1
|
Prosswimmer T, Daggett V. The role of α-sheet structure in amyloidogenesis: characterization and implications. Open Biol 2022; 12:220261. [PMID: 36416010 PMCID: PMC9682440 DOI: 10.1098/rsob.220261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional β-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
2
|
A Robust Assay to Monitor Ataxin-3 Amyloid Fibril Assembly. Cells 2022; 11:cells11121969. [PMID: 35741099 PMCID: PMC9222203 DOI: 10.3390/cells11121969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a glutamine repeat in the protein ataxin-3, which is deposited as intracellular aggregates in affected brain regions. Despite the controversial role of ataxin-3 amyloid structures in SCA3 pathology, the identification of molecules with the capacity to prevent aberrant self-assembly and stabilize functional conformation(s) of ataxin-3 is a key to the development of therapeutic solutions. Amyloid-specific kinetic assays are routinely used to measure rates of protein self-assembly in vitro and are employed during screening for fibrillation inhibitors. The high tendency of ataxin-3 to assemble into oligomeric structures implies that minor changes in experimental conditions can modify ataxin-3 amyloid assembly kinetics. Here, we determine the self-association rates of ataxin-3 and present a detailed study of the aggregation of normal and pathogenic ataxin-3, highlighting the experimental conditions that should be considered when implementing and validating ataxin-3 amyloid progress curves in different settings and in the presence of ataxin-3 interactors. This assay provides a unique and robust platform to screen for modulators of the first steps of ataxin-3 aggregation—a starting point for further studies with cell and animal models of SCA3.
Collapse
|
3
|
Effect of a Short Peptide with Alternating L- and D-Amino Acid on the Aggregation and Membrane Damage of hIAPP. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0386-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Aggregation Mechanism of Alzheimer's Amyloid β-Peptide Mediated by α-Strand/α-Sheet Structure. Int J Mol Sci 2020; 21:ijms21031094. [PMID: 32046006 PMCID: PMC7038184 DOI: 10.3390/ijms21031094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a widespread form of dementia. Aggregated forms of the amyloid β-peptide (Aβ) are identified as a toxic species responsible for neuronal damage in AD. Extensive research has been conducted to reveal the aggregation mechanism of Aβ. However, the structure of pathological aggregates and the mechanism of aggregation are not well understood. Recently, experimental studies have confirmed that the α-sheet structure in Aβ drives aggregation and toxicity in AD. However, how the α-sheet structure is formed in Aβ and how it contributes to Aβ aggregation remains elusive. In the present study, molecular dynamics simulations suggest that Aβ adopts the α-strand conformation by peptide-plane flipping. Multiple α-strands interact through hydrogen bonding to form α-sheets. This structure acts as a nucleus that initiates and promotes aggregation and fibrillation of Aβ. Our findings are supported by previous experimental as well as theoretical studies. This study provides valuable structural insights for the design of anti-AD drugs exploiting the α-strand/α-sheet structure.
Collapse
|
6
|
Moldovean SN, Chiş V. Molecular Dynamics Simulations Applied to Structural and Dynamical Transitions of the Huntingtin Protein: A Review. ACS Chem Neurosci 2020; 11:105-120. [PMID: 31841621 DOI: 10.1021/acschemneuro.9b00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the recent years, Huntington's disease (HD) has become widely discussed in the scientific literature especially because at the mutant level there are several contradictions regarding the aggregation mechanism. The specific role of the physiological huntingtin protein remains unknown, due to the lack of characterization of its entire crystallographic structure, making the experimental and theoretical research even harder when taking into consideration its involvement in multiple biological functions and its high affinity for different interacting partners. Different types of models, containing fewer (not more than 35 Qs) polyglutamine residues for the WT structure and above 35 Qs for the mutants, were subjected to classical or advanced MD simulations to establish the proteins' structural stability by evaluating their conformational changes. Outside the polyQ tract, there are two other regions of interest (the N17 domain and the polyP rich domain) considered to be essential for the aggregation kinetics at the mutant level. The polymerization process is considered to be dependent on the polyQ length. As the polyQ tract's dimension increases, the structures present more β-sheet conformations. Contrarily, it is also considered that the aggregation stability is not necessarily dependent on the number of Qs, while the initial stage of the aggregation seed might play the decisive role. A general assumption regarding the polyP domain is that it might preserve the polyQ structures soluble by acting as an antagonist for β-sheet formation.
Collapse
Affiliation(s)
| | - Vasile Chiş
- Babeş-Bolyai University, Faculty of Physics, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Meng F, Lu T, Li F. Stabilization of Solvent to α-Sheet Structure and Conversion between α-Sheet and β-Sheet in the Fibrillation Process of Amyloid Peptide. J Phys Chem B 2019; 123:9576-9583. [DOI: 10.1021/acs.jpcb.9b07903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|
9
|
Bhattacharya S, Xu L, Thompson D. Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Liang Xu
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Damien Thompson
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
10
|
Knight PD, Karamanos TK, Radford SE, Ashcroft AE. Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding peptide 1. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:129-140. [PMID: 29334808 PMCID: PMC6134688 DOI: 10.1177/1469066717729298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 05/09/2023]
Abstract
Amyloid diseases represent a growing social and economic burden in the developed world. Understanding the assembly pathway and the inhibition of amyloid formation is key to developing therapies to treat these diseases. The neurodegenerative condition Machado-Joseph disease is characterised by the self-aggregation of the protein ataxin-3. Ataxin-3 consists of a globular N-terminal Josephin domain, which can aggregate into curvilinear protofibrils, and an unstructured, dynamically disordered C-terminal domain containing three ubiquitin interacting motifs separated by a polyglutamine stretch. Upon expansion of the polyglutamine region above 50 residues, ataxin-3 undergoes a second stage of aggregation in which long, straight amyloid fibrils form. A peptide inhibitor of polyglutamine aggregation, known as polyQ binding peptide 1, has been shown previously to prevent the maturation of ataxin-3 fibrils. However, the mechanism of this inhibition remains unclear. Using nanoelectrospray ionisation-mass spectrometry, we demonstrate that polyQ binding peptide 1 binds to monomeric ataxin-3. By investigating the ability of polyQ binding peptide 1 to bind to truncated ataxin-3 constructs lacking one or more domains, we localise the site of this interaction to a 39-residue sequence immediately C-terminal to the Josephin domain. The results suggest a new mechanism for the inhibition of polyglutamine aggregation by polyQ binding peptide 1 in which binding to a region outside of the polyglutamine tract can prevent fibril formation, highlighting the importance of polyglutamine flanking regions in controlling aggregation and disease.
Collapse
|
11
|
Hilaire MR, Ding B, Mukherjee D, Chen J, Gai F. Possible Existence of α-Sheets in the Amyloid Fibrils Formed by a TTR 105-115 Mutant. J Am Chem Soc 2018; 140:629-635. [PMID: 29241000 PMCID: PMC5796419 DOI: 10.1021/jacs.7b09262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we combine several methods to characterize the fibrils formed by a TTR105-115 mutant in which Leu111 is replaced by the unnatural amino acid aspartic acid 4-methyl ester. We find that this mutant peptide exhibits significantly different aggregation behavior than the wild-type peptide: (1) it forms fibrils with a much faster rate, (2) its fibrils lack the long-range helical twists observed in TTR105-115 fibrils, (3) its fibrils exhibit a giant far-UV circular dichroism signal, and (4) its fibrils give rise to an unusual amide I' band consisting of four distinct and sharp peaks. On the basis of these results and also several previous computational studies, we hypothesize that the fibrils formed by this TTR mutant peptide contain both β- and α-sheets.
Collapse
Affiliation(s)
- Mary Rose Hilaire
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Bei Ding
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Jianxin Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Pagadala NS, Syed K, Bhat R. In silico strategies on prion pathogenic conversion and inhibition from PrPC–PrPSc. Expert Opin Drug Discov 2017; 12:241-248. [DOI: 10.1080/17460441.2017.1287171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nataraj S. Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Rakesh Bhat
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2017; 2:9-33. [PMID: 28239489 PMCID: PMC5321087 DOI: 10.1039/c6me00083e] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.
Collapse
Affiliation(s)
| | - Valerie Daggett
- Corresponding author: , Phone: 1.206.685.7420, Fax: 1.206.685.3300
| |
Collapse
|
14
|
Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series. Biophys J 2016; 110:348-361. [PMID: 26789758 DOI: 10.1016/j.bpj.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023] Open
Abstract
Various host-guest peptide series are used by experimentalists as reference conformational states. One such use is as a baseline for random-coil NMR chemical shifts. Comparison to this random-coil baseline, through secondary chemical shifts, is used to infer protein secondary structure. The use of these random-coil data sets rests on the perception that the reference chemical shifts arise from states where there is little or no conformational bias. However, there is growing evidence that the conformational composition of natively and nonnatively unfolded proteins fail to approach anything that can be construed as random coil. Here, we use molecular dynamics simulations of an alanine-based host-guest peptide series (AAXAA) as a model of unfolded and denatured states to examine the intrinsic propensities of the amino acids. We produced ensembles that are in good agreement with the experimental NMR chemical shifts and confirm that the sampling of the 20 natural amino acids in this peptide series is be far from random. Preferences toward certain regions of conformational space were both present and dependent upon the environment when compared under conditions typically used to denature proteins, i.e., thermal and chemical denaturation. Moreover, the simulations allowed us to examine the conformational makeup of the underlying ensembles giving rise to the ensemble-averaged chemical shifts. We present these data as an intrinsic backbone propensity library that forms part of our Structural Library of Intrinsic Residue Propensities to inform model building, to aid in interpretation of experiment, and for structure prediction of natively and nonnatively unfolded states.
Collapse
|
15
|
Towse CL, Rysavy SJ, Vulovic IM, Daggett V. New Dynamic Rotamer Libraries: Data-Driven Analysis of Side-Chain Conformational Propensities. Structure 2016; 24:187-199. [PMID: 26745530 DOI: 10.1016/j.str.2015.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/25/2023]
Abstract
Most rotamer libraries are generated from subsets of the PDB and do not fully represent the conformational scope of protein side chains. Previous attempts to rectify this sparse coverage of conformational space have involved application of weighting and smoothing functions. We resolve these limitations by using physics-based molecular dynamics simulations to determine more accurate frequencies of rotameric states. This work forms part of our Dynameomics initiative and uses a set of 807 proteins selected to represent 97% of known autonomous protein folds, thereby eliminating the bias toward common topologies found within the PDB. Our Dynameomics derived rotamer libraries encompass 4.8 × 10(9) rotamers, sampled from at least 51,000 occurrences of each of 93,642 residues. Here, we provide a backbone-dependent rotamer library, based on secondary structure ϕ/ψ regions, and an update to our 2011 backbone-independent library that addresses the doubling of our dataset since its original publication.
Collapse
Affiliation(s)
- Clare-Louise Towse
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Steven J Rysavy
- Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Ivan M Vulovic
- Molecular Engineering Program, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA; Biomedical and Health Informatics Program, University of Washington, Box 355013, Seattle, WA 98195-5013, USA; Molecular Engineering Program, University of Washington, Box 355013, Seattle, WA 98195-5013, USA.
| |
Collapse
|
16
|
Peptides Composed of Alternating L- and D-Amino Acids Inhibit Amyloidogenesis in Three Distinct Amyloid Systems Independent of Sequence. J Mol Biol 2016; 428:2317-2328. [PMID: 27012425 DOI: 10.1016/j.jmb.2016.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022]
Abstract
There is now substantial evidence that soluble oligomers are primary toxic agents in amyloid diseases. The development of an antibody recognizing the toxic soluble oligomeric forms of different and unrelated amyloid species suggests a common conformational intermediate during amyloidogenesis. We previously observed a common occurrence of a novel secondary structure element, which we call α-sheet, in molecular dynamics (MD) simulations of various amyloidogenic proteins, and we hypothesized that the toxic conformer is composed of α-sheet structure. As such, α-sheet may represent a conformational signature of the misfolded intermediates of amyloidogenesis and a potential unique binding target for peptide inhibitors. Recently, we reported the design and characterization of a novel hairpin peptide (α1 or AP90) that adopts stable α-sheet structure and inhibits the aggregation of the β-Amyloid Peptide Aβ42 and transthyretin. AP90 is a 23-residue hairpin peptide featuring alternating D- and L-amino acids with favorable conformational propensities for α-sheet formation, and a designed turn. For this study, we reverse engineered AP90 to identify which of its design features is most responsible for conferring α-sheet stability and inhibitory activity. We present experimental characterization (CD and FTIR) of seven peptides designed to accomplish this. In addition, we measured their ability to inhibit aggregation in three unrelated amyloid species: Aβ42, transthyretin, and human islet amylin polypeptide. We found that a hairpin peptide featuring alternating L- and D-amino acids, independent of sequence, is sufficient for conferring α-sheet structure and inhibition of aggregation. Additionally, we show a correlation between α-sheet structural stability and inhibitory activity.
Collapse
|
17
|
Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core. Proc Natl Acad Sci U S A 2016; 113:1546-51. [PMID: 26831073 DOI: 10.1073/pnas.1521933113] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington's disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of β-hairpin-containing β-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical β-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of "intrinsic" polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms.
Collapse
|
18
|
Fluitt AM, de Pablo JJ. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution. Biophys J 2015; 109:1009-18. [PMID: 26331258 PMCID: PMC4564678 DOI: 10.1016/j.bpj.2015.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 11/20/2022] Open
Abstract
Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.
Collapse
Affiliation(s)
- Aaron M Fluitt
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois; Argonne National Laboratory, Lemont, Illinois.
| |
Collapse
|
19
|
Man VH, Roland C, Sagui C. Structural determinants of polyglutamine protofibrils and crystallites. ACS Chem Neurosci 2015; 6:632-45. [PMID: 25604626 DOI: 10.1021/cn500358g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nine inherited neurodegenerative diseases are associated with the expansion of the CAG codon. Once the translated polyglutamine expansion becomes longer than ~36 residues, it triggers the formation of intraneural protein aggregates that often display the signature of cross-β amyloid fibrils. Here, we use fully atomistic molecular dynamics simulations to probe the structural stability and conformational dynamics of both previously proposed and new polyglutamine aggregate models. We test the relative stability of parallel and antiparallel β sheets, and characterize possible steric interfaces between neighboring sheets and the effects of different alignments of the side-chain carboxamide dipoles. Results indicate that (i) different initial oligomer structures converge to crystals consistent with available diffraction data, after undergoing cooperative side-chain rotational transitions and quarter-stagger displacements on a microsecond time scale, (ii) structures previously deemed stable on a hundred nanosecond time scale are unstable over the microsecond time scale, and (iii) conversely, structures previously deemed unstable did not account for the correct side-chain packing and once the correct symmetry is considered the structures become stable for over a microsecond, due to tightly interdigitated side chains, which lock into highly regular polar zippers with inter-side-chain and backbone-side-chain hydrogen bonds. With these insights, we built Q40 monomeric models with different combinations of arc and hairpin turns and tested them for stability. The stable monomers were further probed as a function of repeat length. Our results are consistent with the aggregation threshold. These results explain and reconcile previously reported experimental and model discrepancies about polyglutamine aggregate structures.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| |
Collapse
|
20
|
Structural and dynamic properties of the human prion protein. Biophys J 2014; 106:1152-63. [PMID: 24606939 DOI: 10.1016/j.bpj.2013.12.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Prion diseases involve the conformational conversion of the cellular prion protein (PrP(C)) to its misfolded pathogenic form (PrP(Sc)). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrP(C) to PrP(Sc).
Collapse
|
21
|
Hopping G, Kellock J, Barnwal RP, Law P, Bryers J, Varani G, Caughey B, Daggett V. Designed α-sheet peptides inhibit amyloid formation by targeting toxic oligomers. eLife 2014; 3:e01681. [PMID: 25027691 PMCID: PMC4091096 DOI: 10.7554/elife.01681] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggest that the toxic soluble-oligomeric form of different amyloid proteins share a common backbone conformation, but the amorphous nature of this oligomer prevents its structural characterization by experiment. Based on molecular dynamics simulations we proposed that toxic intermediates of different amyloid proteins adopt a common, nonstandard secondary structure, called α-sheet. Here we report the experimental characterization of peptides designed to be complementary to the α-sheet conformation observed in the simulations. We demonstrate inhibition of aggregation in two different amyloid systems, β-amyloid peptide (Aβ) and transthyretin, by these designed α-sheet peptides. When immobilized the α-sheet designs preferentially bind species from solutions enriched in the toxic conformer compared with non-aggregated, nontoxic species or mature fibrils. The designs display characteristic spectroscopic signatures distinguishing them from conventional secondary structures, supporting α-sheet as a structure involved in the toxic oligomer stage of amyloid formation and paving the way for novel therapeutics and diagnostics. DOI:http://dx.doi.org/10.7554/eLife.01681.001 The build up of very thin fibres called amyloid fibrils is known to lead to more than 40 different human diseases, including Parkinson’s disease and rheumatoid arthritis. These diseases involve soluble proteins or peptides joining other proteins or peptides to form the fibrils, which are not soluble. However, the damage is done by the time the fibrils form because soluble intermediate structures formed by the proteins and peptides are toxic. The development of methods that can detect these toxic intermediate structures could lead to earlier interventions before significant damage. Amyloid fibrils are known to have a beta-sheet structure that is found in many protein systems. In 2004, based on computer simulations, researchers predicted that proteins and peptides that go on to form amyloid fibrils would pass through a related but less stable structure called an alpha-sheet, and that this structure would be toxic. Now Hopping et al., including some of the researchers involved in the 2004 work, have confirmed that the alpha-sheet structure is indeed involved in the formation of amyloid fibrils. To do this Hopping et al. designed peptides with alpha-sheet structures that could bind to the alpha-sheet structures predicted by their simulations. When these complementary designed peptides were added to a solution of peptide that causes Alzheimer’s Disease, or a protein that causes systemic amyloid disease, the designed peptides bound the toxic peptides or proteins and prevented the formation of fibrils. The results of Hopping et al. suggest that designed alpha-sheet compounds might be able to capture peptides and proteins that are implicated in a wide variety of amyloid diseases, independent of their composition and native structure, by targeting the intermediate alpha-sheet structure. Future challenges include showing that most proteins and peptides pass through this intermediate structure as they form fibrils, and improving the sensitivity of the binding in the hope of developing diagnostics for amyloid diseases. DOI:http://dx.doi.org/10.7554/eLife.01681.002
Collapse
Affiliation(s)
- Gene Hopping
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Jackson Kellock
- Department of Bioengineering, University of Washington, Seattle, United States
| | | | - Peter Law
- Department of Bioengineering, University of Washington, Seattle, United States
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, United States
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, United States
| |
Collapse
|
22
|
Ramos-Martín F, Hervás R, Carrión-Vázquez M, Laurents DV. NMR spectroscopy reveals a preferred conformation with a defined hydrophobic cluster for polyglutamine binding peptide 1. Arch Biochem Biophys 2014; 558:104-10. [PMID: 25009140 DOI: 10.1016/j.abb.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 11/16/2022]
Abstract
Several important human inherited neurodegenerative diseases are caused by "polyQ expansions", which are aberrant long repeats of glutamine residues in proteins. PolyQ binding peptide 1 (QBP1), whose minimal active core sequence is Trp-Lys-Trp-Trp-Pro-Gly-Ile-Phe, binds to expanded polyQs and blocks their β-structure transition, aggregation and in vivo neurodegeneration. Whereas QBP1 is a widely used, commercially available product, its structure is unknown. Here, we have characterized the conformations of QBP1 and a scrambled peptide (Trp-Pro-Ile-Trp-Lys-Gly-Trp-Phe) in aqueous solution by CD, fluorescence and NMR spectroscopies. A CD maximum at 227 nm suggests the presence of rigid Trp side chains in QBP1. Based on 41 NOE-derived distance constraints, the 3D structure of QBP1 was determined. The side chains of Trp 4 and Ile 7, and to a lesser extent, those of Lys 2, Trp 3 and Phe 8, form a small hydrophobic cluster. Pro 5 and Gly 6 adopt a type II tight turn and Lys 2's ζ-NH3(+) is positioned to form a favorable cation-π interaction with Trp 4's indole ring. In contrast, the scrambled QBP1 peptide, which lacks inhibitory activity, does not adopt a preferred structure. These results provide a basis for future structure-based design approaches to further optimize QBP1 for therapy.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Rubén Hervás
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal, IC-Consejo Superior de Investigaciones Científicas, Avda. Doctor Arce 37, E-28002 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), E-28049 Cantoblanco, Madrid, Spain
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid E-28006, Spain.
| |
Collapse
|
23
|
Redler RL, Shirvanyants D, Dagliyan O, Ding F, Kim DN, Kota P, Proctor EA, Ramachandran S, Tandon A, Dokholyan NV. Computational approaches to understanding protein aggregation in neurodegeneration. J Mol Cell Biol 2014; 6:104-15. [PMID: 24620031 DOI: 10.1093/jmcb/mju007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggregation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute significantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information for aggregating systems. Computational methods, particularly those combine both all-atom and coarse-grained simulations to cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of these methods toward understanding of protein aggregates in human neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cheng CJ, Daggett V. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 2014; 4:181-201. [PMID: 24970211 PMCID: PMC4030982 DOI: 10.3390/biom4010181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/24/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process.
Collapse
Affiliation(s)
- Chin Jung Cheng
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| |
Collapse
|
25
|
Bromley D, Anderson PC, Daggett V. Structural consequences of mutations to the α-tocopherol transfer protein associated with the neurodegenerative disease ataxia with vitamin E deficiency. Biochemistry 2013; 52:4264-73. [PMID: 23713716 DOI: 10.1021/bi4001084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The α-tocopherol transfer protein (α-TTP) is a liver protein that transfers α-tocopherol (vitamin E) to very-low-density lipoproteins (VLDLs). These VLDLs are then circulated throughout the body to maintain blood α-tocopherol levels. Mutations to the α-TTP gene are associated with ataxia with vitamin E deficiency, a disease characterized by peripheral nerve degeneration. In this study, molecular dynamics simulations of the E141K and R59W disease-associated mutants were performed. The mutants displayed disruptions in and around the ligand-binding pocket. Structural analysis and ligand docking to the mutant structures predicted a decreased affinity for α-tocopherol. To determine the detailed mechanism of the mutation-related changes, we developed a new tool called ContactWalker that analyzes contact differences between mutant and wild-type proteins and highlights pathways of altered contacts within the mutant proteins. Taken together, our findings are in agreement with experiment and suggest structural explanations for the weakened ability of the mutants to bind and carry α-tocopherol.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
26
|
Miettinen MS, Knecht V, Monticelli L, Ignatova Z. Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. J Phys Chem B 2012; 116:10259-65. [PMID: 22770401 DOI: 10.1021/jp305065c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine (polyQ) diseases comprise a group of dominantly inherited pathology caused by an expansion of an unstable polyQ stretch which is presumed to form β-sheets. Similar to other amyloid pathologies, polyQ amyloidogenesis occurs via a nucleated polymerization mechanism, and proceeds through energetically unfavorable nucleus whose existence and structure are difficult to detect. Here, we use atomistic molecular dynamics simulations in explicit solvent to assess the conformation of the polyQ stretch in the nucleus that initiates polyQ fibrillization. Comparison of the kinetic stability of various structures of polyQ peptide with a Q-length in the pathological range (Q40) revealed that steric zipper or nanotube-like structures (β-nanotube or β-pseudohelix) are not kinetically stable enough to serve as a template to initiate polyQ fibrillization as opposed to β-hairpin-based (β-sheet and β-sheetstack) or α-helical conformations. The selection of different structures of the polyQ stretch in the aggregation-initiating event may provide an alternative explanation for polyQ aggregate polymorphism.
Collapse
Affiliation(s)
- Markus S Miettinen
- Institute of Biochemistry and Biology, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
27
|
Hervás R, Oroz J, Galera-Prat A, Goñi O, Valbuena A, Vera AM, Gómez-Sicilia À, Losada-Urzáiz F, Uversky VN, Menéndez M, Laurents DV, Bruix M, Carrión-Vázquez M. Common features at the start of the neurodegeneration cascade. PLoS Biol 2012; 10:e1001335. [PMID: 22666178 PMCID: PMC3362641 DOI: 10.1371/journal.pbio.1001335] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/06/2012] [Indexed: 12/30/2022] Open
Abstract
A single-molecule study reveals that neurotoxic proteins share common structural features that may trigger neurodegeneration, thus identifying new targets for therapy and diagnosis. Amyloidogenic neurodegenerative diseases are incurable conditions with high social impact that are typically caused by specific, largely disordered proteins. However, the underlying molecular mechanism remains elusive to established techniques. A favored hypothesis postulates that a critical conformational change in the monomer (an ideal therapeutic target) in these “neurotoxic proteins” triggers the pathogenic cascade. We use force spectroscopy and a novel methodology for unequivocal single-molecule identification to demonstrate a rich conformational polymorphism in the monomer of four representative neurotoxic proteins. This polymorphism strongly correlates with amyloidogenesis and neurotoxicity: it is absent in a fibrillization-incompetent mutant, favored by familial-disease mutations and diminished by a surprisingly promiscuous inhibitor of the critical monomeric β-conformational change, neurotoxicity, and neurodegeneration. Hence, we postulate that specific mechanostable conformers are the cause of these diseases, representing important new early-diagnostic and therapeutic targets. The demonstrated ability to inhibit the conformational heterogeneity of these proteins by a single pharmacological agent reveals common features in the monomer and suggests a common pathway to diagnose, prevent, halt, or reverse multiple neurodegenerative diseases. Neurodegenerative diseases like Alzheimer's or Parkinson's are currently incurable. They are caused by different proteins that, under certain circumstances, aggregate and become toxic as we grow older, but the molecular events underlying this process remain unclear. The lack of a well-defined structure, and the tendency of these “neurotoxic proteins” to aggregate make them difficult to study using conventional techniques. Here, we use an established single-molecule manipulation technique combined with a new protein-engineering strategy to show that all these proteins can adopt a rich collection of structures (conformers) that includes a high proportion of mechanostable conformers, which are associated with toxicity and disease. We also find that a known drug can block the formation of these mechanostable structures in different neurotoxic proteins. We suggest that the most mechanostable conformers, or their precursors, may trigger the pathogenic cascade that results in toxicity. We thus propose that these mechanostable structures are ideal targets for early diagnosis, prevention, and treatment of these fatal diseases.
Collapse
Affiliation(s)
- Rubén Hervás
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Javier Oroz
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Albert Galera-Prat
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Oscar Goñi
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Alejandro Valbuena
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Andrés M. Vera
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Àngel Gómez-Sicilia
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Fernando Losada-Urzáiz
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Vladimir N. Uversky
- University of South Florida, College of Medicine and Byrd Alzheimer's Research Institute, Tampa, Florida, United States of America
- Institute for Biological Instrumentation. Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Marta Bruix
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Madrid, Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal, IC-CSIC & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
Moradi M, Babin V, Roland C, Sagui C. Are long-range structural correlations behind the aggregration phenomena of polyglutamine diseases? PLoS Comput Biol 2012; 8:e1002501. [PMID: 22577357 PMCID: PMC3343152 DOI: 10.1371/journal.pcbi.1002501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/18/2012] [Indexed: 02/06/2023] Open
Abstract
We have characterized the conformational ensembles of polyglutamine peptides of various lengths (ranging from to ), both with and without the presence of a C-terminal polyproline hexapeptide. For this, we used state-of-the-art molecular dynamics simulations combined with a novel statistical analysis to characterize the various properties of the backbone dihedral angles and secondary structural motifs of the glutamine residues. For (i.e., just above the pathological length for Huntington's disease), the equilibrium conformations of the monomer consist primarily of disordered, compact structures with non-negligible -helical and turn content. We also observed a relatively small population of extended structures suitable for forming aggregates including - and -strands, and - and -hairpins. Most importantly, for we find that there exists a long-range correlation (ranging for at least residues) among the backbone dihedral angles of the Q residues. For polyglutamine peptides below the pathological length, the population of the extended strands and hairpins is considerably smaller, and the correlations are short-range (at most residues apart). Adding a C-terminal hexaproline to suppresses both the population of these rare motifs and the long-range correlation of the dihedral angles. We argue that the long-range correlation of the polyglutamine homopeptide, along with the presence of these rare motifs, could be responsible for its aggregation phenomena. Nine neurodegenerative diseases are caused by polyglutamine (polyQ) expansions greater than a given threshold in proteins with little or no homology except for the polyQ regions. The diseases all share a common feature: the formation of polyQ aggregates and eventual neuronal death. Using molecular dynamics simulations, we have explored the conformations of polyQ peptides. Results indicate that for peptides (i.e., just above the pathological length for Hungtington's disease), the equilibrium conformations were found to consist primarily of disordered, compact structures with a non-negligible -helical and turn content. We also observed a small population of extended structures suitable for forming aggregates. For peptides below the pathological length, the population of these structures was found to be considerably lower. For longer peptides, we found evidence for long-range correlations among the dihedral angles. This correlation turns out to be short-range for the smaller polyQ peptides, and is suppressed (along with the extended structural motifs) when a C-terminal polyproline tail is added to the peptides. We believe that the existence of these long-range correlations in above-threshold polyQ peptides, along with the presence of rare motifs, could be responsible for the experimentally observed aggregation phenomena associated with polyQ diseases.
Collapse
Affiliation(s)
| | | | | | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
Długosz M, Trylska J. Secondary structures of native and pathogenic huntingtin N-terminal fragments. J Phys Chem B 2011; 115:11597-608. [PMID: 21910495 DOI: 10.1021/jp206373g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huntington's disease is a neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in the N-terminal fragment of the Huntingtin (Htt) protein. Structural properties of Htt N-terminal regions and the molecular mechanism leading to protein aggregation have not been fully explained yet. We performed all-atom replica exchange molecular dynamics to investigate the structures of Htt N-terminal parts with polyQ tracts of nonpathogenic and pathogenic lengths. The monomers were composed of the headpiece (17 N-terminal residues), a polyQ tract (polyQ(17) for native and polyQ(55) for pathogenic sequence), and a polyP(11) region, followed by 17 amino acids of mixed sequence. We found that corresponding regions in both fragments fold to similar secondary structures; the headpiece and polyQ stretch adopt mainly α-helical conformations, and polyP(11) forms the PP II-type helix. The native N-terminal fragment is more compact and stabilized by hydrophobic interactions between the surface of polyP(11) and the amphipathic helix of the headpiece. In the pathogenic fragment the headpiece is solvent exposed and does not interact with polyP(11). The predicted structure of the native N-terminal fragment agrees with the X-ray structure of the Htt first exon containing polyQ(17). The structure of the pathogenic fragment adheres to an aggregation model that is mediated by the Htt headpiece.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland.
| | | |
Collapse
|
30
|
Hayward S, James Milner-White E. Simulation of the β- to α-sheet transition results in a twisted sheet for antiparallel and an α-nanotube for parallel strands: Implications for amyloid formation. Proteins 2011; 79:3193-207. [DOI: 10.1002/prot.23154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023]
|
31
|
Popiel HA, Burke JR, Strittmatter WJ, Oishi S, Fujii N, Takeuchi T, Toda T, Wada K, Nagai Y. The Aggregation Inhibitor Peptide QBP1 as a Therapeutic Molecule for the Polyglutamine Neurodegenerative Diseases. JOURNAL OF AMINO ACIDS 2011; 2011:265084. [PMID: 22312459 PMCID: PMC3268222 DOI: 10.4061/2011/265084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Misfolding and abnormal aggregation of proteins in the brain are implicated in the pathogenesis of various neurodegenerative diseases including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases. In the polyQ diseases, an abnormally expanded polyQ stretch triggers misfolding and aggregation of the disease-causing proteins, eventually resulting in neurodegeneration. In this paper, we introduce our therapeutic strategy against the polyQ diseases using polyQ binding peptide 1 (QBP1), a peptide that we identified by phage display screening. We showed that QBP1 specifically binds to the expanded polyQ stretch and inhibits its misfolding and aggregation, resulting in suppression of neurodegeneration in cell culture and animal models of the polyQ diseases. We further demonstrated the potential of protein transduction domains (PTDs) for in vivo delivery of QBP1. We hope that in the near future, chemical analogues of aggregation inhibitor peptides including QBP1 will be developed against protein misfolding-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- H. Akiko Popiel
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - James R. Burke
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710, USA
| | - Warren J. Strittmatter
- Department of Medicine (Neurology) and Deane Laboratory, Duke University Medical Center, Durham, NC 27710, USA
| | - Shinya Oishi
- Department of Bioorganic Medicinal Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Department of Bioorganic Medicinal Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Toshihide Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
32
|
Malleability of folding intermediates in the homeodomain superfamily. Proc Natl Acad Sci U S A 2011; 108:5596-601. [PMID: 21422286 DOI: 10.1073/pnas.1101752108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the homeodomain superfamily are three-helix bundle proteins whose second and third helices form a helix-turn-helix motif (HTH). Their folding mechanism slides from the ultrafast, three-state framework mechanism for the engrailed homeodomain (EnHD), in which the HTH motif is independently stable, to an apparent two-state nucleation-condensation model for family members with an unstable HTH motif. The folding intermediate of EnHD has nearly native HTH structure, but it is not docked with helix1. The determinant of whether two- or three-state folding was hypothesized to be the stability of the HTH substructure. Here, we describe a detailed Φ-value analysis of the folding of the Pit1 homeodomain, which has similar ultrafast kinetics to that of EnHD. Formation of helix1 was strongly coupled with formation of HTH, which was initially surprising because they are uncoupled in the EnHD folding intermediate. However, we found a key difference between Pit1 and EnHD: The isolated peptide corresponding to the HTH motif in Pit1 was not folded in the absence of H1. Independent molecular dynamics simulations of Pit1 unfolding found an intermediate with H1 misfolded onto the HTH motif. The Pit1 folding pathway is the connection between that of EnHD and the slower folding homeodomains and provides a link in the transition of mechanisms from two- to three-state folding in this superfamily. The malleability of folding intermediates can lead to unstable substructures being stabilized by a variety of nonnative interactions, adding to the continuum of folding mechanisms.
Collapse
|
33
|
Digambaranath JL, Campbell TV, Chung A, McPhail MJ, Stevenson KE, Zohdy MA, Finke JM. An accurate model of polyglutamine. Proteins 2011; 79:1427-40. [DOI: 10.1002/prot.22970] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/15/2010] [Accepted: 12/08/2010] [Indexed: 01/15/2023]
|
34
|
Dar TA, Schaeffer RD, Daggett V, Bowler BE. Manifestations of native topology in the denatured state ensemble of Rhodopseudomonas palustris cytochrome c'. Biochemistry 2011; 50:1029-41. [PMID: 21190388 PMCID: PMC3329124 DOI: 10.1021/bi101551h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide insight into the role of local sequence in the nonrandom coil behavior of the denatured state, we have extended our measurements of histidine-heme loop formation equilibria for cytochrome c' to 6 M guanidine hydrochloride. We observe that there is some reduction in the scatter about the best fit line of loop stability versus loop size data in 6 M versus 3 M guanidine hydrochloride, but the scatter is not eliminated. The scaling exponent, ν(3), of 2.5 ± 0.2 is also similar to that found previously in 3 M guanidine hydrochloride (2.6 ± 0.3). Rates of histidine-heme loop breakage in the denatured state of cytochrome c' show that some histidine-heme loops are significantly more persistent than others at both 3 and 6 M guanidine hydrochloride. Rates of histidine-heme loop formation more closely approximate random coil behavior. This observation indicates that heterogeneity in the denatured state ensemble results mainly from contact persistence. When mapped onto the structure of cytochrome c', the histidine-heme loops with slow breakage rates coincide with chain reversals between helices 1 and 2 and between helices 2 and 3. Molecular dynamics simulations of the unfolding of cytochrome c' at 498 K show that these reverse turns persist in the unfolded state. Thus, these portions of the primary structure of cytochrome c' set up the topology of cytochrome c' in the denatured state, predisposing the protein to fold efficiently to its native structure.
Collapse
Affiliation(s)
- Tanveer A. Dar
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, USA
| | - R. Dustin Schaeffer
- Biomolecular Structure & Design Program, University of Washington, Seattle, WA 98195 USA
| | - Valerie Daggett
- Biomolecular Structure & Design Program, University of Washington, Seattle, WA 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013 USA
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
35
|
Babin V, Roland C, Sagui C. The α-sheet: A missing-in-action secondary structure? Proteins 2011; 79:937-46. [DOI: 10.1002/prot.22935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/06/2022]
|
36
|
Chen W, van der Kamp MW, Daggett V. Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Biochemistry 2010; 49:9874-81. [PMID: 20949975 DOI: 10.1021/bi101449f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013, United States
| | | | | |
Collapse
|
37
|
Wu H, Canfield A, Adhikari J, Huo S. Quantum mechanical studies on model alpha-pleated sheets. J Comput Chem 2010; 31:1216-23. [PMID: 19827141 DOI: 10.1002/jcc.21408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pauling and Corey proposed a pleated-sheet configuration, now called alpha-sheet, as one of the protein secondary structures in addition to alpha-helix and beta-sheet. Recently, it has been suggested that alpha-sheet is a common feature of amyloidogenic intermediates. We have investigated the stability of antiparallel beta-sheet and two conformations of alpha-sheet in solution phase using the density functional theoretical method. The peptides are modeled as two-strand acetyl-(Ala)(2)-N-methylamine. Using stages of geometry optimization and single point energy calculation at B3LYP/cc-pVTZ//B3LYP/6-31G* level and including zero-point energies, thermal, and entropic contribution, we have found that beta-sheet is the most stable conformation, while the alpha-sheet proposed by Pauling and Corey has 13.6 kcal/mol higher free energy than the beta-sheet. The alpha-sheet that resembles the structure observed in molecular dynamics simulations of amyloidogenic proteins at low pH becomes distorted after stages of geometry optimization in solution. Whether the alpha-sheets with longer chains would be increasingly favorable in water relative to the increase in internal energy of the chain needs further investigation. Different from the quantum mechanics results, AMBER parm94 force field gives small difference in solution phase energy between alpha-sheet and beta-sheet. The predicted amide I IR spectra of alpha-sheet shows the main band at higher frequency than beta-sheet.
Collapse
Affiliation(s)
- Hao Wu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
38
|
Merkley ED, Parson WW, Daggett V. Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Eng Des Sel 2010; 23:327-36. [PMID: 20083491 PMCID: PMC2851445 DOI: 10.1093/protein/gzp090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/13/2022] Open
Abstract
A widely held hypothesis regarding the thermostability of thermophilic proteins states asserts that, at any given temperature, thermophilic proteins are more rigid than their mesophilic counterparts. Many experimental and computational studies have addressed this question with conflicting results. Here, we compare two homologous enzymes, one mesophilic (Escherichia coli FMN-dependent nitroreductase; NTR) and one thermophilic (Thermus thermophilus NADH oxidase; NOX), by multiple molecular dynamics simulations at temperatures from 5 to 100 degrees C. We find that the global rigidity/flexibility of the two proteins, assessed by a variety of metrics, is similar on the time scale of our simulations. However, the thermophilic enzyme retains its native conformation to a much greater degree at high temperature than does the mesophilic enzyme, both globally and within the active site. The simulations identify the helix F-helix G 'arm' as the region with the greatest difference in loss of native contacts between the two proteins with increasing temperature. In particular, a network of electrostatic interactions holds helix F to the body of the protein in the thermophilic protein, and this network is absent in the mesophilic counterpart.
Collapse
Affiliation(s)
- Eric D. Merkley
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - William W. Parson
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - Valerie Daggett
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA
| |
Collapse
|
39
|
Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I. Secondary structure of Huntingtin amino-terminal region. Structure 2009; 17:1205-12. [PMID: 19748341 DOI: 10.1016/j.str.2009.08.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/23/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022]
Abstract
Huntington's disease is a genetic neurodegenerative disorder resulting from polyglutamine (polyQ) expansion (>36Q) within the first exon of Huntingtin (Htt) protein. We applied X-ray crystallography to determine the secondary structure of the first exon (EX1) of Htt17Q. The structure of Htt17Q-EX1 consists of an amino-terminal alpha helix, poly17Q region, and polyproline helix formed by the proline-rich region. The poly17Q region adopts multiple conformations in the structure, including alpha helix, random coil, and extended loop. The conformation of the poly17Q region is influenced by the conformation of neighboring protein regions, demonstrating the importance of the native protein context. We propose that the conformational flexibility of the polyQ region observed in our structure is a common characteristic of many amyloidogenic proteins. We further propose that the pathogenic polyQ expansion in the Htt protein increases the length of the random coil, which promotes aggregation and facilitates abnormal interactions with other proteins in cells.
Collapse
Affiliation(s)
- Mee Whi Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
40
|
Schmidlin T, Kennedy BK, Daggett V. Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophys J 2009; 97:1709-18. [PMID: 19751676 DOI: 10.1016/j.bpj.2009.06.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/11/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease, and the inherited form, familial ALS (fALS), has been linked to over 100 different point mutations scattered throughout the Cu-Zn superoxide dismutase protein (SOD1). The disease is likely due to a toxic gain of function caused by the misfolding, oligomerization, and eventual aggregation of mutant SOD1, but it is not yet understood how the structurally diverse mutations result in a common disease phenotype. The behavior of the apo-monomer fALS-associated mutant protein A4V was explored using molecular-dynamics simulations to elucidate characteristic structural changes to the protein that may allow the mutant form to improperly associate with other monomer subunits. Simulations showed that the mutant protein is less stable than the WT protein overall, with shifts in residue-residue contacts that lead to destabilization of the dimer and metal-binding sites, and stabilization of nonnative contacts that leads to a misfolded state. These findings provide a unifying explanation for disparate experimental observations, allow a better understanding of alterations of residue contacts that accompany loss of SOD1 structural integrity, and suggest sites where compensatory changes may stabilize the mutant structure.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
41
|
Rutherford K, Daggett V. A hotspot of inactivation: The A22S and V108M polymorphisms individually destabilize the active site structure of catechol O-methyltransferase. Biochemistry 2009; 48:6450-60. [PMID: 19435324 DOI: 10.1021/bi900174v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human catechol O-methyltransferase (COMT) contains three common polymorphisms (A22S, A52T, and V108M), two of which (A22S and V108M) render the protein susceptible to deactivation by temperature or oxidation. We have performed multiple molecular dynamics simulations of the wild-type, A22S, A52T, and V108M COMT proteins to explore the structural consequences of these mutations. In total, we have amassed more than 1.4 micros of simulation time, representing the largest set of simulations detailing the effects of polymorphisms on a protein system to date. The A52T mutation had no significant effect on COMT structure in accord with experiment, thereby serving as a good negative control for the simulation set. Residues 22 (alpha2) and 108 (alpha5) interact with each other throughout the simulations and are located in a polymorphic hotspot approximately 20 A from the active site. Introduction of either the larger Ser (22) or Met (108) tightens this interaction, pulling alpha2 and alpha5 toward each other and away from the protein core. The V108M polymorphism rearranges active-site residues in alpha5, beta3, and alpha6, increasing the S-adenosylmethionine site solvent exposure. The A22S mutation reorients alpha2, moving critical catechol-binding residues away from the substrate-binding pocket. The A22S and V108M polymorphisms evolved independently in Northern European and Asian populations. While the decreased activities of both A22S and V108M COMT are associated with an increased risk for schizophrenia, the V108M-induced destabilization is also linked with improved cognitive function. These results suggest that polymorphisms within this hotspot may have evolved to regulate COMT activity and that heterozygosity for either mutation may be advantageous.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-5013, USA
| | | |
Collapse
|
42
|
Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. MAbs 2009; 1:254-67. [PMID: 20065649 DOI: 10.4161/mabs.1.3.8035] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aggregation of a biotherapeutic is of significant concern and judicious process and formulation development is required to minimize aggregate levels in the final product. Aggregation of a protein in solution is driven by intrinsic and extrinsic factors. In this work we have focused on aggregation as an intrinsic property of the molecule. We have studied the sequences and Fab structures of commercial and non-commercial antibody sequences for their vulnerability towards aggregation by using sequence based computational tools to identify potential aggregation-prone motifs or regions. The mAbs in our dataset contain 2 to 8 aggregation-prone motifs per heavy and light chain pair. Some of these motifs are located in variable domains, primarily in CDRs. Most aggregation-prone motifs are rich in beta branched aliphatic and aromatic residues. Hydroxyl-containing Ser/Thr residues are also found in several aggregation-prone motifs while charged residues are rare. The motifs found in light chain CDR3 are glutamine (Q)/asparagine (N) rich. These motifs are similar to the reported aggregation promoting regions found in prion and amyloidogenic proteins that are also rich in Q/N, aliphatic and aromatic residues. The implication is that one possible mechanism for aggregation of mAbs may be through formation of cross-beta structures and fibrils. Mapping on the available Fab-receptor/antigen complex structures reveals that these motifs in CDRs might also contribute significantly towards receptor/antigen binding. Our analysis identifies the opportunity and tools for simultaneous optimization of the therapeutic protein sequence for potency and specificity while reducing vulnerability towards aggregation.
Collapse
Affiliation(s)
- Xiaoling Wang
- Pharmaceutical R & D, Global Biologics, Pfizer Global Research & Development, Chesterfield, MO 63017, USA
| | | | | | | |
Collapse
|
43
|
Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 2009; 19:23-30. [PMID: 19162471 DOI: 10.1016/j.sbi.2008.12.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
The challenges associated with the structural characterization of disordered proteins have resulted in the application of a host of biophysical methods to such systems. NMR spectroscopy is perhaps the most readily suited technique for providing high-resolution structural information on disordered protein states in solution. Optical methods, solid state NMR, ESR and X-ray scattering can also provide valuable information regarding the ensemble of conformations sampled by disordered states. Finally, computational studies have begun to assume an increasingly important role in interpreting and extending the impact of experimental data obtained for such systems. This article discusses recent advances in the applications of these methods to intrinsically disordered proteins.
Collapse
Affiliation(s)
- David Eliezer
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
44
|
Chopra M, Reddy AS, Abbott NL, de Pablo JJ. Folding of polyglutamine chains. J Chem Phys 2009; 129:135102. [PMID: 19045125 DOI: 10.1063/1.2980043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long polyglutamine chains have been associated with a number of neurodegenerative diseases. These include Huntington's disease, where expanded polyglutamine (PolyQ) sequences longer than 36 residues are correlated with the onset of symptoms. In this paper we study the folding pathway of a 54-residue PolyQ chain into a beta-helical structure. Transition path sampling Monte Carlo simulations are used to generate unbiased reactive pathways between unfolded configurations and the folded beta-helical structure of the polyglutamine chain. The folding process is examined in both explicit water and an implicit solvent. Both models reveal that the formation of a few critical contacts is necessary and sufficient for the molecule to fold. Once the primary contacts are formed, the fate of the protein is sealed and it is largely committed to fold. We find that, consistent with emerging hypotheses about PolyQ aggregation, a stable beta-helical structure could serve as the nucleus for subsequent polymerization of amyloid fibrils. Our results indicate that PolyQ sequences shorter than 36 residues cannot form that nucleus, and it is also shown that specific mutations inferred from an analysis of the simulated folding pathway exacerbate its stability.
Collapse
Affiliation(s)
- Manan Chopra
- Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, USA
| | | | | | | |
Collapse
|
45
|
Rossetti G, Magistrato A, Pastore A, Persichetti F, Carloni P. Structural Properties of Polyglutamine Aggregates Investigated via Molecular Dynamics Simulations. J Phys Chem B 2008; 112:16843-50. [DOI: 10.1021/jp806548p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Giulia Rossetti
- International School for Advanced Studies, via Beirut 2-4, Trieste, Italy, CNR-INFM-Democritos National Simulation Center, Beirut 2-4, Trieste, Italy, Italian Institute of Technology - SISSA Unit, via Beirut 2-4, Trieste, Italy, and National Institute for Medical Research, The Ridgeway London, NW71AA, U.K
| | - Alessandra Magistrato
- International School for Advanced Studies, via Beirut 2-4, Trieste, Italy, CNR-INFM-Democritos National Simulation Center, Beirut 2-4, Trieste, Italy, Italian Institute of Technology - SISSA Unit, via Beirut 2-4, Trieste, Italy, and National Institute for Medical Research, The Ridgeway London, NW71AA, U.K
| | - Annalisa Pastore
- International School for Advanced Studies, via Beirut 2-4, Trieste, Italy, CNR-INFM-Democritos National Simulation Center, Beirut 2-4, Trieste, Italy, Italian Institute of Technology - SISSA Unit, via Beirut 2-4, Trieste, Italy, and National Institute for Medical Research, The Ridgeway London, NW71AA, U.K
| | - Francesca Persichetti
- International School for Advanced Studies, via Beirut 2-4, Trieste, Italy, CNR-INFM-Democritos National Simulation Center, Beirut 2-4, Trieste, Italy, Italian Institute of Technology - SISSA Unit, via Beirut 2-4, Trieste, Italy, and National Institute for Medical Research, The Ridgeway London, NW71AA, U.K
| | - Paolo Carloni
- International School for Advanced Studies, via Beirut 2-4, Trieste, Italy, CNR-INFM-Democritos National Simulation Center, Beirut 2-4, Trieste, Italy, Italian Institute of Technology - SISSA Unit, via Beirut 2-4, Trieste, Italy, and National Institute for Medical Research, The Ridgeway London, NW71AA, U.K
| |
Collapse
|
46
|
Torii H. Amide I infrared spectral features characteristic of some untypical conformations appearing in the structures suggested for amyloids. J Phys Chem B 2008; 112:8737-43. [PMID: 18582018 DOI: 10.1021/jp801364s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amide I infrared (IR) spectral features are studied, by using the density functional theoretical method, for two untypical (but possibly rather prevalent) structures inspired from those recently suggested for amyloids: a structure consisting of loop regions in the (alpha L, alpha R) conformation stacked to form an alpha-sheet, and a structure involving some main-chain peptide groups (of any residues) and some side-chain amide groups of glutamine and asparagine residues closely located with each other. The amide I vibrational (off-diagonal) coupling constants are examined by extracting them from the calculated Cartesian-based force constants with the average partial vector method and by comparing them with those estimated on the basis of the transition dipole coupling mechanism. It is suggested that the amide I IR band characteristic of the alpha-sheet conformation in dry environment (without hydrogen bonding to solvent water molecules) is located in a high-frequency region (approximately >1670 cm(-1), somewhat higher than that of alpha-helix), because of the dependence of the diagonal (uncoupled) frequency and the off-diagonal coupling constant on the Phi and Psi dihedral angles. It is also shown that the amide I vibrations of the closely located peptide and amide groups are strongly coupled through-space with each other, and in the presence of this type of strong vibrational coupling, a noticeable change in the IR intensity upon (13)C=O substitution may occur even for a mode that arises mainly from an unsubstituted group and is not much shifted in frequency. The meaning of these results in the interpretation of observed amide I spectral profiles, especially the possible usefulness of IR spectroscopic measurements for detecting those untypical structures in the process of amyloid formation, is also discussed.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| |
Collapse
|
47
|
Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations. Biophys J 2008; 94:4031-40. [PMID: 18234827 DOI: 10.1529/biophysj.107.118935] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nine genetically inherited neurodegenerative diseases are linked to abnormal expansions of a polyglutamine (polyQ) encoding region. Over the years, several structural models for polyQ regions have been proposed and confuted. The cross-beta-spine steric zipper motif, identified recently for the GNNQQNY peptide, represents an attractive model for amyloid fibers formed by polyQ fragments. Here we report a detailed molecular dynamics investigation of polyQ models assembled by cross-beta-spine steric zipper motifs. Our simulations indicate clearly that these assemblies are very stable. Glutamine side chains contribute strongly to the overall stability of the models by fitting perfectly within the zipper. In contrast to GNNQQNY zipper motifs, hydrogen bonding interactions provide a significant contribution to the overall stability of polyQ models. Molecular dynamics simulations carried out on monomeric polyQ forms (composed by 40-60 residues) show clearly that they can also assume structures stabilized by steric zipper motifs. Based on these findings, we build monomeric polyQ models that can explain recent data on the toxicity exerted by these species. In a more general context, our data suggests that polyQ models with interdigitated side chains can provide a structural rationale to several literature experiments on polyQ formation, stability, and toxicity.
Collapse
|
48
|
Self-replicating protein conformations and information transfer: The adaptive β-sheet model. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.bihy.2008.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Hayward S, Milner-White EJ. The geometry of α-sheet: Implications for its possible function as amyloid precursor in proteins. Proteins 2008; 71:415-25. [DOI: 10.1002/prot.21717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Sharpe T, Jonsson AL, Rutherford TJ, Daggett V, Fersht AR. The role of the turn in beta-hairpin formation during WW domain folding. Protein Sci 2007; 16:2233-9. [PMID: 17766370 PMCID: PMC2204123 DOI: 10.1110/ps.073004907] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding. We demonstrate by NMR studies and molecular dynamics simulations that the first turn of the hYAP, FBP28, and PIN1 WW domains is structurally dynamic and solvent exposed in the native and folding transition states. It is, therefore, unlikely that the formation of the beta-turn per se provides the energetic driving force for hairpin folding. It is more likely that the turn acts as an easily formed hinge that facilitates the formation of the hairpin; it is a nucleus as defined by the nucleation-condensation mechanism whereby a diffuse nucleus is stabilized by associated interactions.
Collapse
Affiliation(s)
- Tim Sharpe
- MRC Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, Cambridge, UK
| | | | | | | | | |
Collapse
|