks with HR playing a dominant role. Mutation spectra show that HR has no strand preference but NER favors processing of the DPCs in the transcribed strand; UvrA, UvrB and Mfd can interfere with small size DPCs but only UvrA can interfere with large size DPCs in the transcribed strand processed by HR. Further, we found that DPCs at TA deoxynucleotide sites are very inefficiently processed by NER and the presence of NER can interfere with these DNA lesions processed by HR. These data indicate that NER and HR can process DPCs cooperatively and competitively and NER processes DPCs with base and strand preference. Therefore, the formation of hAGT-DNA crosslinks can be a plausible and specific system to study the repair mechanism and effects of DPCs precisely in vivo.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
29
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
30
|
Shoulkamy MI, Nakano T, Ohshima M, Hirayama R, Uzawa A, Furusawa Y, Ide H. Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Res 2012; 40:e143. [PMID: 22730301 PMCID: PMC3467041 DOI: 10.1093/nar/gks601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins are covalently trapped on DNA to form DNA-protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles.
Collapse
Affiliation(s)
- Mahmoud I Shoulkamy
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kumari A, Lim YX, Newell AH, Olson SB, McCullough AK. Formaldehyde-induced genome instability is suppressed by an XPF-dependent pathway. DNA Repair (Amst) 2012; 11:236-46. [PMID: 22186232 PMCID: PMC3274652 DOI: 10.1016/j.dnarep.2011.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 12/13/2022]
Abstract
Formaldehyde is a reactive chemical that is commonly used in the production of industrial, laboratory, household, and cosmetic products. The causal association between formaldehyde exposure and increased incidence of cancer led the International Agency for Research on Cancer to classify formaldehyde as a carcinogen. Formaldehyde-induced DNA-protein crosslinks (DPCs) elicit responses involving nucleotide excision repair (NER) and homologous recombination (HR) repair pathways; however, little is known about the cellular and genetic changes that subsequently lead to formaldehyde-induced genotoxic and cytotoxic effects. Herein, investigations of genes that modulate the cytotoxic effects of formaldehyde exposure revealed that of five NER-deficient Chinese Hamster Ovary (CHO) cell lines tested, XPF- and ERCC1-deficient cells were most sensitive to formaldehyde treatment as compared to wild-type cells. Cell cycle analyses revealed that formaldehyde-treated XPF-deficient cells exhibited an immediate G2/M arrest that was associated with altered cell ploidy and apoptosis. Additionally, an elevated number of DNA double-strand breaks (DSBs), chromosomal breaks and radial formation were also observed in XPF-deficient cells following formaldehyde treatment. Formaldehyde-induced DSBs occurred in a replication-dependent, but an XPF-independent manner. However, delayed DSB repair was observed in the absence of XPF function. Collectively, our findings highlight the role of an XPF-dependent pathway in mitigating the sensitivity to formaldehyde-induced DNA damage as evidenced by the increased genomic instability and reduced cell viability in an XPF-deficient background. In addition, centrosome and microtubule abnormalities, as well as enlarged nuclei, caused by formaldehyde exposure are demonstrated in a repair-proficient cell line.
Collapse
Affiliation(s)
- Anuradha Kumari
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
| | - Yun Xin Lim
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
- Department of Cellular and Developmental Biology, Oregon Health & Science University, Portland, OR 97239
| | - Amy Hanlon Newell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239
| | - Susan B. Olson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239
| | - Amanda K. McCullough
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
32
|
Grogan D, Jinks-Robertson S. Formaldehyde-induced mutagenesis in Saccharomyces cerevisiae: molecular properties and the roles of repair and bypass systems. Mutat Res 2011; 731:92-8. [PMID: 22197481 DOI: 10.1016/j.mrfmmm.2011.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Although DNA-protein cross-links (DPCs) pose a significant threat to genome stability, they remain a poorly understood class of DNA lesions. To define genetic impacts of DPCs on eukaryotic cells in molecular terms, we used a sensitive Saccharomyces cerevisiae frameshift-detection assay to analyze mutagenesis by formaldehyde (HCHO), and its response to nucleotide excision repair (NER) and translesion DNA synthesis (TLS). Brief exposure to HCHO was mutagenic for NER-defective rad14 strains but not for a corresponding RAD14 strain, nor for a rad14 strain lacking both Polζ and Polη TLS polymerases. This confirmed that HCHO-generated DNA lesions can trigger error-prone TLS and are substrates for the NER pathway. Sequencing revealed that HCHO-induced single-base-pair insertions occurred primarily at one hotspot; most of these insertions were also complex, changing an additional base-pair nearby. Most of the HCHO-induced mutations required both Polζ and Polη, providing a striking example of cooperativity between these two TLS polymerases during bypass of a DNA lesion formed in vivo. The similar molecular properties of HCHO-induced and spontaneous complex +1 insertions detected by this system suggest that DPCs which form in vivo during normal metabolism may contribute characteristic events to the spectra of spontaneous mutations in NER-deficient cells.
Collapse
Affiliation(s)
- Dennis Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221-0006, USA.
| | | |
Collapse
|
33
|
Ide H, Shoulkamy MI, Nakano T, Miyamoto-Matsubara M, Salem AMH. Repair and biochemical effects of DNA-protein crosslinks. Mutat Res 2011; 711:113-122. [PMID: 21185846 DOI: 10.1016/j.mrfmmm.2010.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
Genomic DNA is associated with various structural, regulatory, and transaction proteins. The dynamic and reversible association between proteins and DNA ensures the accurate expression and propagation of genetic information. However, various endogenous, environmental, and chemotherapeutic agents induce DNA-protein crosslinks (DPCs), and hence covalently trap proteins on DNA. Since DPCs are extremely large compared to conventional DNA lesions, they probably impair many aspects of DNA transactions such as replication, transcription, and repair due to steric hindrance. Recent genetic and biochemical studies have shed light on the elaborate molecular mechanism by which cells repair or tolerate DPCs. This review summarizes the current knowledge regarding the repair and biochemical effects of the most ubiquitous form of DPCs, which are associated with no flanked DNA strand breaks. In bacteria small DPCs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed by RecBCD-dependent homologous recombination (HR). NER does not participate in the repair of DPCs in mammalian cells, since the upper size limit of DPCs amenable to mammalian NER is smaller than that of bacterial NER. Thus, DPCs are processed exclusively by HR. The reactivation of the stalled replication fork at DPCs by HR seems to involve fork breakage in mammalian cells but not in bacterial cells. In addition, recent proteomic studies have identified the numbers of proteins in DPCs induced by environmental and chemotherapeutic agents. However, it remains largely elusive how DPCs affect replication and transcription at the molecular level. Considering the extremely large nature of DPCs, it is possible that they impede the progression of replication and transcription machineries by mechanisms different from those for conventional DNA lesions. This might also be true for the DNA damage response and signaling mechanism.
Collapse
Affiliation(s)
- Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | | | | | | | | |
Collapse
|
34
|
Role of high-fidelity Escherichia coli DNA polymerase I in replication bypass of a deoxyadenosine DNA-peptide cross-link. J Bacteriol 2011; 193:3815-21. [PMID: 21622737 DOI: 10.1128/jb.01550-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N⁶-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N⁶-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N⁶-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N⁶-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N⁶-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions.
Collapse
|
35
|
Pongsavee M. In vitro study of lymphocyte antiproliferation and cytogenetic effect by occupational formaldehyde exposure. Toxicol Ind Health 2011; 27:719-23. [PMID: 21505003 DOI: 10.1177/0748233710395991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formaldehyde is the chemical substance illegally used for food preservation in meat, vegetables and fruit. A study on the antiproliferative effect and cytogenetic effect of formaldehyde on human lymphocyte was undertaken. Heparinized blood from 30 volunteers was collected and treated with formaldehyde concentrations of 0.036, 0.072, 0.15, 0.3, 0.576, 0.8 and 1.152 mg/mL, respectively, for 24 hours. Viable lymphocyte count by hemocytometer and MTT assay were carried out for detecting the antiproliferative effect of formaldehyde on human lymphocyte. Lymphocyte culture and G-banding technique were carried out for detecting the cytogenetic effect of formaldehyde. The results showed that the numbers of viable lymphocyte in the control group were 3.45 × 10(4) cells/mL. The numbers of viable lymphocyte in the experimental subgroups were 3.03 × 10( 4), 2.69 × 10(4), 2.36 × 10(4), 2.17 × 10(4), 1.92 × 10(4), 1.68 × 10(4) and 1.04 × 10(4) cells/mL, respectively, at 24 hours. The value of IC(50) was 0.92 mg/mL. The formaldehyde concentrations of 0.036, 0.072, 0.15, 0.3, 0.576, 0.8 and 1.152 mg/mL effect the lymphocyte antiproliferation (p < 0.05). Loss of chromosome was the cytogenetic effect by the formaldehyde concentration of 0.036 and 0.072 mg/mL in this study. It is concluded that formaldehyde has the antiproliferative effect and cytogenetic effect on human lymphocyte.
Collapse
Affiliation(s)
- M Pongsavee
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Patumthani, Thailand.
| |
Collapse
|
36
|
Wagner K, Moolenaar GF, Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair (Amst) 2011; 10:483-96. [PMID: 21393072 DOI: 10.1016/j.dnarep.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
37
|
Sczepanski JT, Wong RS, McKnight JN, Bowman GD, Greenberg MM. Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci U S A 2010; 107:22475-80. [PMID: 21149689 PMCID: PMC3012510 DOI: 10.1073/pnas.1012860108] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are ubiquitous DNA lesions that are highly mutagenic and cytotoxic if not repaired. In addition, clusters of two or more abasic lesions within one to two turns of DNA, a hallmark of ionizing radiation, are repaired much less efficiently and thus present greater mutagenic potential. Abasic sites are chemically labile, but naked DNA containing them undergoes strand scission slowly with a half-life on the order of weeks. We find that independently generated AP sites within nucleosome core particles are highly destabilized, with strand scission occurring ∼60-fold more rapidly than in naked DNA. The majority of core particles containing single AP lesions accumulate DNA-protein cross-links, which persist following strand scission. The N-terminal region of histone protein H4 contributes significantly to DNA-protein cross-links and strand scission when AP sites are produced approximately 1.5 helical turns from the nucleosome dyad, which is a known hot spot for nucleosomal DNA damage. Reaction rates for AP sites at two positions within this region differ by ∼4-fold. However, the strand scission of the slowest reacting AP site is accelerated when it is part of a repair resistant bistranded lesion composed of two AP sites, resulting in rapid formation of double strand breaks in high yields. Multiple lysine residues within a single H4 protein catalyze double strand cleavage through a mechanism believed to involve a templating effect. These results show that AP sites within the nucleosome produce significant amounts of DNA-protein cross-links and generate double strand breaks, the most deleterious form of DNA damage.
Collapse
Affiliation(s)
- Jonathan T. Sczepanski
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218; and
| | - Remus S. Wong
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218; and
| | - Jeffrey N. McKnight
- Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Gregory D. Bowman
- Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218; and
| |
Collapse
|
38
|
Huang H, Kozekov ID, Kozekova A, Rizzo CJ, McCullough AK, Lloyd RS, Stone MP. Minor groove orientation of the KWKK peptide tethered via the N-terminal amine to the acrolein-derived 1,N2-gamma-hydroxypropanodeoxyguanosine lesion with a trimethylene linkage. Biochemistry 2010; 49:6155-64. [PMID: 20604523 PMCID: PMC2907095 DOI: 10.1021/bi100364f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
DNA−protein conjugates are potentially repaired via proteolytic digestion to DNA−peptide conjugates. The latter have been modeled with the amino-terminal lysine of the peptide KWKK conjugated via a trimethylene linkage to the N2-dG amine positioned in 5′-d(GCTAGCXAGTCC)-3′·5′-d(GGACTCGCTAGC)-3′ (X = N2-dG−trimethylene link−KWKK). This linkage is a surrogate for the reversible linkage formed by the γ-OH-1,N2-propanodeoxyguanosine (γ-OH-PdG) adduct. This conjugated KWKK stabilizes the DNA. Amino acids K26, W27, K28, and K29 are in the minor groove. The W27 indolyl group does not intercalate into the DNA. The G7N2 amine and the K26 N-terminal amine nitrogens are in the trans configuration with respect to the Cα or Cγ of the trimethylene tether, respectively. The structure of this DNA−KWKK conjugate is discussed in the context of its biological processing.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kumari A, Minko IG, Smith RL, Lloyd RS, McCullough AK. Modulation of UvrD helicase activity by covalent DNA-protein cross-links. J Biol Chem 2010; 285:21313-22. [PMID: 20444702 DOI: 10.1074/jbc.m109.078964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Center for Research on Occupational and Environmental Toxicology, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
40
|
Zecevic A, Hagan E, Reynolds M, Poage G, Johnston T, Zhitkovich A. XPA impacts formation but not proteasome-sensitive repair of DNA-protein cross-links induced by chromate. Mutagenesis 2010; 25:381-8. [PMID: 20410141 DOI: 10.1093/mutage/geq017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA-protein cross-links (DPCs) are caused by a large number of human carcinogens and anti-cancer drugs. However, cellular processes involved in decreasing a burden of these genotoxic lesions remain poorly understood. Here, we examined the impact of nucleotide excision repair (NER), which is a principal repair pathway for bulky DNA adducts, and the main cellular reducers on removal of chromium(VI)-induced DPC. We found that standard and ascorbate-restored cultures of isogenic XPA-null (NER deficient) and XPA-complemented human fibroblasts had very similar repair of Cr-DPC (60-65% average DPC removal after 24 h). However, XPA absence caused depletion of G1 and accumulation of G2 cells at low Cr(VI) doses, suggesting that Cr-DPC were not a significant cause of cell cycle perturbations. Interestingly, although pro-oxidant metabolism of Cr(VI) in glutathione-depleted cells generated significantly fewer DPC, they were repair resistant irrespective of the NER status of cells. Inhibition of proteasome activity by MG132 abolished DPC repair in both XPA-null and XPA-complemented cells. XPA loss caused two to three times higher initial DPC formation, demonstrating the importance of NER in removal of the precursor lesions. Our results indicate that human NER is not involved in removal of Cr-DPC containing non-histone proteins but it acts as a defence mechanism against these large lesions by preventing their formation. Therefore, individual differences in NER activity are expected to alter sensitivity but not persistence of DPC as a biomarker of hexavalent Cr.
Collapse
Affiliation(s)
- Alma Zecevic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
41
|
Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, Van Houten B, Iijima K, Tauchi H, Ide H. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J Biol Chem 2009; 284:27065-76. [PMID: 19674975 PMCID: PMC2785636 DOI: 10.1074/jbc.m109.019174] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/06/2009] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. The steric hindrance imposed by cross-linked proteins (CLPs) will hamper DNA transactions, such as replication and transcription, posing an enormous threat to cells. In bacteria, DPCs with small CLPs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed exclusively by RecBCD-dependent homologous recombination (HR). Here we have assessed the roles of NER and HR for DPCs in mammalian cells. We show that the upper size limit of CLPs amenable to mammalian NER is relatively small (8-10 kDa) so that NER cannot participate in the repair of chromosomal DPCs in mammalian cells. Moreover, CLPs are not polyubiquitinated and hence are not subjected to proteasomal degradation prior to NER. In contrast, HR constitutes the major pathway in tolerance of DPCs as judged from cell survival and RAD51 and gamma-H2AX nuclear foci formation. Induction of DPCs results in the accumulation of DNA double strand breaks in HR-deficient but not HR-proficient cells, suggesting that fork breakage at the DPC site initiates HR and reactivates the stalled fork. DPCs activate both ATR and ATM damage response pathways, but there is a time lag between two responses. These results highlight the differential involvement of NER in the repair of DPCs in bacterial and mammalian cells and demonstrate the versatile and conserved role of HR in tolerance of DPCs among species.
Collapse
Affiliation(s)
- Toshiaki Nakano
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Katafuchi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mayumi Matsubara
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Terato
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomohiro Tsuboi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tasuku Masuda
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takahiro Tatsumoto
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Seung Pil Pack
- the Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Korea
| | - Keisuke Makino
- the Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Deborah L. Croteau
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Bennett Van Houten
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Kenta Iijima
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Tauchi
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Ide
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
42
|
de Graaf B, Clore A, McCullough AK. Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks. DNA Repair (Amst) 2009; 8:1207-14. [PMID: 19625222 PMCID: PMC2748227 DOI: 10.1016/j.dnarep.2009.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/09/2009] [Accepted: 06/20/2009] [Indexed: 11/28/2022]
Abstract
Although it is well established that DNA-protein crosslinks are formed as a consequence of cellular exposure to agents such as formaldehyde, transplatin, ionizing and ultraviolet radiation, the biochemical pathways that promote cellular survival via repair or tolerance of these lesions are poorly understood. To investigate the mechanisms that function to limit DNA-protein crosslink-induced cytotoxicity, the Saccharomyces cerevisiae non-essential gene deletion library was screened for increased sensitivity to formaldehyde exposure. Following low dose, chronic exposure, strains containing deletions in genes mediating homologous recombination showed the greatest sensitivity, while under the same exposure conditions, deletions in genes associated with nucleotide excision repair conferred only low to moderate sensitivities. However, when the exposure regime was changed to a high dose acute (short-term) formaldehyde treatment, the genes that conferred maximal survival switched to the nucleotide excision repair pathway, with little contribution of the homologous recombination genes. Data are presented which suggest that following acute formaldehyde exposure, repair and/or tolerance of DNA-protein crosslinks proceeds via formation of nucleotide excision repair-dependent single-strand break intermediates and without a detectable accumulation of double-strand breaks. These data clearly demonstrate a differential pathway response to chronic versus acute formaldehyde exposures and may have significance and implications for risk extrapolation in human exposure studies.
Collapse
Affiliation(s)
- Bendert de Graaf
- Department of Molecular and Medical Genetics, Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Adam Clore
- Department of Molecular and Medical Genetics, Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Amanda K. McCullough
- Department of Molecular and Medical Genetics, Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| |
Collapse
|
43
|
Genetic analysis of repair and damage tolerance mechanisms for DNA-protein cross-links in Escherichia coli. J Bacteriol 2009; 191:5657-68. [PMID: 19617358 DOI: 10.1128/jb.00417-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. We have recently shown that nucleotide excision repair (NER) and RecBCD-dependent homologous recombination (HR) collaboratively alleviate the lethal effect of DPCs in Escherichia coli. In this study, to gain further insight into the damage-processing mechanism for DPCs, we assessed the sensitivities of a panel of repair-deficient E. coli mutants to DPC-inducing agents, including formaldehyde (FA) and 5-azacytidine (azaC). We show here that the damage tolerance mechanism involving HR and subsequent replication restart (RR) provides the most effective means of cell survival against DPCs. Translesion synthesis does not serve as an alternative damage tolerance mechanism for DPCs in cell survival. Elimination of DPCs from the genome relies primarily on NER, which provides a second and moderately effective means of cell survival against DPCs. Interestingly, Cho rather than UvrC seems to be an effective nuclease for the NER of DPCs. Together with the genes responsible for HR, RR, and NER, the mutation of genes involved in several aspects of DNA repair and transactions, such as recQ, xth nfo, dksA, and topA, rendered cells slightly but significantly sensitive to FA but not azaC, possibly reflecting the complexity of DPCs or cryptic lesions induced by FA. UvrD may have an additional role outside NER, since the uvrD mutation conferred a slight azaC sensitivity on cells. Finally, DNA glycosylases mitigate azaC toxicity, independently of the repair of DPCs, presumably by removing 5-azacytosine or its degradation product from the chromosome.
Collapse
|
44
|
Tamayo M, Santiso R, Gosalvez J, Bou G, Fernández JL. Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay. BMC Microbiol 2009; 9:69. [PMID: 19364397 PMCID: PMC2670838 DOI: 10.1186/1471-2180-9-69] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/13/2009] [Indexed: 12/29/2022] Open
Abstract
Background Fluoroquinolones are extensively used antibiotics that induce DNA double-strand breaks (DSBs) by trapping DNA gyrase and topoisomerase IV on DNA. This effect is usually evaluated using biochemical or molecular procedures, but these are not effective at the single-cell level. We assessed ciprofloxacin (CIP)-induced chromosomal DNA breakage in single-cell Escherichia coli by direct visualization of the DNA fragments that diffused from the nucleoid obtained after bacterial lysis in an agarose microgel on a slide. Results Exposing the E. coli strain TG1 to CIP starting at a minimum inhibitory concentration (MIC) of 0.012 μg/ml and at increasing doses for 40 min increased the DNA fragmentation progressively. DNA damage started to be detectable at the MIC dose. At a dose of 1 μg/ml of CIP, DNA damage was visualized clearly immediately after processing, and the DNA fragmentation increased progressively with the antibiotic incubation time. The level of DNA damage was much higher when the bacteria were taken from liquid LB broth than from solid LB agar. CIP treatment produced a progressively slower rate of DNA damage in bacteria in the stationary phase than in the exponentially growing phase. Removing the antibiotic after the 40 min incubation resulted in progressive DSB repair activity with time. The magnitude of DNA repair was inversely related to CIP dose and was noticeable after incubation with CIP at 0.1 μg/ml but scarce after 10 μg/ml. The repair activity was not strictly related to viability. Four E. coli strains with identified mechanisms of reduced sensitivity to CIP were assessed using this procedure and produced DNA fragmentation levels that were inversely related to MIC dose, except those with very high MIC dose. Conclusion This procedure for determining DNA fragmentation is a simple and rapid test for studying and evaluating the effect of quinolones.
Collapse
Affiliation(s)
- María Tamayo
- INIBIC-Complejo Hospitalario Universitario A Coruña, Unidad de Genética, A Coruña, Spain.
| | | | | | | | | |
Collapse
|
45
|
Minko IG, Yamanaka K, Kozekov ID, Kozekova A, Indiani C, O’Donnell ME, Jiang Q, Goodman MF, Rizzo CJ, Lloyd RS. Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family. Chem Res Toxicol 2008; 21:1983-90. [PMID: 18788757 PMCID: PMC2673917 DOI: 10.1021/tx800174a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA-protein cross-links (adducts) are formed in cellular DNA under a variety of conditions, particularly following exposure to an alpha,beta-unsaturated aldehyde, acrolein. DNA-protein cross-links are subject to repair or damage-tolerance processes. These adducts serve as substrates for proteolytic degradation, yielding DNA-peptide lesions that have been shown to be actively repaired by the nucleotide excision repair complex. Alternatively, DNA-peptide cross-links can be subjected to replication bypass. We present new evidence about the capabilities of DNA polymerases to synthesize DNA past such cross-links. DNAs were constructed with site-specific cross-links, in which either a tetrapeptide or a dodecylpeptide was covalently attached at the N (2) position of guanine via an acrolein adduct, and replication bypass assays were carried out with members of the DinB family of polymerases, human polymerase (pol) kappa, Escherichia coli pol IV, and various E. coli polymerases that do not belong to the DinB family. Pol kappa was able to catalyze both the incorporation and the extension steps with an efficiency that was qualitatively indistinguishable from control (undamaged) substrates. Fidelity was comparable on all of these substrates, suggesting that pol kappa would have a role in the low mutation frequency associated with replication of these adducts in mammalian cells. When the E. coli orthologue of pol kappa, damage-inducible DNA polymerase, pol IV, was analyzed on the same substrates, pause sites were detected opposite and three nucleotides beyond the site of the lesion, with incorporation opposite the lesion being accurate. In contrast, neither E. coli replicative polymerase, pol III, nor E. coli damage-inducible polymerases, pol II and pol V, could efficiently incorporate a nucleotide opposite the DNA-peptide cross-links. Consistent with a role for pol IV in tolerance of these lesions, the replication efficiency of DNAs containing DNA-peptide cross-links was greatly reduced in pol IV-deficient cells. Collectively, these data indicate an important role for the DinB family of polymerases in tolerance mechanisms of N (2)-guanine-linked DNA-peptide cross-links.
Collapse
Affiliation(s)
- Irina G. Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | - Kinrin Yamanaka
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | - Ivan D. Kozekov
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Albena Kozekova
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | - Qingfei Jiang
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089
| | - Myron F. Goodman
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089
| | - Carmelo J. Rizzo
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
46
|
VanderVeen LA, Harris TM, Jen-Jacobson L, Marnett LJ. Formation of DNA-protein cross-links between gamma-hydroxypropanodeoxyguanosine and EcoRI. Chem Res Toxicol 2008; 21:1733-8. [PMID: 18690724 PMCID: PMC2651693 DOI: 10.1021/tx800092g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Indexed: 02/04/2023]
Abstract
The toxicity of acrolein, an alpha,beta-unsaturated aldehyde produced during lipid peroxidation, is attributable to its high reactivity toward DNA and cellular proteins. The major acrolein-DNA adduct, gamma-hydroxypropano-2'-deoxyguanosine (gamma-HOPdG), ring opens to form a reactive N(2)-oxopropyl moiety that cross-links to DNA and proteins. We demonstrate the ability of gamma-HOPdG in a duplex oligonucleotide to cross-link to a protein (EcoRI) that specifically interacts with DNA at a unique sequence. The formation of a cross-link to EcoRI was dependent on the intimate binding of the enzyme to its gamma-HOPdG-modified recognition site. Interestingly, the cross-link did not restrict the ability of EcoRI to cleave DNA substrates. However, stabilization of the cross-link by reduction of the Schiff base linkage resulted in loss of enzyme activity. This work indicates that the gamma-HOPdG-EcoRI cross-link is in equilibrium with free oligonucleotide and enzyme. Reversal of cross-link formation allows EcoRI to effect enzymatic cleavage of competitor oligonucleotides.
Collapse
Affiliation(s)
| | | | | | - Lawrence J. Marnett
- To whom correspondence should be addressed. Tel: 615-343-7329. Fax: 615-343-7534. E-mail:
| |
Collapse
|
47
|
Chen HJC, Chiu WL, Lin WP, Yang SS. Investigation of DNA-protein cross-link formation between lysozyme and oxanine by mass spectrometry. Chembiochem 2008; 9:1074-81. [PMID: 18351683 DOI: 10.1002/cbic.200700686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reactive nitrogen species are implicated in inflammatory diseases and cancers. Oxanine (Oxa) is a DNA lesion product originating from the guanine base through exposure to nitric oxide, nitrous acid, or N-nitrosoindoles. Oxanine was found to mediate formation of DNA-protein cross-links (DPCs) in the cell extract. We have previously characterized two DNA-protein cross-links from the reaction between Oxa and glutathione: namely, the thioester and the amide. In this study, lysozyme was used to study site-specific modification on protein by Oxa moieties in DNA. With the aid of nanoLC coupled with nanospray ionization tandem mass spectrometry, addition of Oxa was found at Lys13, Lys97, Lys116, Ser85, and Ser86 of lysozyme when it was treated with 2'-deoxyoxanosine (dOxo). Furthermore, incubation of lysozyme with Oxa-containing calf thymus DNA, produced by treating DNA with nitrous acid, led to lysozyme modification at Lys116, Ser85, and Ser86. Interestingly, none of the cysteine residues was modified by dOxo, in contrast with our previous findings that dOxo reacted with oxidized glutathione disulfide, forming the thioester. This might be due to the half-life of the dOxo-derived thioester being 2.2 days at the pH of incubation. Furthermore, the sites of modifications on lysozyme are in good agreement with the solvent accessibility of the residues. Since repair of Oxa-derived DPCs has not been extensively investigated, these results suggest that these stable DPCs might represent important forms of cellular damage caused by reactive nitrogen species involved in inflammationrelated diseases.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Chia-Yi 62142, Taiwan.
| | | | | | | |
Collapse
|
48
|
Dexheimer TS, Kozekova A, Rizzo CJ, Stone MP, Pommier Y. The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA-topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts. Nucleic Acids Res 2008; 36:4128-36. [PMID: 18550580 PMCID: PMC2475617 DOI: 10.1093/nar/gkn334] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA–Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA–Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA–Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
49
|
Szekely J, Rizzo CJ, Marnett LJ. Chemical properties of oxopropenyl adducts of purine and pyrimidine nucleosides and their reactivity toward amino acid cross-link formation. J Am Chem Soc 2008; 130:2195-201. [PMID: 18225895 PMCID: PMC2708936 DOI: 10.1021/ja074506u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N2-oxopropenyldeoxyguanosine (2) forms in duplex DNA by modification of dG residues with base propenal or malondialdehyde. The pKa of 2 was estimated to be 6.9 from the pH dependence of its ring-closing to the pyrimidopurinone derivative 1. The acidity of 2 may be an important determinant of its miscoding properties and its reactivity to nucleophiles in DNA or protein. To test this hypothesis, analogous N-oxopropenyl derivatives of dA (4), dC (5), and N1-methyl-dG (6) were synthesized and their pKa's were determined by optical titration. The N-oxopropenyl derivatives of dA and dC both exhibited pKa's of 10.5, whereas the N-oxopropenyl derivative of N1-methyldG exhibited a pKa of 8.2. Cross-linking of 2, 4, 5, and 6 to N(alpha)-acetyl-lysine was explored at neutral pH. Adduct 2 did not react with N(alpha)-acetyl-lysine, whereas 4-6 readily formed cross-links. The structures of the cross-links were elucidated, and their stabilities were investigated. The results define the acidity of oxopropenyl deoxynucleosides and highlight its importance to their reactivity toward nucleophiles. This study also identifies the structures of a potential novel class of DNA-protein cross-links.
Collapse
Affiliation(s)
- Joseph Szekely
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235-1822
| | - Carmelo J. Rizzo
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235-1822
| | - Lawrence J. Marnett
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235-1822
| |
Collapse
|
50
|
Minko IG, Kozekov ID, Kozekova A, Harris TM, Rizzo CJ, Lloyd RS. Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts. Mutat Res 2008; 637:161-72. [PMID: 17868748 PMCID: PMC3181171 DOI: 10.1016/j.mrfmmm.2007.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/27/2007] [Accepted: 08/01/2007] [Indexed: 04/09/2023]
Abstract
Current data suggest that DNA-peptide crosslinks are formed in cellular DNA as likely intermediates in the repair of DNA-protein crosslinks. In addition, a number of naturally occurring peptides are known to efficiently conjugate with DNA, particularly through the formation of Schiff-base complexes at aldehydic DNA adducts and abasic DNA sites. Since the potential role of DNA-peptide crosslinks in promoting mutagenesis is not well elucidated, here we report on the mutagenic properties of Schiff-base-mediated DNA-peptide crosslinks in mammalian cells. Site-specific DNA-peptide crosslinks were generated by covalently trapping a lysine-tryptophan-lysine-lysine peptide to the N(6) position of deoxyadenosine (dA) or the N(2) position of deoxyguanosine (dG) via the aldehydic forms of acrolein-derived DNA adducts (gamma-hydroxypropano-dA or gamma-hydroxypropano-dG, respectively). In order to evaluate the potential of DNA-peptide crosslinks to promote mutagenesis, we inserted the modified oligodeoxynucleotides into a single-stranded pMS2 shuttle vector, replicated these vectors in simian kidney (COS-7) cells and tested the progeny DNAs for mutations. Mutagenic analyses revealed that at the site of modification, the gamma-hydroxypropano-dA-mediated crosslink induced mutations at only approximately 0.4%. In contrast, replication bypass of the gamma-hydroxypropano-dG-mediated crosslink resulted in mutations at the site of modification at an overall frequency of approximately 8.4%. Among the types of mutations observed, single base substitutions were most common, with a prevalence of G to T transversions. Interestingly, while covalent attachment of lysine-tryptophan-lysine-lysine at gamma-hydroxypropano-dG caused an increase in mutation frequencies relative to gamma-hydroxypropano-dG, similar modification of gamma-hydroxypropano-dA resulted in decreased levels of mutations. Thus, certain DNA-peptide crosslinks can be mutagenic, and their potential to cause mutations depends on the site of peptide attachment. We propose that in order to avoid error-prone replication, proteolytic degradation of proteins covalently attached to DNA and subsequent steps of DNA repair should be tightly coordinated.
Collapse
Affiliation(s)
- Irina G. Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Ivan D. Kozekov
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Albena Kozekova
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
- Corresponding author. Tel.: +1 503 494 9957; fax: +1 503 494 6831.,
| |
Collapse
|