1
|
Pedroni A, Dai YWE, Lafouasse L, Chang W, Srivastava I, Del Vecchio L, Ampatzis K. Neuroprotective gap-junction-mediated bystander transformations in the adult zebrafish spinal cord after injury. Nat Commun 2024; 15:4331. [PMID: 38773121 PMCID: PMC11109231 DOI: 10.1038/s41467-024-48729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Leslie Lafouasse
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Weipang Chang
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
2
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
3
|
Shafik AM, Allen EG, Jin P. Epitranscriptomic dynamics in brain development and disease. Mol Psychiatry 2022; 27:3633-3646. [PMID: 35474104 PMCID: PMC9596619 DOI: 10.1038/s41380-022-01570-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
Distinct cell types are generated at specific times during brain development and are regulated by epigenetic, transcriptional, and newly emerging epitranscriptomic mechanisms. RNA modifications are known to affect many aspects of RNA metabolism and have been implicated in the regulation of various biological processes and in disease. Recent studies imply that dysregulation of the epitranscriptome may be significantly associated with neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. Here we review the current knowledge surrounding the role of the RNA modifications N6-methyladenosine, 5-methylcytidine, pseudouridine, A-to-I RNA editing, 2'O-methylation, and their associated machinery, in brain development and human diseases. We also highlight the need for the development of new technologies in the pursuit of directly mapping RNA modifications in both genome- and single-molecule-level approach.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Asakawa K, Handa H, Kawakami K. Multi-phaseted problems of TDP-43 in selective neuronal vulnerability in ALS. Cell Mol Life Sci 2021; 78:4453-4465. [PMID: 33709256 PMCID: PMC8195926 DOI: 10.1007/s00018-021-03792-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 10/28/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) encoded by the TARDBP gene is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) that regulates multiple steps of RNA metabolism, and its cytoplasmic aggregation characterizes degenerating motor neurons in amyotrophic lateral sclerosis (ALS). In most ALS cases, cytoplasmic TDP-43 aggregation occurs in the absence of mutations in the coding sequence of TARDBP. Thus, a major challenge in ALS research is to understand the nature of pathological changes occurring in wild-type TDP-43 and to explore upstream events in intracellular and extracellular milieu that promote the pathological transition of TDP-43. Despite the inherent obstacles to analyzing TDP-43 dynamics in in vivo motor neurons due to their anatomical complexity and inaccessibility, recent studies using cellular and animal models have provided important mechanistic insights into potential links between TDP-43 and motor neuron vulnerability in ALS. This review is intended to provide an overview of the current literature on the function and regulation of TDP-43-containing RNP granules or membraneless organelles, as revealed by various models, and to discuss the potential mechanisms by which TDP-43 can cause selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan.
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
5
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Sagredo EA, Sagredo AI, Blanco A, Rojas De Santiago P, Rivas S, Assar R, Pérez P, Marcelain K, Armisén R. ADAR1 Transcriptome editing promotes breast cancer progression through the regulation of cell cycle and DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118716. [PMID: 32275931 DOI: 10.1016/j.bbamcr.2020.118716] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.
Collapse
Affiliation(s)
- Eduardo A Sagredo
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alfredo I Sagredo
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alejandro Blanco
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Pamela Rojas De Santiago
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Solange Rivas
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Rodrigo Assar
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Paola Pérez
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Katherine Marcelain
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | - Ricardo Armisén
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12461, Edificio 3, oficina 205, CP 7590943 Santiago, Chile.
| |
Collapse
|
7
|
Gregory JM, Livesey MR, McDade K, Selvaraj BT, Barton SK, Chandran S, Smith C. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain. J Pathol 2019; 250:67-78. [PMID: 31579943 PMCID: PMC6973025 DOI: 10.1002/path.5351] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by progressive motor neuron degeneration. Although there are over 40 genes associated with causal monogenetic mutations, the majority of ALS patients are not genetically determined. Causal ALS mutations are being increasingly mechanistically studied, though how these mechanisms converge and diverge between the multiple known familial causes of ALS (fALS) and sporadic forms of ALS (sALS) and furthermore between different neuron types, is poorly understood. One common pathway that is implicated in selective motor neuron death is enhanced α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPAR)-mediated excitoxicity. Specifically, human in vitro and pathological evidence has linked the C9orf72 repeat expansion mutation to a relative increase in the Ca2+ -permeable AMPAR population due to AMPAR subunit dysregulation. Here, we provide the first comparative quantitative assessment of the expression profile of AMPAR subunit transcripts, using BaseScope, in post-mortem lower motor neurons (spinal cord, anterior horn), upper motor neurons (motor cortex) and neurons of the pre-frontal cortex in sALS and fALS due to mutations in SOD1 and C9orf72. Our data indicated that AMPAR dysregulation is prominent in lower motor neurons in all ALS cases. However, sALS and mutant C9orf72 cases exhibited GluA1 upregulation whereas mutant SOD1 cases displayed GluA2 down regulation. We also showed that sALS cases exhibited widespread AMPAR dysregulation in the motor and pre-frontal cortex, though the exact identity of the AMPAR subunit being dysregulated was dependent on brain region. In contrast, AMPAR dysregulation in mutant SOD1 and C9orf72 cases was restricted to lower motor neurons only. Our data highlight the complex dysregulation of AMPAR subunit expression that reflects both converging and diverging mechanisms at play between different brain regions and between ALS cohorts. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Samantha K Barton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Gulino R, Vicario N, Giunta MAS, Spoto G, Calabrese G, Vecchio M, Gulisano M, Leanza G, Parenti R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int J Mol Sci 2019; 20:ijms20061500. [PMID: 30917493 PMCID: PMC6471664 DOI: 10.3390/ijms20061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Collapse
Affiliation(s)
- Rosario Gulino
- Laboratory of Neurophysiology, Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Nunzio Vicario
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Maria A S Giunta
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Graziana Spoto
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Giovanna Calabrese
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele" and Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.
| | - Massimo Gulisano
- Laboratory of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Giampiero Leanza
- Laboratory of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Rosalba Parenti
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| |
Collapse
|
9
|
Sirabella R, Valsecchi V, Anzilotti S, Cuomo O, Vinciguerra A, Cepparulo P, Brancaccio P, Guida N, Blondeau N, Canzoniero LMT, Franco C, Amoroso S, Annunziato L, Pignataro G. Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Front Neurosci 2018; 12:510. [PMID: 30131665 PMCID: PMC6090999 DOI: 10.3389/fnins.2018.00510] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy.,Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Nicolas Blondeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cristina Franco
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Salvatore Amoroso
- Department of Neuroscience, Università Politecnica delle Marche, Ancona, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
|
11
|
Suresh SN, Verma V, Sateesh S, Clement JP, Manjithaya R. Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 2018; 97:679-701. [PMID: 30027903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenonwhen combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.
Collapse
Affiliation(s)
- S N Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560 064, India.
| | | | | | | | | |
Collapse
|
12
|
Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM, Chouhan AK, Gane AB, Perkins EM, Dando O, Lillico SG, Lee YB, Nishimura AL, Poreci U, Thankamony S, Pray M, Vasistha NA, Magnani D, Borooah S, Burr K, Story D, McCampbell A, Shaw CE, Kind PC, Aitman TJ, Whitelaw CBA, Wilmut I, Smith C, Miles GB, Hardingham GE, Wyllie DJA, Chandran S. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca 2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 2018; 9:347. [PMID: 29367641 PMCID: PMC5783946 DOI: 10.1038/s41467-017-02729-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS. Repeat expansion mutation in C9ORF72 is the most common cause of familial ALS. Here, the authors generate motor neurons from cells of patients with C9ORF72 mutations, and characterize changes in gene expression in these motor neurons compared to genetically corrected lines, which suggest that glutamate receptor subunit GluA1 is dysregulated in this form of ALS.
Collapse
Affiliation(s)
- Bhuvaneish T Selvaraj
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Chen Zhao
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jenna M Gregory
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owain T James
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elaine M Cleary
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Angus B Gane
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma M Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Simon G Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Youn-Bok Lee
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Agnes L Nishimura
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Urjana Poreci
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Sai Thankamony
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Meryll Pray
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Navneet A Vasistha
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Dario Magnani
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Shyamanga Borooah
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Karen Burr
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David Story
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Timothy J Aitman
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - C Bruce A Whitelaw
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Colin Smith
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - David J A Wyllie
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India.
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK. .,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India. .,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
13
|
EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2017; 16:117-136. [PMID: 28828608 DOI: 10.1007/978-3-319-55769-4_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapid and fatal neurodegenerative disease, primarily affecting upper and lower motor neurons. It is an extremely heterogeneous disease in both cause and symptom development, and its mechanisms of pathogenesis remain largely unknown. Excitotoxicity, a process caused by excessive glutamate signaling, is believed to play a substantial role, however. Excessive glutamate release, changes in postsynaptic glutamate receptors, and reduction of functional astrocytic glutamate transporters contribute to excitotoxicity in ALS. Here, we explore the roles of each, with a particular emphasis on glutamate transporters and attempts to increase them as therapy for ALS. Screening strategies have been employed to find compounds that increase the functional excitatory amino acid transporter EAAT2 (GLT1), which is responsible for the vast majority of glutamate clearance. One such compound, ceftriaxone, was recently tested in clinical trials but unfortunately did not modify disease course, though its effect on EAAT2 expression in patients was not measured.
Collapse
|
14
|
AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury. eNeuro 2015; 2:eN-NWR-0091-15. [PMID: 26668821 PMCID: PMC4677690 DOI: 10.1523/eneuro.0091-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.
Collapse
|
15
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca(2+) overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca(2+)]c) buffering and a strong interaction between metabolic mechanisms and [Ca(2+)]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca(2+)-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca(2+) overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca(2+) homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca(2+) buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- />Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
- />Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
16
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055 DOI: 10.1186/2052-8426-2-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca2+ overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca2+]c) buffering and a strong interaction between metabolic mechanisms and [Ca2+]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca2+-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca2+ overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca2+ homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca2+ buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA ; Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
17
|
Qiao JJ, Chan THM, Qin YR, Chen L. ADAR1: a promising new biomarker for esophageal squamous cell carcinoma? Expert Rev Anticancer Ther 2014; 14:865-8. [PMID: 24928581 DOI: 10.1586/14737140.2014.928595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) is a heterogeneous tumor with enormous genetic and epigenetic changes. RNA editing is an epigenetic mechanism that serves as an additional layer of 'RNA mutations' in parallel to DNA mutations. The most frequent type of RNA editing, A-to-I (adenosine-to-inosine) editing catalyzed by Adenosine DeAminase that act on RNA (ADARs), modulates RNA transcripts with profound impact on cellular functions. RNA editing dysregulation has been found to be associated with cancers. Our recent study demonstrated that among all the three RNA editing enzymes, only ADAR1 was overexpressed in primary ESCCs compared with matched non-tumor specimens. In this review, we will discuss current views on the involvement of abnormal A-to-I editing in cancer development, more specifically on the ADAR1-mediated editing in ESCC. Although much is not yet learned about the role of ADAR1 in ESCC, ADAR1 may present an attractive option as a new biomarker for ESCC and as a new molecular therapeutic target.
Collapse
Affiliation(s)
- Jun-Jing Qiao
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | |
Collapse
|
18
|
Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol 2014; 50:721-32. [PMID: 24809691 DOI: 10.1007/s12035-014-8724-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of "toxic" RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon.
Collapse
|
19
|
Adaptive gene regulation in the Striatum of RGS9-deficient mice. PLoS One 2014; 9:e92605. [PMID: 24663062 PMCID: PMC3963927 DOI: 10.1371/journal.pone.0092605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.
Collapse
|
20
|
Studniarczyk D, Coombs I, Cull-Candy SG, Farrant M. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat Neurosci 2013; 16:1266-74. [PMID: 23872597 PMCID: PMC3858651 DOI: 10.1038/nn.3473] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2-lacking stargazer cerebellar granule cells--the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | |
Collapse
|
21
|
Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 2013; 125:95-109. [PMID: 23143228 PMCID: PMC3535376 DOI: 10.1007/s00401-012-1058-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
Abstract
A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements and the function of external sphincters, with corresponding preservation of motor neurons in the brainstem oculomotor nuclei, and of Onuf’s nucleus in the sacral spinal cord. Studying the differences in properties of neurons that are vulnerable and resistant to the disease process in ALS may provide insights into the mechanisms of neuronal degeneration, and identify targets for therapeutic manipulation. We used microarray analysis to determine the differences in gene expression between oculomotor and spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls. We compared these to transcriptional profiles of oculomotor nuclei and spinal cord from rat and mouse, obtained from the GEO omnibus database. We show that oculomotor neurons have a distinct transcriptional profile, with significant differential expression of 1,757 named genes (q < 0.001). Differentially expressed genes are enriched for the functional categories of synaptic transmission, ubiquitin-dependent proteolysis, mitochondrial function, transcriptional regulation, immune system functions, and the extracellular matrix. Marked differences are seen, across the three species, in genes with a function in synaptic transmission, including several glutamate and GABA receptor subunits. Using patch clamp recording in acute spinal and brainstem slices, we show that resistant oculomotor neurons show a reduced AMPA-mediated inward calcium current, and a higher GABA-mediated chloride current, than vulnerable spinal motor neurons. The findings suggest that reduced susceptibility to excitotoxicity, mediated in part through enhanced GABAergic transmission, is an important determinant of the relative resistance of oculomotor neurons to degeneration in ALS.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Ke Ning
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul R. Heath
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Elizabeth Wood
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Nicolò Fusi
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Neil Lawrence
- Computational Biology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Stephen B. Wharton
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Paul G. Ince
- Academic Neuropathology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
22
|
Yin HZ, Hsu CI, Yu S, Rao SD, Sorkin LS, Weiss JH. TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury. Exp Neurol 2012; 238:93-102. [PMID: 22921461 DOI: 10.1016/j.expneurol.2012.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 01/03/2023]
Abstract
Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor-alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca(2+) permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions ("Co(2+) labeling") to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co(2+) labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48 h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient astrocytic glutamate transport.
Collapse
Affiliation(s)
- Hong Z Yin
- Department of Neurology, University of California, Irvine, CA 92697‐4292, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tariq A, Jantsch MF. Transcript diversification in the nervous system: a to I RNA editing in CNS function and disease development. Front Neurosci 2012; 6:99. [PMID: 22787438 PMCID: PMC3391646 DOI: 10.3389/fnins.2012.00099] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022] Open
Abstract
RNA editing by adenosine deaminases that act on RNA converts adenosines to inosines in coding and non-coding regions of mRNAs. Inosines are interpreted as guanosines and hence, this type of editing can change codons, alter splice patterns, or influence the fate of an RNA. A to I editing is most abundant in the central nervous system (CNS). Here, targets for this type of nucleotide modification frequently encode receptors and channels. In many cases, the editing-induced amino acid exchanges alter the properties of the receptors and channels. Consistently, changes in editing patterns are frequently found associated with diseases of the CNS. In this review we describe the mechanisms of RNA editing and focus on target mRNAs of editing that are functionally relevant to normal and aberrant CNS activity.
Collapse
Affiliation(s)
- Aamira Tariq
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | | |
Collapse
|
24
|
Wright A, Vissel B. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 2012; 5:34. [PMID: 22514516 PMCID: PMC3324117 DOI: 10.3389/fnmol.2012.00034] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/29/2012] [Indexed: 11/13/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are comprised of different combinations of GluA1–GluA4 (also known asGluR1–GluR4 and GluR-A to GluR-D) subunits. The GluA2 subunit is subject to RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Gln; Q), present in the GluA2 gene, to a codon for arginine (Arg; R) found in the mRNA. AMPA receptors are calcium (Ca2+)-permeable if they contain the unedited GluA2(Q) subunit or if they lack the GluA2 subunit. While most AMPA receptors in the brain contain the edited GluA2(R) subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable AMPA receptors are important in synaptic plasticity, learning, and disease. Strong evidence supports the notion that Ca2+-permeable AMPA receptors are usually GluA2-lacking AMPA receptors, with little evidence to date for a significant role of unedited GluA2 in normal brain function. However, recent detailed studies suggest that Ca2+-permeable AMPA receptors containing unedited GluA2 do in fact occur in neurons and can contribute to excitotoxic cell loss, even where it was previously thought that there was no unedited GluA2.This review provides an update on the role of GluA2 RNA editing in the healthy and diseased brain and summarizes recent insights into the mechanisms that control this process. We suggest that further studies of the role of unedited GluA2 in normal brain function and disease are warranted, and that GluA2 editing should be considered as a possible contributing factor when Ca2+-permeable AMPA receptors are observed.
Collapse
Affiliation(s)
- Amanda Wright
- Neurodegenerative Disorders Laboratory, Neuroscience Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
25
|
Weiss JH. Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 2011; 4:42. [PMID: 22102834 PMCID: PMC3214733 DOI: 10.3389/fnmol.2011.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 12/30/2022] Open
Abstract
Since the discovery and molecular characterization of Ca(2+)-permeable AMPA channels just over two decades ago, a large body of evidence has accumulated implicating contributions of these unusual glutamate activated channels to selective neurodegeneration in certain conditions, including ischemia and amyotrophic lateral sclerosis. Factors likely involved in their contributions to disease include their distinct patterns of expression in certain neuronal populations, their upregulation via various mechanisms in response to disease associated stresses, and their high permeability to Zn(2+) as well as to Ca(2+). However, full characterization of their contributions to certain diseases as well as development of therapeutics has been limited by the lack of selective and bioavailable blockers of these channels that can be employed in animals or humans. This review summarizes some of the clues that have emerged over recent years to the contributions of these channels in disease.
Collapse
Affiliation(s)
- John H Weiss
- Department of Neurology, University of California Irvine Irvine, CA, USA
| |
Collapse
|
26
|
Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 2011; 45:30-42. [PMID: 22072396 DOI: 10.1007/s12035-011-8217-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABA(A) receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABA(A) receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
Collapse
|
27
|
Mahajan SS, Thai KH, Chen K, Ziff E. Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience 2011; 189:305-15. [PMID: 21620933 PMCID: PMC3150305 DOI: 10.1016/j.neuroscience.2011.05.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 02/02/2023]
Abstract
AMPA receptors are glutamate receptors that are tetramers of various combinations of GluR1-4 subunits. AMPA receptors containing GluR1, 3 and 4 are Ca2+ permeable, however, AMPA receptors containing even a single subunit of GluR2 are Ca2+ impermeable. Most AMPA receptors are Ca2+ impermeable due to the presence of GluR2. GluR2 confers special properties on AMPA receptors through the presence of arginine at the pore apex; other subunits (GluR1, 3, 4) contain glutamine at the pore apex and allow Ca2+ influx. Normally, an RNA editing step changes DNA-encoded glutamine to arginine, introduces arginine in the GluR2 pore apex. GluR2 RNA editing is carried out by an RNA-dependent adenosine deaminase (ADAR2). Loss of GluR2 editing leads to the formation of highly excitotoxic AMPA channels [Mahajan and Ziff (2007) Mol Cell Neurosci 35:470-481] and is shown to contribute to loss of motor neurons in amyotrophic lateral sclerosis (ALS). Relatively higher levels of Ca2+-permeable AMPA receptors are found in motor neurons and this has been correlated with lower GluR2 mRNA levels. However, the reason for loss of GluR2 editing is not known. Here we show that exposure of neurons to excitotoxic levels of glutamate leads to specific cleavage of ADAR2 that leads to generation of unedited GluR2. We demonstrate that cleaved ADAR2 leads to a decrease or loss of GluR2 editing, which will further result in high Ca2+ influx and excitotoxic neuronal death.
Collapse
Affiliation(s)
- S S Mahajan
- School of Health Sciences, Hunter College, CUNY, New York, NY 10010, USA.
| | | | | | | |
Collapse
|
28
|
Ludolph AC, Jesse S. Evidence-based drug treatment in amyotrophic lateral sclerosis and upcoming clinical trials. Ther Adv Neurol Disord 2011; 2:319-26. [PMID: 21180622 DOI: 10.1177/1756285609336399] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral sclerosis/motor neuron disease is a severe neurodegenerative disease characterized by upper and Lower motor neuron degeneration for which there is no truly effective treatment. Several therapies have shown promise in preclinical models of motor neuron disease; however, most of them failed in human studies, so that the noticeable progress in understanding the cellular mechanisms of motor neuron degeneration has not been matched with the development of therapeutic strategies to prevent disease progression or to extend survival longer than achieved by riluzole. We review treatment development in motor neuron disease and discuss the strengths and limitations of past as well as upcoming clinical trials.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | | |
Collapse
|
29
|
Gallo A, Locatelli F. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Camb Philos Soc 2011; 87:95-110. [PMID: 21682836 DOI: 10.1111/j.1469-185x.2011.00186.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine (A) to inosine (I) in nuclear-encoded RNAs and viral RNAs. The activity of ADARs has been demonstrated to be essential in mammals and serves to fine-tune different proteins and modulate many molecular pathways. Recent findings have shown that ADAR activity is altered in many pathological tissues. Moreover, it has been shown that modulation of RNA editing is important for cell proliferation and migration, and has a protective effect on ischaemic insults. This review summarises available recent knowledge on A-to-I RNA editing and ADAR enzymes, with particular attention given to the emerging role played by these enzymes in cancer, some infectious diseases and immune-mediated disorders.
Collapse
Affiliation(s)
- Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS, Ospedale Pediatrico "Bambino Gesù", Rome, Italy.
| | | |
Collapse
|
30
|
D'Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV. A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 2011; 42:252-64. [DOI: 10.1016/j.nbd.2011.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
|
31
|
Milanese M, Zappettini S, Onofri F, Musazzi L, Tardito D, Bonifacino T, Messa M, Racagni G, Usai C, Benfenati F, Popoli M, Bonanno G. Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2011; 116:1028-42. [PMID: 21175617 DOI: 10.1111/j.1471-4159.2010.07155.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The main type of RNA editing in mammals is the conversion of adenosine to inosine which is translated as if it were guanosine. The enzymes that catalyze this reaction are ADARs (adenosine deaminases that act on RNA), of which there are four in mammals, two of which are catalytically inactive. ADARs edit transcripts that encode proteins expressed mainly in the CNS and editing is crucial to maintain a correctly functioning nervous system. However, the majority of editing has been found in transcripts encoding Alu repeat elements and the biological role of this editing remains a mystery. This chapter describes in detail the different ADAR enzymes and the phenotype of animals that are deficient in their activity. Besides being enzymes, ADARs are also double-stranded RNA-binding proteins, so by binding alone they can interfere with other processes such as RNA interference. Lack of editing by ADARs has been implicated in disorders such as forebrain ischemia and Amyotrophic Lateral Sclerosis (ALS) and this will also be discussed.
Collapse
Affiliation(s)
- Marion Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
33
|
Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 2010; 30:11917-25. [PMID: 20826656 DOI: 10.1523/jneurosci.2021-10.2010] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GluR2 is a subunit of the AMPA receptor, and the adenosine for the Q/R site of its pre-mRNA is converted to inosine (A-to-I conversion) by the enzyme called adenosine deaminase acting on RNA 2 (ADAR2). Failure of A-to-I conversion at this site affects multiple AMPA receptor properties, including the Ca(2+) permeability of the receptor-coupled ion channel, thereby inducing fatal epilepsy in mice (Brusa et al., 1995; Feldmeyer et al., 1999). In addition, inefficient GluR2 Q/R site editing is a disease-specific molecular dysfunction found in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients (Kawahara et al., 2004). Here, we generated genetically modified mice (designated as AR2) in which the ADAR2 gene was conditionally targeted in motor neurons using the Cre/loxP system. These AR2 mice showed a decline in motor function commensurate with the slow death of ADAR2-deficient motor neurons in the spinal cord and cranial motor nerve nuclei. Notably, neurons in nuclei of oculomotor nerves, which often escape degeneration in ALS, were not decreased in number despite a significant decrease in GluR2 Q/R site editing. All cellular and phenotypic changes in AR2 mice were prevented when the mice carried endogenous GluR2 alleles engineered to express edited GluR2 without ADAR2 activity (Higuchi et al., 2000). Thus, loss of ADAR2 activity causes AMPA receptor-mediated death of motor neurons.
Collapse
|
34
|
Mattes H, Carcache D, Kalkman HO, Koller M. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists: from bench to bedside. J Med Chem 2010; 53:5367-82. [PMID: 20356304 DOI: 10.1021/jm901688m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henri Mattes
- Novartis Pharma AG, Werk Klybeck, WKL-122-241 Postfach, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
35
|
Anthony K, Gallo JM. Aberrant RNA processing events in neurological disorders. Brain Res 2010; 1338:67-77. [DOI: 10.1016/j.brainres.2010.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 12/12/2022]
|
36
|
Kwak S, Hideyama T, Yamashita T, Aizawa H. AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 2010; 30:182-8. [DOI: 10.1111/j.1440-1789.2009.01090.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
38
|
|
39
|
Duncan K. The role of AMPA receptor-mediated excitotoxicity in ALS: Is deficient RNA editing to blame? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.cacc.2009.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Effects of antidepressants on GluR2 Q/R site-RNA editing in modified HeLa cell line. Neurosci Res 2009; 64:251-8. [DOI: 10.1016/j.neures.2009.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 12/11/2022]
|
41
|
Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1587-602. [PMID: 19413484 PMCID: PMC2842587 DOI: 10.1089/ars.2009.2444] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Responsible for the majority of excitatory activity in the central nervous system (CNS), glutamate interacts with a range of specific receptor and transporter systems to establish a functional synapse. Excessive stimulation of glutamate receptors causes excitotoxicity, a phenomenon implicated in both acute and chronic neurodegenerative diseases [e.g., ischemia, Huntington's disease, and amyotrophic lateral sclerosis (ALS)]. In physiology, excitotoxicity is prevented by rapid binding and clearance of synaptic released glutamate by high-affinity, Na(+)-dependent glutamate transporters and amplified by defects to the glutamate transporter and receptor systems. ALS pathogenetic mechanisms are not completely understood and characterized, but excitotoxicity has been regarded as one firm mechanism implicated in the disease because of data obtained from ALS patients and animal and cellular models as well as inferred by the documented efficacy of riluzole, a generic antiglutamatergic drug, has in patients. In this article, we critically review the several lines of evidence supporting a role for glutamate-mediated excitotoxicity in the death of motor neurons occurring in ALS, putting a particular emphasis on the impairment of the glutamate-transport system.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Tan BZ, Huang H, Lam R, Soong TW. Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system. Mol Brain 2009; 2:13. [PMID: 19480689 PMCID: PMC2694175 DOI: 10.1186/1756-6606-2-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 05/29/2009] [Indexed: 01/24/2023] Open
Abstract
The post-transcriptional modification of mammalian transcripts in the central nervous system by adenosine-to-inosine RNA editing is an important mechanism for the generation of molecular diversity, and serves to regulate protein function through recoding of genomic information. As the molecular players and an increasing number of edited targets are identified and characterized, adenosine-to-inosine modification serves as an exquisite mechanism for customizing channel function within diverse biological niches. Here, we review the mechanisms that could regulate adenosine-to-inosine RNA editing and the impact of dysregulation in clinical conditions.
Collapse
Affiliation(s)
- Bao Zhen Tan
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597, Singapore.
| | | | | | | |
Collapse
|
43
|
Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 2009; 39:343-9. [PMID: 19208409 DOI: 10.1002/mus.21099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dlg (Discs Large) is a multidomain protein that interacts with glutamate receptors and potassium channels at Drosophila neuromuscular junctions (NMJs) and at mammalian central nervous system synapses. Dlg also localizes postsynaptically at cholinergic mammalian NMJs. We show here that alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor subunits, together with glutamate, are present at the mammalian NMJ. Both AMPA and NMDA (N-methyl-D-aspartate) glutamate receptor subunits display overlapping postsynaptic localization patterns with Dlg at all NMJs examined in normal mice. Kir2 potassium channels also localize with Dlg and glutamate receptors at this synapse. Localization of the components of a glutamatergic system suggests novel mechanisms at mammalian neuromuscular synapses.
Collapse
Affiliation(s)
- Tessily A Mays
- Department of Molecular and Cellular Biochemistry, 410 Hamilton Hall, College of Medicine, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
44
|
Bogaert E, Van Damme P, Poesen K, Dhondt J, Hersmus N, Kiraly D, Scheveneels W, Robberecht W, Van Den Bosch L. VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol Aging 2009; 31:2185-91. [PMID: 19185395 DOI: 10.1016/j.neurobiolaging.2008.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/27/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
Influx of Ca(2+) ions through the α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptors is toxic to neurons and contributes to motor neuron degeneration observed in amyotrophic lateral sclerosis (ALS). The Ca(2+) permeability of the AMPA receptor depends on its subunit composition. If the GluR2 subunit is present in the receptor complex, the AMPA receptor is impermeable to Ca(2+). In this study, we identified vascular endothelial growth factor-A (VEGF) as a GluR2 inducing molecule. Cultured motor neurons pretreated with VEGF displayed higher GluR2 levels. This resulted in AMPA receptor currents with a low relative Ca(2+) permeability and in motor neurons that were less vulnerable to AMPA receptor-mediated excitotoxicity. This effect of VEGF was mediated through the VEGFR2 present on the motor neurons and was due to stimulation of GluR2 transcription. Intracerebroventricular treatment with VEGF similarly induced GluR2 expression in the ventral spinal cord of rats and this mechanism contributes to the protective effect of VEGF on motor neurons.
Collapse
Affiliation(s)
- Elke Bogaert
- Laboratory of Neurobiology, Experimental Neurology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Buckingham S, Kwak S, Jones A, Blackshaw S, Sattelle D. Edited GluR2, a gatekeeper for motor neurone survival? Bioessays 2008; 30:1185-92. [DOI: 10.1002/bies.20836] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Zhao P, Ignacio S, Beattie E, Abood ME. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci 2008; 27:572-9. [PMID: 18279310 PMCID: PMC3991137 DOI: 10.1111/j.1460-9568.2008.06041.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the selective loss of spinal cord motor neurons. Excitotoxicity mediated by glutamate has been implicated as a cause of this progressive degeneration. In this study we examined two types of receptors, the excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) and inhibitory cannabinoid receptor (CB1) with respect to their localization and total expression in spinal cord motor neurons. AMPAR and CB1 represent major excitatory and inhibitory transmission input, respectively, and their expression levels on the plasma membrane have direct relevance to the vulnerability of the motor neurons to glutamatergic excitotoxicity. We used quantitative immunofluorescence microscopy to comparatively measure the total cellular expression and the synaptic localization of specific subclasses of AMPARs [as determined by the presence of the subunits glutamate receptor 1 (GluR1) or glutamate receptor 2 (GluR2)] and CB1 in spinal cord motor neurons during disease progression in a G93ASOD1 mouse model of ALS. We found an increase in synaptic GluR1 and a decrease of synaptic and total GluR2 at early ages (6 weeks, prior to disease onset). Total CB1 receptor levels were decreased at 6 weeks old. We determined the gene expression of CB1, GluR1 and GluR2 using quantitative real-time reverse transcriptase-polymerase chain reaction. The decreased synaptic and total GluR2 and increased synaptic GluR1 levels may result in increased numbers of Ca2+-permeable AMPARs, thus contributing to neuronal death. Early alterations in CB1 expression may also predispose motor neurons to excitotoxicity. To our knowledge, this is the first demonstration of presymptomatic changes in trafficking of receptors that are in direct control of excitotoxicity and death in a mouse model of ALS.
Collapse
Affiliation(s)
- Pingwei Zhao
- Forbes Norris ALS/MDA Research Center. California Pacific Medical Center Research Institute. 475 Brannan St. Suite 220, San Francisco, CA 94107, USA
| | - Sheila Ignacio
- Forbes Norris ALS/MDA Research Center. California Pacific Medical Center Research Institute. 475 Brannan St. Suite 220, San Francisco, CA 94107, USA
| | | | | |
Collapse
|
47
|
Yin HZ, Tang DT, Weiss JH. Intrathecal infusion of a Ca(2+)-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS. Exp Neurol 2007; 207:177-85. [PMID: 17719032 PMCID: PMC2083564 DOI: 10.1016/j.expneurol.2007.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/21/2022]
Abstract
Elevated extracellular glutamate, resulting from a loss of astrocytic glutamate transport capacity, may contribute to excitotoxic motor neuron (MN) damage in ALS. Accounting for their high excitotoxic vulnerability, MNs possess large numbers of unusual Ca(2+)-permeable AMPA channels (Ca-AMPA channels), the activation of which triggers mitochondrial Ca(2+) overload and strong reactive oxygen species (ROS) generation. However, the causes of the astrocytic glutamate transport loss remain unexplained. To assess the role of Ca-AMPA channels on the evolution of pathology in vivo, we have examined effects of prolonged intrathecal infusion of the Ca-AMPA channel blocker, 1-naphthyl acetylspermine (NAS), in G93A transgenic rat models of ALS. In wild-type animals, immunoreactivity for the astrocytic glutamate transporter, GLT-1, was particularly strong around ventral horn MNs. However, a marked loss of ventral horn GLT-1 was observed, along with substantial MN damage, prior to onset of symptoms (90-100 days) in the G93A rats. Conversely, labeling with the oxidative marker, nitrotyrosine, was increased in the neuropil surrounding MNs in the transgenic animals. Compared to sham-treated G93A animals, 30-day NAS infusions (starting at 67+/-2 days of age) markedly diminished the loss of both MNs and of astrocytic GLT-1 labeling. These observations are compatible with the hypothesis that activation of Ca-AMPA channels on MNs contributes, likely in part through oxidative mechanisms, to loss of glutamate transporter in surrounding astrocytes.
Collapse
Affiliation(s)
- Hong Z. Yin
- Department of Neurology, University of California, Irvine
| | - Darryl T. Tang
- Department of Neurology, University of California, Irvine
| | - John H. Weiss
- Department of Neurology, University of California, Irvine
- Department of Anatomy & Neurobiology, University of California, Irvine
| |
Collapse
|
48
|
Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, Bockx I, Braeken D, Verpoorten N, Verhoeven K, Timmerman V, Herijgers P, Callewaert G, Carmeliet P, Van Den Bosch L, Robberecht W. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci U S A 2007; 104:14825-30. [PMID: 17804792 PMCID: PMC1976195 DOI: 10.1073/pnas.0705046104] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influx of Ca(2+) ions through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors contributes to neuronal damage in stroke, epilepsy, and neurodegenerative disorders such as ALS. The Ca(2+) permeability of AMPA receptors is largely determined by the glutamate receptor 2 (GluR2) subunit, receptors lacking GluR2 being permeable to Ca(2+) ions. We identified a difference in GluR2 expression in motor neurons from two rat strains, resulting in a difference in vulnerability to AMPA receptor-mediated excitotoxicity both in vitro and in vivo. Astrocytes from the ventral spinal cord were found to mediate this difference in GluR2 expression in motor neurons. The presence of ALS-causing mutant superoxide dismutase 1 in astrocytes abolished their GluR2-regulating capacity and thus affected motor neuron vulnerability to AMPA receptor-mediated excitotoxicity. These results reveal a mechanism through which astrocytes influence neuronal functioning in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nathalie Verpoorten
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, University of Antwerp, B-2610 Antwerpen, Belgium
| | - Kristien Verhoeven
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, University of Antwerp, B-2610 Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, University of Antwerp, B-2610 Antwerpen, Belgium
| | | | | | - Peter Carmeliet
- The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, B-3000 Leuven, Belgium; and
| | - Ludo Van Den Bosch
- Laboratories of *Neurobiology
- To whom correspondence should be addressed at:
Campus Gasthuisberg Onderwijs & Navorsing 2 (O&N2), Herestraat 49, PB1022, B-3000 Leuven, Belgium. E-mail:
| | | |
Collapse
|
49
|
Mahajan SS, Ziff EB. Novel toxicity of the unedited GluR2 AMPA receptor subunit dependent on surface trafficking and increased Ca2+-permeability. Mol Cell Neurosci 2007; 35:470-81. [PMID: 17544687 PMCID: PMC2031227 DOI: 10.1016/j.mcn.2007.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/05/2007] [Accepted: 04/19/2007] [Indexed: 11/23/2022] Open
Abstract
RNA editing modifies the GluR2 AMPA receptor subunit pore loop at the Q/R site and limits receptor Ca(2+) permeability. Editing failure is implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis. We show that channels with unedited GluR2 are highly toxic in cultured hippocampal neurons. Toxicity exceeds that of other Ca(2+)-permeable AMPA receptor types and is influenced by agonist binding site mutations, ability to desensitize, and extracellular Ca(2+) levels. Significantly, toxicity also depends on GluR2's constitutive surface trafficking, a function dependent on GluR2 C-terminal domain interaction with NSF, a specialized chaperone. We have exploited the interaction between unedited GluR2 and NSF to reduce GluR2 surface levels. We show that a peptide that blocks the GluR2-NSF interaction reduces unedited GluR2 toxicity by reducing receptor surface expression. Peptide block of trafficking provides a model for design of drugs to reduce unedited GluR2 excitotoxicity in neurodegenerative diseases that result from editing failure.
Collapse
Affiliation(s)
- S S Mahajan
- The Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 1006, USA.
| | | |
Collapse
|
50
|
Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW, Santama N. Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis 2007; 26:577-89. [PMID: 17418584 DOI: 10.1016/j.nbd.2007.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms underlying the selective neurodegeneration of motor neurons in amyotrophic lateral sclerosis (ALS) are inadequately understood. Recent breakthroughs have implicated impaired axonal transport, mediated by molecular motors, as a key element for disease onset and progression. The current work identifies the expression of 15 kinesin-like motors in healthy human motor cortex, including three novel isoforms. Our comprehensive quantitative mRNA analysis in control and sporadic ALS (SALS) motor cortex specimens detects SALS-specific down-regulation of KIF1Bbeta and novel KIF3Abeta, two isoforms we show to be enriched in the brain, and also of SOD1, a key enzyme linked to familial ALS. This is accompanied by a marked reduction of KIF3Abeta protein levels. In the motor cortex KIF3Abeta localizes in cholinergic neurons, including upper motor neurons. No mutations causing splicing defects or altering protein-coding sequences were identified in the genes of the three proteins. The present study implicates two motor proteins as possible candidates in SALS pathology.
Collapse
Affiliation(s)
- Maria Pantelidou
- Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|