1
|
Kiel C, Prins S, Foss AJE, Luthert PJ. "Energetics of the outer retina II: Calculation of a spatio-temporal energy budget in retinal pigment epithelium and photoreceptor cells based on quantification of cellular processes". PLoS One 2025; 20:e0311169. [PMID: 39869549 PMCID: PMC11771881 DOI: 10.1371/journal.pone.0311169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/14/2024] [Indexed: 01/29/2025] Open
Abstract
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day. The predicted energy demands in a rod dominated (perifovea) area are 1.69 x 1013 ATP/s/mm2 tissue in the night and 6.53 x 1012 ATP/s/mm2 tissue during the day with indoor light conditions. For a cone-dominated foveal area the predicted energy demands are 6.41 x 1012 ATP/s/mm2 tissue in the night and 6.75 x 1012 ATP/s/mm2 tissue with indoor light conditions during daytime. We propose the likely need for diurnal/circadian shifts in energy demands to efficiently stagger all energy consuming processes. Our data provide insights into vulnerabilities in the aging OR and suggest that diurnal constraints may be important when considering therapeutic interventions to optimize metabolism.
Collapse
Affiliation(s)
- Christina Kiel
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stella Prins
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alexander J. E. Foss
- Department of Ophthalmology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- NIHR Moorfields Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
2
|
Chen L, Xiong L, Guo H, Feng X, Zhu X, Xiong WC. Osteoclastic ATP6AP2 maintains β-catenin levels to prevent hyper-osteoclastic activation and trabecular bone-loss. J Bone Miner Res 2024; 39:1821-1834. [PMID: 39400061 DOI: 10.1093/jbmr/zjae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteoclast (OC) formation and bone resorption are regulated by several factors, including V-ATPase, Wnt/β-catenin, and RANKL/RANK signaling. ATP6AP2, also known as the prorenin receptor (PRR), is an accessory subunit of V-ATPase and a regulator of Wnt/β-catenin signaling. While the V-ATPase subunit ATP6AP1 is essential for OC formation and function, the role of ATP6AP2 in OC-lineage cells is less clear. Here, we provide evidence that ATP6AP2 plays a negative role in osteoclastogenesis and function, contrasting with the positive role of ATP6AP1. Mice with conditional KO (cKO) of ATP6AP2 in OCs (Atp6ap2LysM) exhibit trabecular bone loss, likely due to the increased osteoclastogenesis and activity, since bone formation rates (BFRs) are comparable to control mice. In vitro assays using bone marrow macrophages (BMMs) show that Atp6ap2LysM cultures have more RANKL-induced TRAP+ OC-like cells and increased bone resorptive activity. Further studies reveal that while RANKL signaling and V-ATPase activity are normal, ATP6AP2 KO OCs, but not BMMs, have reduced basal levels of Wnt/β-catenin pathway proteins, such as LRP5/6 and β-catenin, compared to controls. Wnt3A treatment induces β-catenin and suppresses OC formation in both control and ATP6AP2 KO OC-lineage cells, indicating that Wnt/β-catenin signaling negatively regulates OC-formation and operates independently of ATP6AP2. Overall, these results suggest that ATP6AP2 is critical for maintaining basal levels of LRP5/6 receptors and β-catenin in OCs, thus acting as a negative regulator of osteoclastogenesis and activation.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| | - Xu Feng
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 619 19th St S Ste P210, Birmingham, AL 35233, United States
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin 130022, China
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr Building, Cleveland, OH 44106, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH 44106, United States
| |
Collapse
|
3
|
Kishikawa JI, Nishida Y, Nakano A, Kato T, Mitsuoka K, Okazaki KI, Yokoyama K. Rotary mechanism of the prokaryotic V o motor driven by proton motive force. Nat Commun 2024; 15:9883. [PMID: 39567487 PMCID: PMC11579504 DOI: 10.1038/s41467-024-53504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.8 Å cryo-EM structure of the Vo domain of V/A-ATPase from Thermus thermophilus, revealing precise orientations of glutamate (Glu) residues in the c12-ring. Three Glu residues face a water channel, with one forming a salt bridge with the Arginine in the stator (a/Arg). Molecular dynamics (MD) simulations show that protonation of specific Glu residues triggers unidirectional Brownian motion of the c12-ring towards ATP synthesis. When the key Glu remains unprotonated, the salt bridge persists, blocking rotation. These findings suggest that asymmetry in the protonation of c/Glu residues biases c12-ring movement, facilitating rotation and ATP synthesis.
Collapse
Affiliation(s)
- Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki-Hashiuecho, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Nishida
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
4
|
Makar AN, Boraman A, Mosen P, Simpson JE, Marques J, Michelberger T, Aitken S, Wheeler AP, Winter D, von Kriegsheim A, Gammoh N. The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation. Nat Commun 2024; 15:7743. [PMID: 39231962 PMCID: PMC11374810 DOI: 10.1038/s41467-024-52049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.
Collapse
Affiliation(s)
- Agata N Makar
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Alina Boraman
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Peter Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Jair Marques
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Tim Michelberger
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, UK
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, UK.
| |
Collapse
|
5
|
Yanagisawa S, Bukhari ZA, Parra KJ, Frasch WD. Eukaryotic yeast V 1-ATPase rotary mechanism insights revealed by high-resolution single-molecule studies. Front Mol Biosci 2024; 11:1269040. [PMID: 38567099 PMCID: PMC10985318 DOI: 10.3389/fmolb.2024.1269040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Vacuolar ATP-dependent proton pumps (V-ATPases) belong to a super-family of rotary ATPases and ATP synthases. The V1 complex consumes ATP to drive rotation of a central rotor that pumps protons across membranes via the Vo complex. Eukaryotic V-ATPases are regulated by reversible disassembly of subunit C, V1 without C, and VO. ATP hydrolysis is thought to generate an unknown rotary state that initiates regulated disassembly. Dissociated V1 is inhibited by subunit H that traps it in a specific rotational position. Here, we report the first single-molecule studies with high resolution of time and rotational position of Saccharomyces cerevisiae V1-ATPase lacking subunits H and C (V1ΔHC), which resolves previously elusive dwells and angular velocity changes. Rotation occurred in 120° power strokes separated by dwells comparable to catalytic dwells observed in other rotary ATPases. However, unique V1ΔHC rotational features included: 1) faltering power stroke rotation during the first 60°; 2) a dwell often occurring ∼45° after the catalytic dwell, which did not increase in duration at limiting MgATP; 3) a second dwell, ∼2-fold longer occurring 112° that increased in duration and occurrence at limiting MgATP; 4) limiting MgATP-dependent decreases in power stroke angular velocity where dwells were not observed. The results presented here are consistent with MgATP binding to the empty catalytic site at 112° and MgADP released at ∼45°, and provide important new insight concerning the molecular basis for the differences in rotary positions of substrate binding and product release between V-type and F-type ATPases.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zain A. Bukhari
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Karlett J. Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Wayne D. Frasch
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Iwata K, Ferdousi F, Arai Y, Isoda H. Modulation of mitochondrial activity by sugarcane (Saccharum officinarum L.) top extract and its bioactive polyphenols: a comprehensive transcriptomics analysis in C2C12 myotubes and HepG2 hepatocytes. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:2. [PMID: 38177614 PMCID: PMC10766937 DOI: 10.1007/s13659-023-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Age-related mitochondrial dysfunction leads to defects in cellular energy metabolism and oxidative stress defense systems, which can contribute to tissue damage and disease development. Among the key regulators responsible for mitochondrial quality control, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is an important target for mitochondrial dysfunction. We have previously reported that bioactive polyphenols extracted from sugarcane top (ST) ethanol extract (STEE) could activate neuronal energy metabolism and increase astrocyte PGC-1α transcript levels. However, their potential impact on the mitochondria activity in muscle and liver cells has not yet been investigated. To address this gap, our current study examined the effects of STEE and its polyphenols on cultured myotubes and hepatocytes in vitro. Rhodamine 123 assay revealed that the treatment with STEE and its polyphenols resulted in an increase in mitochondrial membrane potential in C2C12 myotubes. Furthermore, a comprehensive examination of gene expression patterns through transcriptome-wide microarray analysis indicated that STEE altered gene expressions related to mitochondrial functions, fatty acid metabolism, inflammatory cytokines, mitogen-activated protein kinase (MAPK) signaling, and cAMP signaling in both C2C12 myotubes and HepG2 hepatocytes. Additionally, protein-protein interaction analysis identified the PGC-1α interactive-transcription factors-targeted regulatory network of the genes regulated by STEE, and the quantitative polymerase chain reaction results confirmed that STEE and its polyphenols upregulated the transcript levels of PGC-1α in both C2C12 and HepG2 cells. These findings collectively suggest the potential beneficial effects of STEE on muscle and liver tissues and offer novel insights into the potential nutraceutical applications of this material.
Collapse
Affiliation(s)
- Kengo Iwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Nippo Co., Ltd., Daito, Osaka, 574-0062, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
7
|
Jitapunkul K, Zhao Y, Lawtrakul L, Van Hove MA, Zhang R. Rotations of F-ATPase and V-ATPase analyzed by a torque approach. J Biomol Struct Dyn 2023; 41:10368-10376. [PMID: 36495307 DOI: 10.1080/07391102.2022.2154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
F-type ATP synthase (F-ATPase) and vacuolar ATP hydrolase (V-ATPase) are well-known biomolecular motors, which play significant catalytic roles in ATP synthesis and ATP hydrolysis reactions. Their rotational torques are important factors involved in their rotational behavior that can be measured experimentally but with considerable difficulty. To overcome this difficulty and thereby provide an in-depth understanding of their operation mechanism, we herein carry out simple and fast computer modelling to study the two proteins, using our torque approach that relies on interatomic forces and coordinates of unequilibrated configurations taken from brief molecular dynamics (MD) simulations. As predicted by the torque approach, F-ATPase is demonstrated to be a random rotor, but it prefers to rotate in clockwise direction (as seen from the membrane toward the protein) for ATP synthesis, owing to the predominantly negative angle-averaged torques. By contrast, V-ATPase tends to rotate only in counterclockwise direction for ATP hydrolysis, due to the almost uniform averaged positive torques generated by the unidirectional rotation near the three catalytic sites. The rotational behaviors of both proteins are also affected by the surrounding solvent which can promote or hinder the internal rotation. By combining the torque approach with classic force-field MD simulations, the torques of two biomolecular motors can be calculated economically, and are found to agree with previous experiments and theoretical calculations. This work demonstrates that our torque approach can be extended to the field of biology and can help gain a deeper insight into the mechanistic rotation of biomolecular motors with modest computation time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kulpavee Jitapunkul
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- School of Bio-Chemical Engineering, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand
| | - Yanling Zhao
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Luckhana Lawtrakul
- School of Bio-Chemical Engineering, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand
| | - Michel A Van Hove
- Institute of Computational and Theoretical Studies & Department of Physics, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Yokoyama K. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Front Mol Biosci 2023; 10:1176114. [PMID: 37168257 PMCID: PMC10166205 DOI: 10.3389/fmolb.2023.1176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
V/A-ATPase is a rotary molecular motor protein that produces ATP through the rotation of its central rotor. The soluble part of this protein, the V1 domain, rotates upon ATP hydrolysis. However, the mechanism by which ATP hydrolysis in the V1 domain couples with the mechanical rotation of the rotor is still unclear. Cryo-EM snapshot analysis of V/A-ATPase indicated that three independent and simultaneous catalytic events occurred at the three catalytic dimers (ABopen, ABsemi, and ABclosed), leading to a 120° rotation of the central rotor. Besides the closing motion caused by ATP bound to ABopen, the hydrolysis of ATP bound to ABsemi drives the 120° step. Our recent time-resolved cryo-EM snapshot analysis provides further evidence for this model. This review aimed to provide a comprehensive overview of the structure and function of V/A-ATPase from a thermophilic bacterium, one of the most well-studied rotary ATPases to date.
Collapse
Affiliation(s)
- Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
9
|
Boman BM, Dinh TN, Decker K, Emerick B, Modarai S, Opdenaker L, Fields JZ, Raymond C, Schleiniger G. Beyond the Genetic Code: A Tissue Code?. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36945600 PMCID: PMC10028806 DOI: 10.1101/2023.03.05.531161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The genetic code determines how the precise amino acid sequence of proteins is specified by genomic information in cells. But what specifies the precise histologic organization of cells in plant and animal tissues is unclear. We now hypothesize that another code, the tissue code , exists at an even higher level of complexity which determines how tissue organization is dynamically maintained. Accordingly, we modeled spatial and temporal asymmetries of cell division and established that five simple mathematical laws ("the tissue code") convey a set of biological rules that maintain the specific organization and continuous self-renewal dynamics of cells in tissues. These laws might even help us understand wound healing, and how tissue disorganization leads to birth defects and tissue pathology like cancer.
Collapse
|
10
|
Nakanishi A, Kishikawa JI, Mitsuoka K, Yokoyama K. Cryo-EM analysis of V/A-ATPase intermediates reveals the transition of the ground-state structure to steady-state structures by sequential ATP binding. J Biol Chem 2023; 299:102884. [PMID: 36626983 PMCID: PMC9971907 DOI: 10.1016/j.jbc.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Vacuolar/archaeal-type ATPase (V/A-ATPase) is a rotary ATPase that shares a common rotary catalytic mechanism with FoF1 ATP synthase. Structural images of V/A-ATPase obtained by single-particle cryo-electron microscopy during ATP hydrolysis identified several intermediates, revealing the rotary mechanism under steady-state conditions. However, further characterization is needed to understand the transition from the ground state to the steady state. Here, we identified the cryo-electron microscopy structures of V/A-ATPase corresponding to short-lived initial intermediates during the activation of the ground state structure by time-resolving snapshot analysis. These intermediate structures provide insights into how the ground-state structure changes to the active, steady state through the sequential binding of ATP to its three catalytic sites. All the intermediate structures of V/A-ATPase adopt the same asymmetric structure, whereas the three catalytic dimers adopt different conformations. This is significantly different from the initial activation process of FoF1, where the overall structure of the F1 domain changes during the transition from a pseudo-symmetric to a canonical asymmetric structure (PNAS NEXUS, pgac116, 2022). In conclusion, our findings provide dynamical information that will enhance the future prospects for studying the initial activation processes of the enzymes, which have unknown intermediate structures in their functional pathway.
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan,Institute for Protein Research, Osaka University, Osaka Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan.
| |
Collapse
|
11
|
Kosmidis E, Shuttle CG, Preobraschenski J, Ganzella M, Johnson PJ, Veshaguri S, Holmkvist J, Møller MP, Marantos O, Marcoline F, Grabe M, Pedersen JL, Jahn R, Stamou D. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature 2022; 611:827-834. [PMID: 36418452 PMCID: PMC11212661 DOI: 10.1038/s41586-022-05472-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.
Collapse
Affiliation(s)
- Eleftherios Kosmidis
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Christopher G Shuttle
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter J Johnson
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Mathematics, University of Manchester, Manchester, UK
| | - Salome Veshaguri
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Novozymes A/S, Kgs Lyngby, Denmark
| | - Jesper Holmkvist
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Mads P Møller
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Orestis Marantos
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Frank Marcoline
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jesper L Pedersen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dimitrios Stamou
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Otomo A, Iida T, Okuni Y, Ueno H, Murata T, Iino R. Direct observation of stepping rotation of V-ATPase reveals rigid component in coupling between V o and V 1 motors. Proc Natl Acad Sci U S A 2022; 119:e2210204119. [PMID: 36215468 PMCID: PMC9586324 DOI: 10.1073/pnas.2210204119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.
Collapse
Affiliation(s)
- Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| | - Yasuko Okuni
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies, Hayama 240-0193, Japan
| |
Collapse
|
13
|
Sekiya M. Proton Pumping ATPases: Rotational Catalysis, Physiological Roles in Oral Pathogenic Bacteria, and Inhibitors. Biol Pharm Bull 2022; 45:1404-1411. [PMID: 36184496 DOI: 10.1248/bpb.b22-00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton pumping ATPases, both F-type and V/A-type ATPases, generate ATP using electrochemical energy or pump protons/sodium ions by hydrolyzing ATP. The enzymatic reaction and proton transport are coupled through subunit rotation, and this unique rotational mechanism (rotational catalysis) has been intensively studied. Single-molecule and thermodynamic analyses have revealed the detailed rotational mechanism, including the catalytically inhibited state and the roles of subunit interactions. In mammals, F- and V-ATPases are involved in ATP synthesis and organelle acidification, respectively. Most bacteria, including anaerobes, have F- and/or A-ATPases in the inner membrane. However, these ATPases are not believed to be essential in anaerobic bacteria since anaerobes generate sufficient ATP without oxidative phosphorylation. Recent studies suggest that F- and A-ATPases perform indispensable functions beyond ATP synthesis in oral pathogenic anaerobes; F-ATPase is involved in acid tolerance in Streptococcus mutans, and A-ATPase mediates nutrient import in Porphyromonas gingivalis. Consistently, inhibitors of oral bacterial F- and A-ATPases, such as phytopolyphenols and bedaquiline, strongly diminish growth and survival. Herein, we discuss rotational catalysis of bacterial F- and A-ATPases, and discuss their physiological roles, focusing on oral bacteria. We also review the effects of ATPase inhibitors on the growth and survival of oral pathogenic bacteria. The features of the catalytic mechanism and unique physiological roles in oral bacteria highlight the potential for proton pumping ATPases to serve as targets for oral antimicrobial agents.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
14
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
15
|
Nakano A, Kishikawa JI, Nakanishi A, Mitsuoka K, Yokoyama K. Structural basis of unisite catalysis of bacterial F 0F 1-ATPase. PNAS NEXUS 2022; 1:pgac116. [PMID: 36741449 PMCID: PMC9896953 DOI: 10.1093/pnasnexus/pgac116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 06/17/2023]
Abstract
Adenosine triphosphate (ATP) synthases (F0F1-ATPases) are crucial for all aerobic organisms. F1, a water-soluble domain, can catalyze both the synthesis and hydrolysis of ATP with the rotation of the central γε rotor inside a cylinder made of α 3 β 3 in three different conformations (referred to as β E, β TP, and β DP). In this study, we determined multiple cryo-electron microscopy structures of bacterial F0F1 exposed to different reaction conditions. The structures of nucleotide-depleted F0F1 indicate that the ε subunit directly forces β TP to adopt a closed form independent of the nucleotide binding to β TP. The structure of F0F1 under conditions that permit only a single catalytic β subunit per enzyme to bind ATP is referred to as unisite catalysis and reveals that ATP hydrolysis unexpectedly occurs on β TP instead of β DP, where ATP hydrolysis proceeds in the steady-state catalysis of F0F1. This indicates that the unisite catalysis of bacterial F0F1 significantly differs from the kinetics of steady-state turnover with continuous rotation of the shaft.
Collapse
Affiliation(s)
- Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
16
|
Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sci Rep 2022; 12:10405. [PMID: 35729318 PMCID: PMC9213516 DOI: 10.1038/s41598-022-14667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA) is a powerful tool to knockdown genetic targets crucial for the growth and development of agriculturally important insect pests. Helicoverpa armigera is a pest feeding on more than 30 economically important crops worldwide and a major threat. Resistance to insecticides and Bt toxins has been gradually increasing in the field. RNAi-mediated knockdown of H. armigera genes by producing dsRNAs homologous to genetic targets in bacteria and plants has a high potential for insect management to decrease agricultural loss. The acetylcholinesterase (AChE), ecdysone receptor (EcR) and v-ATPase-A (vAA) genes were selected as genetic targets. Fragments comprising a coding sequence of < 500 bp were cloned into the L4440 vector for dsRNA production in bacteria and in a TRV-VIGS vector in antisense orientation for transient expression of dsRNA in Solanum tuberosum leaves. After ingesting bacterial-expressed dsRNA, the mRNA levels of the target genes were significantly reduced, leading to mortality and abnormal development in larva of H. armigera. Furthermore, the S. tuberosum plants transformed with TRV-VIGS expressing AChE exhibited higher mortality > 68% than the control plants 17%, recorded ten days post-feeding and significant resistance in transgenic (transient) plants was observed. Moreover, larval lethality and molting defects were observed in larva fed on potato plants expressing dsRNA specific to EcR. Analysis of transcript levels by quantitative RT–PCR revealed that larval mortality was attributable to the knockdown of genetic targets by RNAi. The results demonstrated that down-regulation of H. armigera genes involved in ATP hydrolysis, transcriptional stimulation of development genes and neural conduction has aptitude as a bioinsecticide to control H. armigera population sizes and therefore decreases crop loss.
Collapse
|
17
|
Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases. Nat Commun 2022; 13:1213. [PMID: 35260556 PMCID: PMC8904598 DOI: 10.1038/s41467-022-28832-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
V/A-ATPase is a motor protein that shares a common rotary catalytic mechanism with FoF1 ATP synthase. When powered by ATP hydrolysis, the V1 domain rotates the central rotor against the A3B3 hexamer, composed of three catalytic AB dimers adopting different conformations (ABopen, ABsemi, and ABclosed). Here, we report the atomic models of 18 catalytic intermediates of the V1 domain of V/A-ATPase under different reaction conditions, determined by single particle cryo-EM. The models reveal that the rotor does not rotate immediately after binding of ATP to the V1. Instead, three events proceed simultaneously with the 120˚ rotation of the shaft: hydrolysis of ATP in ABsemi, zipper movement in ABopen by the binding ATP, and unzipper movement in ABclosed with release of both ADP and Pi. This indicates the unidirectional rotation of V/A-ATPase by a ratchet-like mechanism owing to ATP hydrolysis in ABsemi, rather than the power stroke model proposed previously for F1-ATPase. The rotary ATPases use a rotary catalytic mechanism to drive transmembrane proton movement powered by ATP hydrolysis. Here, the authors report a collection of V/A-ATPase V1 domain structures, providing insights into rotary mechanism of the enzyme and potentially other rotary motor proteins driven by ATP hydrolysis.
Collapse
|
18
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
19
|
Kabra R, Singh S. Transporter proteins and its implication in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:1-21. [PMID: 33632463 DOI: 10.1016/bs.apcsb.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug transporters, classified in various ways like efflux transporters and influx transporters; secretory transporters and absorptive transporters; ATP-driven transporters and Solute Linked Carrier (SLC) transporters are of great importance while studying pharmacokinetics. They have impeccable roles in the drug discovery process of infectious diseases. Many of these find a pivotal role in synthetic antimicrobial peptides. The chapter briefly elucidates the varied types and their significance.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, SP Pune University Campus, Pune, India.
| |
Collapse
|
20
|
Kishikawa JI, Nakanishi A, Furuta A, Kato T, Namba K, Tamakoshi M, Mitsuoka K, Yokoyama K. Mechanical inhibition of isolated V o from V/A-ATPase for proton conductance. eLife 2020; 9:56862. [PMID: 32639230 PMCID: PMC7367684 DOI: 10.7554/elife.56862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
V-ATPase is an energy converting enzyme, coupling ATP hydrolysis/synthesis in the hydrophilic V1 domain, with proton flow through the Vo membrane domain, via rotation of the central rotor complex relative to the surrounding stator apparatus. Upon dissociation from the V1 domain, the Vo domain of the eukaryotic V-ATPase can adopt a physiologically relevant auto-inhibited form in which proton conductance through the Vo domain is prevented, however the molecular mechanism of this inhibition is not fully understood. Using cryo-electron microscopy, we determined the structure of both the holo V/A-ATPase and isolated Vo at near-atomic resolution, respectively. These structures clarify how the isolated Vo domain adopts the auto-inhibited form and how the holo complex prevents formation of the inhibited Vo form.
Collapse
Affiliation(s)
- Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, Japan.,Institute for Protein Research, Osaka University, Suita, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Research Center for Ultra-High Voltage Electron Microscopy, Mihogaoka, Osaka, Japan
| | - Aya Furuta
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, Suita, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Research Center for Ultra-High Voltage Electron Microscopy, Mihogaoka, Osaka, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, Japan
| |
Collapse
|
21
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
22
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
23
|
Nakanishi A, Kishikawa JI, Mitsuoka K, Yokoyama K. Cryo-EM studies of the rotary H +-ATPase/synthase from Thermus thermophilus. Biophys Physicobiol 2019; 16:140-146. [PMID: 31660281 PMCID: PMC6812961 DOI: 10.2142/biophysico.16.0_140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
Proton-translocating rotary ATPases couple proton influx across the membrane domain and ATP hydrolysis/synthesis in the soluble domain through rotation of the central rotor axis against the surrounding peripheral stator apparatus. It is a significant challenge to determine the structure of rotary ATPases due to their intrinsic conformational heterogeneity and instability. Recent progress of single particle analysis of protein complexes using cryogenic electron microscopy (cryo-EM) has enabled the determination of whole rotary ATPase structures and made it possible to classify different rotational states of the enzymes at a near atomic resolution. Three cryo-EM maps corresponding to different rotational states of the V/A type H+-rotary ATPase from a bacterium Thermus thermophilus provide insights into the rotation of the whole complex, which allow us to determine the movement of each subunit during rotation. In addition, this review describes methodological developments to determine higher resolution cryo-EM structures, such as specimen preparation, to improve the image contrast of membrane proteins.
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047 Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
24
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
25
|
Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1004-1010. [DOI: 10.1016/j.bbamem.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
|
26
|
Farsi Z, Gowrisankaran S, Krunic M, Rammner B, Woehler A, Lafer EM, Mim C, Jahn R, Milosevic I. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity. eLife 2018; 7:32569. [PMID: 29652249 PMCID: PMC5935483 DOI: 10.7554/elife.32569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.
Collapse
Affiliation(s)
- Zohreh Farsi
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sindhuja Gowrisankaran
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | - Matija Krunic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | | | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Carsten Mim
- Department for Biomedical Engineering and Health Solutions, Kungliga Tekniska Högskolan, Huddinge, Sweden.,Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Cooperative electrogenic proton transport pathways in the plasma membrane of the proton-secreting osteoclast. Pflugers Arch 2018; 470:851-866. [PMID: 29550927 DOI: 10.1007/s00424-018-2137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
A proton is a ubiquitous signaling ion. Many transmembrane H+ transport pathways either maintain pH homeostasis or generate acidic compartments. The osteoclast is a bone-resorbing cell, which degrades bone tissues by secreting protons and lysosomal enzymes into the resorption pit. The plasma membrane facing bone tissue (ruffled border), generated partly by fusion of lysosomes, may mimic H+ flux mechanisms regulating acidic vesicles. We identified three electrogenic H+-fluxes in osteoclast plasma membranes-a vacuolar H+-ATPase (V-ATPase), a voltage-gated proton channel (Hv channel) and an acid-inducible H+-leak-whose electrophysiological profiles and regulation mechanisms differed. V-ATPase and Hv channel, both may have intracellular reservoirs, but the recruitment/internalization is regulated independently. V-ATPase mediates active H+ efflux, acidifying the resorption pit, while acid-inducible H+ leak, activated at an extracellular pH < 5.5, diminishes pit acidification, possibly to protect bone from excess degradation. The two-way H+ flux mechanisms in opposite directions may have advantages in fine regulation of pit pH. Hv channel mediates passive H+ efflux. Although its working ranges are limited, the amount of H+ extrusion is 100 times larger than those of the V-ATPase and may support reactive oxygen species production during osteoclastogenesis. Extracellular Ca2+, H+ and inorganic phosphate, which accumulate in the resorption pit, will either stimulate or inhibit these H+ fluxes. Skeletal integration is disrupted by too much or too less of bone resorption. Diversities in plasma membrane H+ flux pathways, which may co-operate or compete, are essential to adjust osteoclast functions in variable conditions.
Collapse
|
28
|
Structure and dynamics of rotary V 1 motor. Cell Mol Life Sci 2018; 75:1789-1802. [PMID: 29387903 PMCID: PMC5910484 DOI: 10.1007/s00018-018-2758-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/25/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.
Collapse
|
29
|
Cryo EM structure of intact rotary H +-ATPase/synthase from Thermus thermophilus. Nat Commun 2018; 9:89. [PMID: 29311594 PMCID: PMC5758568 DOI: 10.1038/s41467-017-02553-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
Proton translocating rotary ATPases couple ATP hydrolysis/synthesis, which occurs in the soluble domain, with proton flow through the membrane domain via a rotation of the common central rotor complex against the surrounding peripheral stator apparatus. Here, we present a large data set of single particle cryo-electron micrograph images of the V/A type H+-rotary ATPase from the bacterium Thermus thermophilus, enabling the identification of three rotational states based on the orientation of the rotor subunit. Using masked refinement and classification with signal subtractions, we obtain homogeneous reconstructions for the whole complexes and soluble V1 domains. These reconstructions are of higher resolution than any EM map of intact rotary ATPase reported previously, providing a detailed molecular basis for how the rotary ATPase maintains structural integrity of the peripheral stator apparatus, and confirming the existence of a clear proton translocation path from both sides of the membrane.
Collapse
|
30
|
Iino R, Iida T, Nakamura A, Saita EI, You H, Sako Y. Single-molecule imaging and manipulation of biomolecular machines and systems. Biochim Biophys Acta Gen Subj 2017; 1862:241-252. [PMID: 28789884 DOI: 10.1016/j.bbagen.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/23/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. SCOPE OF REVIEW We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. MAJOR CONCLUSIONS Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Ryota Iino
- Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Japan; Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Japan.
| | - Tatsuya Iida
- Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Japan; Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Japan
| | - Akihiko Nakamura
- Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Japan; Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Japan
| | - Ei-Ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, China.
| | | |
Collapse
|
31
|
Wang C, Zhao T, Li Y, Huang G, White MA, Gao J. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Deliv Rev 2017; 113:87-96. [PMID: 27612550 PMCID: PMC5339051 DOI: 10.1016/j.addr.2016.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH4Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Sielaff H, Martin J, Singh D, Biuković G, Grüber G, Frasch WD. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. J Biol Chem 2016; 291:25351-25363. [PMID: 27729450 PMCID: PMC5207238 DOI: 10.1074/jbc.m116.745240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.
Collapse
Affiliation(s)
- Hendrik Sielaff
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - James Martin
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Dhirendra Singh
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- the School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Wayne D Frasch
- From the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
33
|
Abstract
F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.
Collapse
|
34
|
Kulish O, Wright AD, Terentjev EM. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci Rep 2016; 6:28180. [PMID: 27321713 PMCID: PMC4913325 DOI: 10.1038/srep28180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022] Open
Abstract
F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the ‘no-load’ angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of ‘stall torque’. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the ‘useful outcome’ is measured in the number of H+ pushed against the chemical gradient.
Collapse
Affiliation(s)
- O Kulish
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - A D Wright
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - E M Terentjev
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
35
|
Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiol Mol Biol Rev 2016; 80:161-86. [PMID: 26819321 DOI: 10.1128/mmbr.00056-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
Collapse
|
36
|
Wang C, Wang Y, Li Y, Bodemann B, Zhao T, Ma X, Huang G, Hu Z, DeBerardinis RJ, White MA, Gao J. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat Commun 2015; 6:8524. [PMID: 26437053 PMCID: PMC4600749 DOI: 10.1038/ncomms9524] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled 'detection and perturbation' strategy.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Brian Bodemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xinpeng Ma
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zeping Hu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Michael A. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
37
|
Lucena MN, Pinto MR, Garçon DP, McNamara JC, Leone FA. A kinetic characterization of the gill V(H+)-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:15-25. [DOI: 10.1016/j.cbpb.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
38
|
Richardson RA, Papachristos K, Read DJ, Harlen OG, Harrison M, Paci E, Muench SP, Harris SA. Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling. Proteins 2014; 82:3298-311. [PMID: 25174610 DOI: 10.1002/prot.24680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 11/12/2022]
Abstract
Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuating Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations. These two complementary computational techniques are used to answer a critical question in the rotary ATPase family; implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and how it would significantly constrain the mobility of the rotary ATPase family.
Collapse
Affiliation(s)
- Robin A Richardson
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 2014; 289:31212-23. [PMID: 25258315 DOI: 10.1074/jbc.m114.598177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Collapse
Affiliation(s)
- Hiroshi Ueno
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yoshihiro Minagawa
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mayu Hara
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Suhaila Rahman
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eiro Muneyuki
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, JST, PRESTO, Chiba 263-8522, Japan,
| | - Ryota Iino
- the Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan, and the Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| |
Collapse
|
40
|
Iino R, Minagawa Y, Ueno H, Hara M, Murata T. Molecular structure and rotary dynamics of Enterococcus hirae V₁-ATPase. IUBMB Life 2014; 66:624-30. [PMID: 25229752 DOI: 10.1002/iub.1311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/03/2014] [Indexed: 11/07/2022]
Abstract
V1-ATPase is a rotary molecular motor in which the mechanical rotation of the rotor DF subunits against the stator A3B3 ring is driven by the chemical free energy of ATP hydrolysis. Recently, using X-ray crystallography, we solved the high-resolution molecular structure of Enterococcus hirae V1-ATPase (EhV1) and revealed how the three catalytic sites in the stator A3B3 ring change their structure on nucleotide binding and interaction with the rotor DF subunits. Furthermore, recently, we also demonstrated directly the rotary catalysis of EhV1 by using single-molecule high-speed imaging and analyzed the properties of the rotary motion in detail. In this critical review, we introduce the molecular structure and rotary dynamics of EhV1 and discuss a possible model of its chemomechanical coupling scheme.
Collapse
Affiliation(s)
- Ryota Iino
- Department of Bioorganization Research, Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi, Japan; Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | | | | | | | | |
Collapse
|
41
|
F-subunit reinforces torque generation in V-ATPase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:415-22. [DOI: 10.1007/s00249-014-0973-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023]
|
42
|
Muench SP, Rawson S, Eyraud V, Delmas AF, Da Silva P, Phillips C, Trinick J, Harrison MA, Gressent F, Huss M. PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 2014; 289:16399-408. [PMID: 24795045 PMCID: PMC4047407 DOI: 10.1074/jbc.m113.541250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Indexed: 12/03/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.
Collapse
Affiliation(s)
- Stephen P Muench
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom,
| | - Shaun Rawson
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Vanessa Eyraud
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Agnès F Delmas
- the Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 4301, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Pedro Da Silva
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Clair Phillips
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - John Trinick
- the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom, and
| | - Michael A Harrison
- From the School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, West Yorkshire, United Kingdom
| | - Frédéric Gressent
- Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées-Lyon, Université de Lyon, IFR 41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Batiment Louis-Pasteur 20, avenue Albert Einstein, F-69621 Villeurbanne, France
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie Universität Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
43
|
Choi HJ, Lee JH, Yeo SJ, Kaewintajuk K, Yi KY, Kim S, Song HO, Park H. Evaluation of anti-coccidial effects of 1-[4-(4-nitrophenoxy)phenyl]propane-1-one and identification of its potential target proteins in Toxoplasma gondii. Arch Pharm Res 2014; 38:752-60. [PMID: 24824336 DOI: 10.1007/s12272-014-0400-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
Coccidiosis affects many vertebrates worldwide, but treatment with known anti-coccidial drugs causes several adverse side effects. There is a critical need for the development and evaluation of new drugs. The anti-coccidial effect of 1-[4-(4-nitrophenoxy)phenyl]propane-1-one (NPPP), a synthetic compound, was studied in vitro and in vivo. Treatment with NPPP showed anti-Toxoplasma activity in vitro with a lower EC50 value than pyrimethamine. In ICR mice infected with Toxoplasma gondii, oral administration of NPPP for 4 days showed statistically significant anti-Toxoplasma activity with lower numbers of tachyzoite than those of the negative control (p < 0.01). NPPP also exhibited strong anti-Eimeria activity in Eimeria tenella-infected chickens when treated for 4 days with orally administered NPPP at a dose of 100 mg/kg. Potential target proteins of NPPP were analyzed by proteomic profiles of T. gondii tachyzoites. Two hypothetical proteins were identified as possible targets of NPPP, a putative ortholog of vacuolar ATP synthase subunit C and a class I S-adenosylmethionine-dependent methyltransferase. Our data show that the NPPP might be an anti-coccidial drug candidate for clinical application against coccidial infections. Future investigations will focus on identifying the function of proteins regulated by NPPP.
Collapse
Affiliation(s)
- Hwa-Jung Choi
- Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine, 460 Iksandae-ro, Iksan, 570-749, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
46
|
Liberman R, Bond S, Shainheit MG, Stadecker MJ, Forgac M. Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway. J Biol Chem 2014; 289:1355-63. [PMID: 24273170 PMCID: PMC3894320 DOI: 10.1074/jbc.m113.524561] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Indexed: 01/21/2023] Open
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation.
Collapse
Affiliation(s)
- Rachel Liberman
- From the Departments of Developmental, Molecular, and Chemical Biology
- the Programs in Cellular and Molecular Physiology and
| | - Sarah Bond
- From the Departments of Developmental, Molecular, and Chemical Biology
- the Programs in Cellular and Molecular Physiology and
| | | | - Miguel J. Stadecker
- Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts 02111
- Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Michael Forgac
- From the Departments of Developmental, Molecular, and Chemical Biology
- the Programs in Cellular and Molecular Physiology and
| |
Collapse
|
47
|
Flexibility within the rotor and stators of the vacuolar H+-ATPase. PLoS One 2013; 8:e82207. [PMID: 24312643 PMCID: PMC3846802 DOI: 10.1371/journal.pone.0082207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.
Collapse
|
48
|
Kishikawa JI, Nakanishi A, Furuike S, Tamakoshi M, Yokoyama K. Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase. J Biol Chem 2013; 289:403-12. [PMID: 24247239 DOI: 10.1074/jbc.m113.523498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- From the Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | |
Collapse
|
49
|
Minagawa Y, Ueno H, Hara M, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. J Biol Chem 2013; 288:32700-32707. [PMID: 24089518 DOI: 10.1074/jbc.m113.506329] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μM at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μM ATP (<<Km), the distribution of the durations of the ATP-waiting pause fit well with a single-exponential decay function. The second-order binding rate constant for ATP was 2.3 × 10(6) M(-1) s(-1). At 40 mM ATP (>>Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.
Collapse
Affiliation(s)
- Yoshihiro Minagawa
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | - Hiroshi Ueno
- the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551
| | - Mayu Hara
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | | | - Noboru Ohsawa
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Takaho Terada
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Mikako Shirouzu
- the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | | | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Eiro Muneyuki
- the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Chiba 263-8522, Japan.
| | - Ryota Iino
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656,.
| |
Collapse
|
50
|
Liberman R, Cotter K, Baleja JD, Forgac M. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification. J Biol Chem 2013; 288:22798-808. [PMID: 23740254 DOI: 10.1074/jbc.m113.460295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vacuolar ATPase (V-ATPase) is a multisubunit complex that carries out ATP-driven proton transport. It is composed of a peripheral V1 domain that hydrolyzes ATP and an integral V0 domain that translocates protons. Subunit a is a 100-kDa integral membrane protein (part of V0) that possesses an N-terminal cytoplasmic domain and a C-terminal hydrophobic domain. Although the C-terminal domain functions in proton transport, the N-terminal domain is critical for intracellular targeting and regulation of V-ATPase assembly. Despite its importance, there is currently no high resolution structure for subunit a of the V-ATPase. Recently, the crystal structure of the N-terminal domain of the related subunit I from the archaebacterium Meiothermus ruber was reported. We have used homology modeling to construct a model of the N-terminal domain of Vph1p, one of two isoforms of subunit a expressed in yeast. To test this model, unique cysteine residues were introduced into a Cys-less form of Vph1p and their accessibility to modification by the sulfhydryl reagent 3-(N-maleimido-propionyl) biocytin (MPB) was determined. In addition, accessibility of introduced cysteine residues to MPB modification was compared in the V1V0 complex and the free V0 domain to identify residues protected from modification by the presence of V1. The results provide an experimental test of the proposed model and have identified regions of the N-terminal domain of subunit a that likely serve as interfacial contact sites with the peripheral V1 domain. The possible significance of these results for in vivo regulation of V-ATPase assembly is discussed.
Collapse
Affiliation(s)
- Rachel Liberman
- Department of Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|