1
|
Solem MA, Pelzel RG, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Absence of hippocampal pathology persists in the Q175DN mouse model of Huntington's disease despite elevated HTT aggregation. J Huntingtons Dis 2025; 14:59-84. [PMID: 39973391 PMCID: PMC11974504 DOI: 10.1177/18796397251316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHuntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.ObjectiveHere, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.MethodsWe utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.ResultsWe showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.ConclusionsQ175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ross G Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas B Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Taylor G Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
4
|
Galimberti M, Nucera MR, Bocchi VD, Conforti P, Vezzoli E, Cereda M, Maffezzini C, Iennaco R, Scolz A, Falqui A, Cordiglieri C, Cremona M, Espuny-Camacho I, Faedo A, Felsenfeld DP, Vogt TF, Ranzani V, Zuccato C, Besusso D, Cattaneo E. Huntington's disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids. Nat Commun 2024; 15:6534. [PMID: 39095390 PMCID: PMC11297310 DOI: 10.1038/s41467-024-50877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Huntington's disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.
Collapse
Affiliation(s)
- Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria R Nucera
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Stem Cell Biology Department; Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Vittoria D Bocchi
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132, Milan, Italy
| | - Matteo Cereda
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Camilla Maffezzini
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Raffaele Iennaco
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Scolz
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Department of Physics "Aldo Pontremoli", University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Chiara Cordiglieri
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Cremona
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Swiss Stem Cell Foundation, Via Petrini 2, 6900, Lugano, Switzerland
| | - Ira Espuny-Camacho
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- GIGA-Neuroscience, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, 4000, Liège, Belgium
| | - Andrea Faedo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Axxam, OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | | | | | - Valeria Ranzani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Zuccato
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy.
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
5
|
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, Joulani D, Szkwarek MG, Bhattacharjee A, Elias G, Stilger M, Winter J, Woods WS, Anand D, Lim CKW, Gaj T, Perez-Pinera P. In vivo CRISPR base editing for treatment of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602282. [PMID: 39005280 PMCID: PMC11245100 DOI: 10.1101/2024.07.05.602282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.
Collapse
|
6
|
Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell 2024; 84:1980-1994.e8. [PMID: 38759629 DOI: 10.1016/j.molcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.
Collapse
Affiliation(s)
- Dorothy Y Zhao
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; University Medical Center Göttingen, Institute of Neuropathology, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Itika Saha
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Han B, Liang W, Li XJ, Li S, Yan S, Tu Z. Large animal models for Huntington's disease research. Zool Res 2024; 45:275-283. [PMID: 38485497 PMCID: PMC11017086 DOI: 10.24272/j.issn.2095-8137.2023.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder for which there is currently no effective treatment available. Consequently, the development of appropriate disease models is critical to thoroughly investigate disease progression. The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin ( HTT) gene, leading to the expansion of a polyglutamine repeat in the HTT protein. Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain, which precipitate selective neuronal loss in specific brain regions. Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets. Due to the marked species differences between rodents and larger animals, substantial efforts have been directed toward establishing large animal models for HD research. These models are pivotal for advancing the discovery of novel therapeutic targets, enhancing effective drug delivery methods, and improving treatment outcomes. We have explored the advantages of utilizing large animal models, particularly pigs, in previous reviews. Since then, however, significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD. In the current review, we provide a comprehensive overview of large animal models of HD, incorporating recent findings regarding the establishment of HD knock-in (KI) pigs and their genetic therapy. We also explore the utilization of large animal models in HD research, with a focus on sheep, non-human primates (NHPs), and pigs. Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Bofeng Han
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China
| | - Weien Liang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China
| | - Shihua Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China
| | - Sen Yan
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| | - Zhuchi Tu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
8
|
Jurcau A, Simion A, Jurcau MC. Emerging antibody-based therapies for Huntington's disease: current status and perspectives for future development. Expert Rev Neurother 2024; 24:299-312. [PMID: 38324338 DOI: 10.1080/14737175.2024.2314183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments. AREAS COVERED This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials. EXPERT OPINION Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, Oradea, Romania
| | | |
Collapse
|
9
|
Panda P, Sarohi V, Basak T, Kasturi P. Elucidation of Site-Specific Ubiquitination on Chaperones in Response to Mutant Huntingtin. Cell Mol Neurobiol 2023; 44:3. [PMID: 38102300 PMCID: PMC11407140 DOI: 10.1007/s10571-023-01446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Huntington's disease (HD) is one of the prominent neurodegenerative diseases, characterized by the progressive decline of neuronal function, due to the accumulation and aggregation of misfolded proteins. Pathological progression of HD is hallmarked by the aberrant aggregation of the huntingtin protein (HTT) and subsequent neurotoxicity. Molecular chaperones (heat shock proteins, HSPs) play a pivotal role in maintaining proteostasis by facilitating protein refolding, degradation, or sequestration to limit the accumulation of misfolded proteins during neurotoxicity. However, the role of post-translational modifications such as ubiquitination among HSPs during HD is less known. In this study, we aimed to elucidate HSPs ubiquitin code in the context of HD pathogenesis. In a comprehensive proteomic analysis, we identified site-specific ubiquitination events in HSPs associated with HTT in HD-affected brain regions. To assess the impact of ubiquitination on HSPs during HD, we quantified the abundance of ubiquitinated lysine sites in both the rat cortex/striatum and in the mouse primary cortical neurons. Strikingly, we observed highly tissue-specific alterations in the relative ubiquitination levels of HSPs under HD conditions, emphasizing the importance of spatial perturbed post-translational modifications (PTMs) in shaping disease pathology. These ubiquitination events, combined with other PTMs on HSPs, are likely to influence the phase transitions of HTT. In conclusion, our study uncovered differential site-specific ubiquitination of molecular chaperones and offers a comprehensive view of the intricate relationship between protein aggregation, and PTMs in the context of Huntington's disease.
Collapse
Affiliation(s)
- Prajnadipta Panda
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
10
|
Van Raamsdonk JM, Al-Shekaili HH, Wagner L, Bredy TW, Chan L, Pearson J, Schwab C, Murphy Z, Devon RS, Lu G, Kobor MS, Hayden MR, Leavitt BR. Huntingtin Decreases Susceptibility to a Spontaneous Seizure Disorder in FVN/B Mice. Aging Dis 2023; 14:2249-2266. [PMID: 37199581 PMCID: PMC10676795 DOI: 10.14336/ad.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Huntington disease (HD) is an adult-onset neurodegenerative disorder that is caused by a trinucleotide CAG repeat expansion in the HTT gene that codes for the protein huntingtin (HTT in humans or Htt in mice). HTT is a multi-functional, ubiquitously expressed protein that is essential for embryonic survival, normal neurodevelopment, and adult brain function. The ability of wild-type HTT to protect neurons against various forms of death raises the possibility that loss of normal HTT function may worsen disease progression in HD. Huntingtin-lowering therapeutics are being evaluated in clinical trials for HD, but concerns have been raised that decreasing wild-type HTT levels may have adverse effects. Here we show that Htt levels modulate the occurrence of an idiopathic seizure disorder that spontaneously occurs in approximately 28% of FVB/N mice, which we have called FVB/N Seizure Disorder with SUDEP (FSDS). These abnormal FVB/N mice demonstrate the cardinal features of mouse models of epilepsy including spontaneous seizures, astrocytosis, neuronal hypertrophy, upregulation of brain-derived neurotrophic factor (BDNF), and sudden seizure-related death. Interestingly, mice heterozygous for the targeted inactivation of Htt (Htt+/- mice) exhibit an increased frequency of this disorder (71% FSDS phenotype), while over-expression of either full length wild-type HTT in YAC18 mice or full length mutant HTT in YAC128 mice completely prevents it (0% FSDS phenotype). Examination of the mechanism underlying huntingtin's ability to modulate the frequency of this seizure disorder indicated that over-expression of full length HTT can promote neuronal survival following seizures. Overall, our results demonstrate a protective role for huntingtin in this form of epilepsy and provide a plausible explanation for the observation of seizures in the juvenile form of HD, Lopes-Maciel-Rodan syndrome, and Wolf-Hirschhorn syndrome. Adverse effects caused by decreasing huntingtin levels have ramifications for huntingtin-lowering therapies that are being developed to treat HD.
Collapse
Affiliation(s)
- Jeremy M. Van Raamsdonk
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Metabolic Disorders and Complications (MeDiC) and Brain Repair and Integrated Neuroscience (BRaIN) Programs, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Hilal H. Al-Shekaili
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Laura Wagner
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Tim W Bredy
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, QLD 4072, Australia..
| | - Laura Chan
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Jacqueline Pearson
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Claudia Schwab
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Zoe Murphy
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Rebecca S. Devon
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Ge Lu
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Michael S. Kobor
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Michael R. Hayden
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Blair R. Leavitt
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
11
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
12
|
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 2023; 6:82-97. [PMID: 36911087 PMCID: PMC10000287 DOI: 10.1002/agm2.12243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.
Collapse
Affiliation(s)
- Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Chaitali Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
13
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
14
|
Saha G, Ghosh S, Dubey VK, Saudagar P. Gene Alterations Induced by Glutamine (Q) Encoding CAG Repeats Associated with Neurodegeneration. Methods Mol Biol 2023; 2575:3-23. [PMID: 36301468 DOI: 10.1007/978-1-0716-2716-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Several studies have been reported linking the role of polyglutamine (polyQ) disease-associated proteins with altered gene regulation induced by an unstable trinucleotide (CAG) repeat. Owing to their dynamic nature of expansion, these DNA repeats form secondary structures interfering with the normal cellular mechanisms like replication and transcription and, thereby, have become the underlying cause of numerous neurodegenerative disorders involving mental retardation and/or muscular or neuronal degeneration. Despite the widespread expression of the disease-causing protein, specific subsets of neurons are susceptible to specific patterns of inheritance and clinical symptoms. Although this cell-type selectivity is still elusive and less understood, it has been found that aberrant transcriptional regulation is one of the primary causes of polyQ diseases where the functions of histone-modifying complexes are disrupted. Besides, epigenetic modifications play a critical role in the pathogenesis of these diseases. In this chapter, we will be delving into how these polyQ repeats induce the self-assembly and aggregation of altered carrier proteins based on gene alterations, causing neuronal toxicity and cellular deaths. Besides, genomic instability in CAG repeats due to altered chromatin-related enzymes will be highlighted, along with epigenetic changes present in many polyQ disorders. Understanding the underlying molecular mechanisms in the root cause of these disorders will culminate in identifying therapeutic approaches for the treatment of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Gundappa Saha
- Department of Basic & Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
15
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
16
|
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022; 16:946822. [PMID: 36090278 PMCID: PMC9448931 DOI: 10.3389/fnins.2022.946822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell-to-cell in the brain in a manner akin to infectious prions has gained substantial momentum due to an explosion of research in the past 10–15 years. Here, we review current evidence supporting the existence of prion-like mechanisms in Huntington’s disease (HD), an autosomal dominant neurodegenerative disease caused by expansion of a CAG repeat tract in exon 1 of the huntingtin (HTT) gene. We summarize information gained from human studies and in vivo and in vitro models of HD that strongly support prion-like features of the mutant HTT (mHTT) protein, including potential involvement of molecular features of mHTT seeds, synaptic structures and connectivity, endocytic and exocytic mechanisms, tunneling nanotubes, and nonneuronal cells in mHTT propagation in the brain. We discuss mechanisms by which mHTT aggregate spreading and neurotoxicity could be causally linked and the potential benefits of targeting prion-like mechanisms in the search for new disease-modifying therapies for HD and other fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirby M. Donnelly
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Cevannah M. Coleman
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Madison L. Fuller
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Victoria L. Reed
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Dayna Smerina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - David S. Tomlinson
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Margaret M. Panning Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
- Department of Biology, Saint Joseph’s University, Philadelphia, PA, United States
- *Correspondence: Margaret M. Panning Pearce,
| |
Collapse
|
17
|
Yin Y, Ma P, Wang S, Zhang Y, Han R, Huo C, Wu M, Deng H. The CRTC-CREB axis functions as a transcriptional sensor to protect against proteotoxic stress in Drosophila. Cell Death Dis 2022; 13:688. [PMID: 35933423 PMCID: PMC9357022 DOI: 10.1038/s41419-022-05122-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
cAMP Responsible Element Binding Protein (CREB) is an evolutionarily conserved transcriptional factor that regulates cell growth, synaptic plasticity and so on. In this study, we unexpectedly found proteasome inhibitors, such as MLN2238, robustly increase CREB activity in adult flies through a large-scale compound screening. Mechanistically, reactive oxidative species (ROS) generated by proteasome inhibition are required and sufficient to promote CREB activity through c-Jun N-terminal kinase (JNK). In 293 T cells, JNK activation by MLN2238 is also required for increase of CREB phosphorylation at Ser133. Meanwhile, transcriptome analysis in fly intestine identified a group of genes involved in redox and proteostatic regulation are augmented by overexpressing CRTC (CREB-regulated transcriptional coactivator). Intriguingly, CRTC overexpression in muscles robustly restores protein folding and proteasomal activity in a fly Huntington's disease (HD) model, and ameliorates HD related pathogenesis, such as protein aggregates, motility, and lifespan. Moreover, CREB activity increases during aging, and further enhances its activity can suppress protein aggregates in aged muscles. Together, our results identified CRTC/CREB downstream ROS/JNK signaling as a conserved sensor to tackle oxidative and proteotoxic stresses. Boosting CRTC/CREB activity is a potential therapeutic strategy to treat aging related protein aggregation diseases.
Collapse
Affiliation(s)
- Youjie Yin
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Peng Ma
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Saifei Wang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Yao Zhang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Ruolei Han
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Chunyu Huo
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Meixian Wu
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Hansong Deng
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| |
Collapse
|
18
|
Alpaugh M, Masnata M, de Rus Jacquet A, Lepinay E, Denis HL, Saint-Pierre M, Davies P, Planel E, Cicchetti F. Passive immunization against phosphorylated tau improves features of Huntington's disease pathology. Mol Ther 2022; 30:1500-1522. [PMID: 35051614 PMCID: PMC9077324 DOI: 10.1016/j.ymthe.2022.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Eva Lepinay
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Peter Davies
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
19
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
20
|
Rook ME, Southwell AL. Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs 2022; 36:105-119. [PMID: 35254632 PMCID: PMC8899000 DOI: 10.1007/s40259-022-00519-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder caused by an inherited mutation in the huntingtin (HTT) gene, which encodes mutant HTT protein. Though HD remains incurable, various preclinical studies have reported a favorable response to HTT suppression, emphasizing HTT lowering strategies as prospective disease-modifying treatments. Antisense oligonucleotides (ASOs) lower HTT by targeting transcripts and are well suited for treating neurodegenerative disorders as they distribute broadly throughout the central nervous system (CNS) and are freely taken up by neurons, glia, and ependymal cells. With the FDA approval of an ASO therapy for another disease of the CNS, spinal muscular atrophy, ASOs have become a particularly attractive therapeutic option for HD. However, two types of ASOs were recently assessed in human clinical trials for the treatment of HD, and both were halted early. In this review, we will explore the differences in chemistry, targeting, and specificity of these HTT ASOs as well as preliminary clinical findings and potential reasons for and implications of these halted trials.
Collapse
Affiliation(s)
- Morgan E Rook
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| | - Amber L Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
21
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
22
|
Ingannato A, Bagnoli S, Mazzeo S, Bessi V, Matà S, Del Mastio M, Lombardi G, Ferrari C, Sorbi S, Nacmias B. Neurofilament Light Chain and Intermediate HTT Alleles as Combined Biomarkers in Italian ALS Patients. Front Neurosci 2021; 15:695049. [PMID: 34539331 PMCID: PMC8446383 DOI: 10.3389/fnins.2021.695049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To study the possible implication of the two biomarkers, intermediate alleles (IAs) of the Huntingtin (HTT) gene and neurofilament light chain (NfL) levels in plasma, in amyotrophic lateral sclerosis (ALS) patients. Methods We analyzed IAs in a cohort of 106 Italian ALS patients and measured the plasma NfL levels in 20% of the patients of the cohort. We correlated the two biomarkers with clinical phenotypes. Results Intermediate alleles were present in 7.5% of the patients of our cohort, a frequency higher than that reported in general population. Plasma NfL levels increased with age at onset (p < 0.05). Patients with bulbar onset (BO) had higher plasma NfL concentration (CI −0.61 to −0.06, p = 0.02) and a later age at onset of the disease (CI −24.78 to −4.93, p = 0.006) with respect to the spinal onset (SO) form. Additionally, two of the patients, with IAs and plasma NfL concentration lower with respect to normal alleles’ carriers, presented an age at onset higher than the mean of the entire cohort. Conclusion According to our findings, plasma NfL and IAs of HTT gene may represent potential biomarkers in ALS, providing evidence of a possible implication in clinical phenotype.
Collapse
Affiliation(s)
| | - Silvia Bagnoli
- NEUROFARBA Department, University of Florence, Florence, Italy
| | | | - Valentina Bessi
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Sabrina Matà
- SOD Neurologia 1, Dipartimento Neuromuscolo-Scheletrico e Degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Monica Del Mastio
- SOD Neurologia 1, Dipartimento Neuromuscolo-Scheletrico e Degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | | | - Camilla Ferrari
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Sandro Sorbi
- NEUROFARBA Department, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- NEUROFARBA Department, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
23
|
Schindler F, Praedel N, Neuendorf N, Kunz S, Schnoegl S, Mason MA, Taxy BA, Bates GP, Khoshnan A, Priller J, Grimm J, Maier M, Boeddrich A, Wanker EE. Small, Seeding-Competent Huntingtin Fibrils Are Prominent Aggregate Species in Brains of zQ175 Huntington's Disease Knock-in Mice. Front Neurosci 2021; 15:682172. [PMID: 34239412 PMCID: PMC8257939 DOI: 10.3389/fnins.2021.682172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
The deposition of mutant huntingtin (mHTT) protein aggregates in neurons of patients is a pathological hallmark of Huntington’s disease (HD). Previous investigations in cell-free and cell-based disease models showed mHTT exon-1 (mHTTex1) fragments with pathogenic polyglutamine (polyQ) tracts (>40 glutamines) to self-assemble into highly stable, β-sheet-rich protein aggregates with a fibrillar morphology. HD knock-in mouse models have not been extensively studied with regard to mHTT aggregation. They endogenously produce full-length mHTT with a pathogenic polyQ tract as well as mHTTex1 fragments. Here, we demonstrate that seeding-competent, fibrillar mHTT aggregates can be readily detected in brains of zQ175 knock-in HD mice. To do this, we applied a highly sensitive FRET-based protein amplification assay that is capable of detecting seeding-competent mHTT aggregate species down to the femtomolar range. Furthermore, we show that fibrillar structures with an average length of ∼200 nm can be enriched with aggregate-specific mouse and human antibodies from zQ175 mouse brain extracts through immunoprecipitations, confirming that such structures are formed in vivo. Together these studies indicate that small, fibrillar, seeding-competent mHTT structures are prominent aggregate species in brains of zQ175 mice.
Collapse
Affiliation(s)
- Franziska Schindler
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicole Praedel
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nancy Neuendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Severine Kunz
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ali Khoshnan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Charité-Universitätsmedizin Berlin and DZNE, Berlin, Germany.,The University of Edinburgh, UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Jan Grimm
- Neurimmune AG, Schlieren, Switzerland
| | | | - Annett Boeddrich
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
24
|
Chongtham A, Bornemann DJ, Barbaro BA, Lukacsovich T, Agrawal N, Syed A, Worthge S, Purcell J, Burke J, Chin TM, Marsh JL. Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT. Hum Mol Genet 2021; 29:674-688. [PMID: 31943010 DOI: 10.1093/hmg/ddaa001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.e. aggregation state and subcellular location). Using Drosophila, we compare the effects of expressing mutant full-length human HTT (fl-mHTT) to the effects of mutant human HTTexon1 and to two commonly used synthetic fragments, HTT171 and shortstop (HTT118). Expanded polyQ alone is not sufficient to cause inclusion formation since full-length HTT and HTTex1 with expanded polyQ are both toxic although full-length HTT remains diffuse while HTTex1 forms inclusions. Further, inclusions are not sufficient to cause pathology since HTT171-120Q forms inclusions but is benign and co-expression of HTT171-120Q with non-aggregating pathogenic fl-mHTT recruits fl-mHTT to aggregates and rescues its pathogenicity. Additionally, the influence of sequences outside the expanded polyQ domain is revealed by finding that small modifications to the HTT118 or HTT171 fragments can dramatically alter their subcellular behavior and pathogenicity. Finally, mutant HTT subcellular behavior is strongly modified by different cell and tissue environments (e.g. fl-mHTT appears as diffuse nuclear in one tissue and diffuse cytoplasmic in another but toxic in both). These observations underscore the importance of cellular and structural context for the interpretation and comparison of experiments using different fragments and tissues to report the effects of expanded polyQ.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - Douglas J Bornemann
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Brett A Barbaro
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Namita Agrawal
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Shane Worthge
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Judith Purcell
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - John Burke
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697-2300, USA
| |
Collapse
|
25
|
Tan X, Liu Y, Liu Y, Zhang T, Cong S. Dysregulation of long non-coding RNAs and their mechanisms in Huntington's disease. J Neurosci Res 2021; 99:2074-2090. [PMID: 34031910 DOI: 10.1002/jnr.24825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Extensive alterations in gene regulatory networks are a typical characteristic of Huntington's disease (HD); these include alterations in protein-coding genes and poorly understood non-coding RNAs (ncRNAs), which are associated with pathology caused by mutant huntingtin. Long non-coding RNAs (lncRNAs) are an important class of ncRNAs involved in a variety of biological functions, including transcriptional regulation and post-transcriptional modification of many targets, and likely contributed to the pathogenesis of HD. While a number of changes in lncRNAs expression have been observed in HD, little is currently known about their functions. Here, we discuss their possible mechanisms and molecular functions, with a particular focus on their roles in transcriptional regulation. These findings give us a better insight into HD pathogenesis and may provide new targets for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xiaoping Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yan Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Taiming Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
26
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
27
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
28
|
Cabanas M, Piquemal M, Pistono C, Arnaud S, Rakesh D, Poinama E, Guillou JL, Garret M, Cho YH. Correlations Between Mutant Huntingtin Aggregates and Behavioral Changes in R6/1 Mice. J Huntingtons Dis 2019; 9:33-45. [PMID: 31868674 DOI: 10.3233/jhd-190352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the trinucleotide CAG in the HD gene. While the presence of nuclear aggregates of mutant huntingtin (mHtt) in neurons is a hallmark of HD, the reason behind its toxicity remains elusive. OBJECTIVE The present study was conducted to assess a correlation between the number of mHtt aggregates and the severity of HD symptoms in R6/1 mice. METHODS We investigated correlations between behavioral deficits and the level of nuclear mHtt aggregates in different neuroanatomical regions in 3-month-old R6/1 mice, the age at which a large variability of symptom severity between animals has been observed. RESULTS R6/1 mice were deficient in instinctive and anxiety related behaviors as well as long-term memory capabilities. Significant differences were also found between the sexes; female transgenic mice displayed less severe deficits than males. While the level of mHtt aggregates was correlated with the severity of HD phenotypes in most regions of interest, an opposite relationship also was found for some other regions examined. CONCLUSIONS The obtained results suggest harmful and region-specific roles of mHtt aggregates in HD symptoms.
Collapse
Affiliation(s)
- Magali Cabanas
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Marion Piquemal
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Cristiana Pistono
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Syndelle Arnaud
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Divyangana Rakesh
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Elodie Poinama
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Jean-Louis Guillou
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Maurice Garret
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| | - Yoon H Cho
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Pessac Cedex, France.,Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
29
|
Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis 2019; 132:104569. [DOI: 10.1016/j.nbd.2019.104569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
|
30
|
Kielar C, Morton AJ. Early Neurodegeneration in R6/2 Mice Carrying the Huntington's Disease Mutation with a Super-Expanded CAG Repeat, Despite Normal Lifespan. J Huntingtons Dis 2019; 7:61-76. [PMID: 29480204 DOI: 10.3233/jhd-170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a > 440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Zhu Y, Li C, Tao X, Brazill JM, Park J, Diaz-Perez Z, Zhai RG. Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proc Natl Acad Sci U S A 2019; 116:19165-19175. [PMID: 31484760 PMCID: PMC6754563 DOI: 10.1073/pnas.1904563116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulative aggregation of mutant Huntingtin (Htt) is a primary neuropathological hallmark of Huntington's disease (HD). Currently, mechanistic understanding of the cytotoxicity of mutant Htt aggregates remains limited, and neuroprotective strategies combating mutant Htt-induced neurodegeneration are lacking. Here, we show that in Drosophila models of HD, neuronal compartment-specific accumulation of mutant Htt aggregates causes neurodegenerative phenotypes. In addition to the increase in the number and size, we discovered an age-dependent acquisition of thioflavin S+, amyloid-like adhesive properties of mutant Htt aggregates and a concomitant progressive clustering of aggregates with mitochondria and synaptic proteins, indicating that the amyloid-like adhesive property underlies the neurotoxicity of mutant Htt aggregation. Importantly, nicotinamide mononucleotide adenylyltransferase (NMNAT), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase and neuroprotective factor, significantly mitigates mutant Htt-induced neurodegeneration by reducing mutant Htt aggregation through promoting autophagic clearance. Additionally, Nmnat overexpression reduces progressive accumulation of amyloid-like Htt aggregates, neutralizes adhesiveness, and inhibits the clustering of mutant Htt with mitochondria and synaptic proteins, thereby restoring neuronal function. Conversely, partial loss of endogenous Nmnat exacerbates mutant Htt-induced neurodegeneration through enhancing mutant Htt aggregation and adhesive property. Finally, conditional expression of Nmnat after the onset of degenerative phenotypes significantly delays the progression of neurodegeneration, revealing the therapeutic potential of Nmnat-mediated neuroprotection at advanced stages of HD. Our study uncovers essential mechanistic insights to the neurotoxicity of mutant Htt aggregation and describes the molecular basis of Nmnat-mediated neuroprotection in HD.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
32
|
Abstract
Introduction: Huntington's disease (HD) is an inherited neurodegenerative condition for which there are no disease-modifying treatments. The availability of early genetic diagnosis makes HD an ideal candidate for early intervention. Growing understanding of pathogenesis has led to the identification of new therapeutic targets for which some compounds are now in clinical trials. Areas covered: A detailed review of medical databases and clinical trial registries was performed. Recent clinical trials aimed to establish disease-modification were included. Focus was assigned to RNA and DNA-based therapies aimed at lowering mutant huntingtin (mHTT) including antisense oligonucleotides (ASOs), RNA interference (RNAi), zinc finger proteins (ZFPs) and the CRISPR-Cas9 system. Modulation of mHTT and immunotherapies is also covered. Expert opinion: Targeting HD pathogenesis at its most proximal level is under intense investigation. ASOs are the only HTT-lowering strategy in clinical trials of manifest HD. Safety and efficacy of an allele specific vs. allele non-specific approach has yet to be established. Success will extend to premanifest carriers for which development of clinical and imaging biomarkers will be necessary. Scientific and technological advancement will bolster new methods of treatment delivery. Cumulative experience, collaborative research, and platforms such as ENROLL-HD will facilitate efficient and effective clinical trials.
Collapse
Affiliation(s)
- Hassaan Bashir
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
33
|
Matlahov I, van der Wel PC. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Exp Biol Med (Maywood) 2019; 244:1584-1595. [PMID: 31203656 PMCID: PMC6920524 DOI: 10.1177/1535370219856620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington’s disease, like other neurodegenerative diseases, continues to lack an
effective cure. Current treatments that address early symptoms ultimately fail
Huntington’s disease patients and their families, with the disease typically
being fatal within 10–15 years from onset. Huntington’s disease is an inherited
disorder with motor and mental impairment, and is associated with the genetic
expansion of a CAG codon repeat encoding a polyglutamine-segment-containing
protein called huntingtin. These Huntington’s disease mutations cause misfolding
and aggregation of fragments of the mutant huntingtin protein, thereby likely
contributing to disease toxicity through a combination of gain-of-toxic-function
for the misfolded aggregates and a loss of function from sequestration of
huntingtin and other proteins. As with other amyloid diseases, the mutant
protein forms non-native fibrillar structures, which in Huntington’s disease are
found within patients’ neurons. The intracellular deposits are associated with
dysregulation of vital processes, and inter-neuronal transport of aggregates may
contribute to disease progression. However, a molecular understanding of these
aggregates and their detrimental effects has been frustrated by insufficient
structural data on the misfolded protein state. In this review, we examine
recent developments in the structural biology of polyglutamine-expanded
huntingtin fragments, and especially the contributions enabled by advances in
solid-state nuclear magnetic resonance spectroscopy. We summarize and discuss
our current structural understanding of the huntingtin deposits and how this
information furthers our understanding of the misfolding mechanism and disease
toxicity mechanisms.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick Ca van der Wel
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
34
|
Zhunina OA, Yabbarov NG, Orekhov AN, Deykin AV. Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo. Int J Exp Pathol 2019; 100:64-71. [PMID: 31090117 DOI: 10.1111/iep.12320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Dystonia associated with Huntington's disease, Parkinson's disease or other neurodegenerative diseases substantially affects patients' quality of life and is a major health problem worldwide. The above-mentioned diseases are characterized by neurodegeneration accompanied by motor and cognitive impairment and often have complex aetiology. A frequent feature of these conditions is the abnormal accumulation of protein aggregates within specific neuronal populations in the affected brain regions. Familial neurodegenerative diseases are associated with a number of genetic mutations. Identification of these mutations allowed creation of modern model systems for studying neurodegeneration, either in cultured cells or in model animals. Animal models, especially mouse models, have contributed considerably to improving our understanding of the pathophysiology of neurodegenerative diseases. These models have allowed study of the pathogenic mechanisms and development of new disease-modifying strategies and therapeutic approaches. However, due to the complex nature of these pathologies and the irreversible damage that they cause to the neural tissue, effective therapies against neurodegeneration remain to be elaborated. In this review, we provide an overview of cellular and animal models developed for studying neurodegenerative diseases, including Huntington's disease and dystonia of different origins.
Collapse
Affiliation(s)
- Olga A Zhunina
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Nikita G Yabbarov
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | | |
Collapse
|
35
|
Found in Translation: The Utility of C. elegans Alpha-Synuclein Models of Parkinson's Disease. Brain Sci 2019; 9:brainsci9040073. [PMID: 30925741 PMCID: PMC6523935 DOI: 10.3390/brainsci9040073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/18/2023] Open
Abstract
Parkinson's Disease (PD) is the second-most common neurodegenerative disease in the world, yet the fundamental and underlying causes of the disease are largely unknown, and treatments remain sparse and impotent. Several biological systems have been employed to model the disease but the nematode roundworm Caenorhabditis elegans (C. elegans) shows unique promise among these to disinter the elusive factors that may prevent, halt, and/or reverse PD phenotypes. Some of the most salient of these C. elegans models of PD are those that position the misfolding-prone protein alpha-synuclein (α-syn), a hallmark pathological component of PD, as the primary target for scientific interrogation. By transgenic expression of human α-syn in different tissues, including dopamine neurons and muscle cells, the primary cellular phenotypes of PD in humans have been recapitulated in these C. elegans models and have already uncovered multifarious genetic factors and chemical compounds that attenuate dopaminergic neurodegeneration. This review describes the paramount discoveries obtained through the application of different α-syn models of PD in C. elegans and highlights their established utility and respective promise to successfully uncover new conserved genetic modifiers, functional mechanisms, therapeutic targets and molecular leads for PD with the potential to translate to humans.
Collapse
|
36
|
Levy GR, Shen K, Gavrilov Y, Smith PES, Levy Y, Chan R, Frydman J, Frydman L. Huntingtin's N-Terminus Rearrangements in the Presence of Membranes: A Joint Spectroscopic and Computational Perspective. ACS Chem Neurosci 2019; 10:472-481. [PMID: 30149694 DOI: 10.1021/acschemneuro.8b00353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder resulting from an expanded polyglutamine (polyQ) repeat of the Huntingtin (Htt) protein. Affected tissues often contain aggregates of the N-terminal Htt exon 1 (Htt-Ex1) fragment. The N-terminal N17 domain proximal to the polyQ tract is key to enhance aggregation and modulate Htt toxicity. Htt-Ex1 is intrinsically disordered, yet it has been postulated that under physiological conditions membranes induce the N17 to adopt an α-helical structure, which then plays a key role in regulating Htt protein aggregation. The present study leverages the recently available assignment of NMR peaks in an N17Q17 construct, in order to provide a look into the changes occurring in vitro upon exposing this fragment to various brain extract fragments as well as to synthetic bilayers. Residue-specific changes were observed by 3D HNCO NMR, whose nature was further clarified with ancillary CD and aggregation studies, as well as with molecular dynamic calculations. From this combination of measurements and computations, a unified picture emerges, whereby transient structures consisting of α-helices spanning a fraction of the N17 residues form during N17Q17-membrane interactions. These interactions are fairly dynamic, but they qualitatively mimic more rigid variants that have been discussed in the literature. The nature of these interactions and their potential influence on the aggregation process of these kinds of constructs under physiological conditions are briefly assessed.
Collapse
Affiliation(s)
| | - Koning Shen
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | | | | | | - Rebecca Chan
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
37
|
Abstract
Fluorescence-based nanoscopy methods (also known as "superresolution" microscopy) have substantially expanded our options to examine the distributions of molecules inside cells with nanometer-scale resolution and molecular specificity. In the biophysical analysis of aggregation-prone misfolded proteins and peptides, this has enabled the visualization of distinct populations of aggregated species such as fibrillar assemblies within intact neuronal cells, well below previous limits of sensitivity and resolution. With the Huntington's disease protein, polyglutamine-expanded mutant huntingtin, as an example, we provide sample preparation and imaging protocols for superresolution microscopy down to the ~30 nm-level.
Collapse
|
38
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
39
|
|
40
|
Pandey M, Rajamma U. Huntington's disease: the coming of age. J Genet 2018; 97:649-664. [PMID: 30027901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Huntington's disease (HD) is caused due to an abnormal expansion of polyglutamine repeats in the first exon of huntingtin gene. The mutation in huntingtin causes abnormalities in the functioning of protein, leading to deleterious effects ultimately to the demise of specific neuronal cells.The disease is inherited in an autosomal dominant manner and leads to a plethora of neuropsychiatric behaviour and neuronal cell death mainly in striatal and cortical regions of the brain, eventually leading to death of the individual. The discovery of the mutant gene led to a surge in molecular diagnostics of the disease and in making different transgenic models in different organisms to understand the function of wild-type and mutant proteins. Despite difficult challenges, there has been a significant increase in understanding the functioning of the protein in normal and other gain-of-function interactions in mutant form. However, there have been no significant improvements in treatments of the patients suffering from this ailment and most of the treatment is still symptomatic. HD warrants more attention towards better understanding and treatment as more advancement in molecular diagnostics and therapeutic interventions are available. Several different transgenic models are available in different organisms, ranging from fruit flies to primate monkeys, for studies on understanding the pathogenicity of the mutant gene. It is the right time to assess the advancement in the field and try new strategies for neuroprotection using key pathways as target. The present review highlights the key ingredients of pathology in the HD and discusses important studies for drug trials and future goals for therapeutic interventions.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Peskett TR, Rau F, O'Driscoll J, Patani R, Lowe AR, Saibil HR. A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Mol Cell 2018; 70:588-601.e6. [PMID: 29754822 PMCID: PMC5971205 DOI: 10.1016/j.molcel.2018.04.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.
Collapse
Affiliation(s)
- Thomas R Peskett
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| | - Frédérique Rau
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan O'Driscoll
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London, WC1N 3BG, UK; The Francis Crick Institute, London, NW1 1AT, UK
| | - Alan R Lowe
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK; London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK.
| |
Collapse
|
42
|
Luis-Ravelo D, Estévez-Silva H, Barroso-Chinea P, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Acevedo-Arozena A, Marcellino D, González-Hernández T. Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Exp Neurol 2018; 299:137-147. [DOI: 10.1016/j.expneurol.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
|
43
|
Abstract
The identification of the mutation causing Huntington's disease (HD) has led to the generation of a large number of mouse models. These models are used to further enhance our understanding of the mechanisms underlying the disease, as well as investigating and identifying therapeutic targets for this disorder. Here we review the transgenic, knock-in mice commonly used to model HD, as well those that have been generated to study specific disease mechanisms. We then provide a brief overview of the importance of standardizing the use of HD mice and describe brief protocols used for genotyping the mouse models used within the Bates Laboratory.
Collapse
Affiliation(s)
- Pamela P Farshim
- Department of Neurodegenerative Disease, Huntington's Disease Centre and Dementia Research Institute, University College London Institute of Neurology, London, WC1N 3BG, UK
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington's Disease Centre and Dementia Research Institute, University College London Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
44
|
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurological disorder characterized by motor, cognitive, and psychiatric symptoms that typically present later on in life, although juvenile cases do exist. The identification of the disease-causing mutation, a CAG triplet repeat expansion in the HTT gene, in 1993 generated numerous investigations into the cellular and molecular pathways underlying the disorder. HD mouse models have played a prominent role in these studies, and the use of these mouse models of HD in the development and evaluation of novel therapeutic strategies is reviewed in this chapter. As new interventions and therapeutic approaches are evaluated and implemented, genetic mouse models will continue to be used with the hope of developing effective treatments for HD.
Collapse
Affiliation(s)
- Natalia Kosior
- Centre for Molecular Medicine and Therapeutics, and Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, and Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Progress in developing transgenic monkey model for Huntington's disease. J Neural Transm (Vienna) 2017; 125:401-417. [PMID: 29127484 DOI: 10.1007/s00702-017-1803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD nonhuman primate (i.e., rhesus macaque; HD monkeys) shows high similarity in its progression with human patients. Progressive brain atrophy and changes in white matter integrity examined by magnetic resonance imaging are coherent with the decline in cognitive behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher anxiety and irritability/aggression similar to human HD patients that other model systems have not yet replicated. While a comparative model approach is critical for advancing our understanding of HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-term assessment of translatable outcome measures. This review summarizes the progress in the development of the transgenic HD monkey model and the opportunities for advancing HD preclinical research.
Collapse
|
46
|
Osmand AP, Bichell TJ, Bowman AB, Bates GP. Embryonic Mutant Huntingtin Aggregate Formation in Mouse Models of Huntington's Disease. J Huntingtons Dis 2017; 5:343-346. [PMID: 27886014 PMCID: PMC5181660 DOI: 10.3233/jhd-160217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of aggregate formation in the pathophysiology of Huntington’s disease (HD) remains uncertain. However, the temporal appearance of aggregates tends to correlate with the onset of symptoms and the numbers of neuropil aggregates correlate with the progression of clinical disease. Using highly sensitive immunohistochemical methods we have detected the appearance of diffuse aggregates during embryonic development in the R6/2 and YAC128 mouse models of HD. These are initially seen in developing axonal tracts and appear to spread throughout the cerebrum in the early neonate.
Collapse
Affiliation(s)
- Alexander P Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Terry Jo Bichell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron B Bowman
- Department of Pediatrics, Neurology, and Biochemistry, Vanderbilt University (VU) and VU Medical Center, Nashville, TN, USA
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
47
|
Wang B, Zeng L, Merillat SA, Fischer S, Ochaba J, Thompson LM, Barmada SJ, Scaglione KM, Paulson HL. The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin. Neurobiol Dis 2017; 109:127-136. [PMID: 28986324 DOI: 10.1016/j.nbd.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion that encodes a polyglutamine (polyQ) expansion in the HD disease protein, huntingtin (HTT). PolyQ expansion promotes misfolding and aggregation of mutant HTT (mHTT) within neurons. The cellular pathways, including ubiquitin-dependent processes, by which mHTT is regulated remain incompletely understood. Ube2W is the only ubiquitin conjugating enzyme (E2) known to ubiquitinate substrates at their amino (N)-termini, likely favoring substrates with disordered N-termini. By virtue of its N-terminal polyQ domain, HTT has an intrinsically disordered amino terminus. In studies employing immortalized cells, primary neurons and a knock-in (KI) mouse model of HD, we tested the effect of Ube2W deficiency on mHTT levels, aggregation and neurotoxicity. In cultured cells, deficiency of Ube2W activity markedly decreases mHTT aggregate formation and increases the level of soluble monomers, while reducing mHTT-induced cytotoxicity. Consistent with this result, the absence of Ube2W in HdhQ200 KI mice significantly increases levels of soluble monomeric mHTT while reducing insoluble oligomeric species. This study sheds light on the potential function of the non-canonical ubiquitin-conjugating enzyme, Ube2W, in this polyQ neurodegenerative disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zeng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, Sichuan Provincial Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Sean A Merillat
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenneth M Scaglione
- Neuroscience Research Center and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
48
|
Polyglutamine expansion diseases: More than simple repeats. J Struct Biol 2017; 201:139-154. [PMID: 28928079 DOI: 10.1016/j.jsb.2017.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein-protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein-protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.
Collapse
|
49
|
Branco-Santos J, Herrera F, Poças GM, Pires-Afonso Y, Giorgini F, Domingos PM, Outeiro TF. Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Hum Mol Genet 2017; 26:3763-3775. [DOI: 10.1093/hmg/ddx260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
|
50
|
Shen K, Calamini B, Fauerbach JA, Ma B, Shahmoradian SH, Serrano Lachapel IL, Chiu W, Lo DC, Frydman J. Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract. eLife 2016; 5. [PMID: 27751235 PMCID: PMC5135392 DOI: 10.7554/elife.18065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases are linked to amyloid aggregation. In Huntington’s disease (HD), neurotoxicity correlates with an increased aggregation propensity of a polyglutamine (polyQ) expansion in exon 1 of mutant huntingtin protein (mHtt). Here we establish how the domains flanking the polyQ tract shape the mHtt conformational landscape in vitro and in neurons. In vitro, the flanking domains have opposing effects on the conformation and stabilities of oligomers and amyloid fibrils. The N-terminal N17 promotes amyloid fibril formation, while the C-terminal Proline Rich Domain destabilizes fibrils and enhances oligomer formation. However, in neurons both domains act synergistically to engage protective chaperone and degradation pathways promoting mHtt proteostasis. Surprisingly, when proteotoxicity was assessed in rat corticostriatal brain slices, either flanking region alone sufficed to generate a neurotoxic conformation, while the polyQ tract alone exhibited minimal toxicity. Linking mHtt structural properties to its neuronal proteostasis should inform new strategies for neuroprotection in polyQ-expansion diseases. DOI:http://dx.doi.org/10.7554/eLife.18065.001 Huntington’s disease is a neurodegenerative disorder in which misshapen proteins accumulate in the brain and kill neurons. The misshapen proteins form as a result of specific mutations in the gene that encodes a protein called huntingtin. These mutations result in a region of the protein called the polyQ tract being longer than normal. Other regions of huntingtin that are near to the polyQ tract can dramatically change the behavior of the mutant protein. Shen et al. investigated how these regions control the shape of mutant huntingtin and how this affects the toxicity of the mutant protein in neurons. The experiments found that the two regions on either side of the polyQ tract dramatically change the shape of mutant huntingtin proteins. In the absence of these flanking regions, the extended polyQ region is not very toxic, demonstrating that the flanking sequences play important roles in generating the toxic protein shapes. These flanking regions help mutant huntingtin to form a particular shape that was strongly linked with the death of neurons in rat brain slices. The flanking regions also change the way that the cellular machinery in neurons recognizes mutated huntingtin proteins and acts to prevent them from causing harm. Misshapen forms of other proteins are responsible for causing other neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Therefore, the findings of Shen et al. may help researchers to develop new drugs for these conditions, as well as for Huntingdon’s disease. DOI:http://dx.doi.org/10.7554/eLife.18065.002
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Barbara Calamini
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jonathan A Fauerbach
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Boxue Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Sarah H Shahmoradian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Ivana L Serrano Lachapel
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| |
Collapse
|