1
|
Zawistowski RK, Crane BR. Differential Responses in the Core, Active Site and Peripheral Regions of Cytochrome c Peroxidase to Extreme Pressure and Temperature. J Mol Biol 2024; 436:168799. [PMID: 39332669 PMCID: PMC11563881 DOI: 10.1016/j.jmb.2024.168799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
In consideration of life in extreme environments, the effects of hydrostatic pressure on proteins at the atomic level have drawn substantial interest. Large deviations of temperature and pressure from ambient conditions can shift the free energy landscape of proteins to reveal otherwise lowly populated structural states and even promote unfolding. We report the crystal structure of the heme-containing peroxidase, cytochrome c peroxidase (CcP) at 1.5 and 3.0 kbar and make comparisons to structures determined at 1.0 bar and cryo-temperatures (100 K). Pressure produces anisotropic changes in CcP, but compressibility plateaus after 1.5 kbar. CcP responds to pressure with volume declines at the periphery of the protein where B-factors are relatively high but maintains nearly intransient core structure, hydrogen bonding interactions and active site channels. Changes in active-site solvation and heme ligation reveal pressure sensitivity to protein-ligand interactions and a potential docking site for the substrate peroxide. Compression at the surface affects neither alternate side-chain conformers nor B-factors. Thus, packing in the core, which resembles a crystalline solid, limits motion and protects the active site, whereas looser packing at the surface preserves side-chain dynamics. These data demonstrate that conformational dynamics and packing densities are not fully correlated in proteins and that encapsulation of cofactors by the polypeptide can provide a precisely structured environment resistant to change across a wide range of physical conditions.
Collapse
Affiliation(s)
- Rebecca K Zawistowski
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Dixit VA, Blumberger J, Vyas SK. Methemoglobin formation in mutant hemoglobin α chains: electron transfer parameters and rates. Biophys J 2021; 120:3807-3819. [PMID: 34265263 DOI: 10.1016/j.bpj.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022] Open
Abstract
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73-96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27-30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.
Collapse
Affiliation(s)
- Vaibhav A Dixit
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India.
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Shivam Kumar Vyas
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India
| |
Collapse
|
3
|
Ru X, Crane BR, Zhang P, Beratan DN. Why Do Most Aromatics Fail to Support Hole Hopping in the Cytochrome c Peroxidase-Cytochrome c Complex? J Phys Chem B 2021; 125:7763-7773. [PMID: 34235935 DOI: 10.1021/acs.jpcb.1c05064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome c peroxidase (CcP)-cytochrome c (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex. Experimental studies find that when Trp191 is substituted by tyrosine, phenylalanine, or redox-active aniline derivatives bound in the W191G cavity, enzymatic activity and charge recombination rates both decrease. Theoretical analysis of these CcP:Cc complexes finds that the ET kinetics depend strongly on the chemistry of the modified Trp site. The computed electronic couplings in the W191F and W191G species are orders of magnitude smaller than in the native protein, due largely to the absence of a hopping intermediate and the large tunneling distance. Small molecules bound in the W191G cavity are weakly coupled electronically to the Cc heme, and the structural disorder of the guest molecule in the binding pocket may contribute further to the lack of enzymatic activity. The couplings in W191Y are not substantially weakened compared to the native species, but the redox potential difference for tyrosine vs tryptophan oxidation accounts for the slower rate in the Tyr mutant. Thus, theoretical analysis explains why only the native Trp supports rapid hole hopping in the CcP:Cc complex. Favorable free energies and electronic couplings are essential for establishing an efficient hole hopping relay in this protein-protein complex.
Collapse
Affiliation(s)
- Xuyan Ru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States.,Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
5
|
Payne TM, Yee EF, Dzikovski B, Crane BR. Constraints on the Radical Cation Center of Cytochrome c Peroxidase for Electron Transfer from Cytochrome c. Biochemistry 2016; 55:4807-22. [PMID: 27499202 PMCID: PMC5689384 DOI: 10.1021/acs.biochem.6b00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tryptophan 191 cation radical of cytochrome c peroxidase (CcP) compound I (Cpd I) mediates long-range electron transfer (ET) to cytochrome c (Cc). Here we test the effects of chemical substitution at position 191. CcP W191Y forms a stable tyrosyl radical upon reaction with peroxide and produces spectral properties similar to those of Cpd I but has low reactivity toward reduced Cc. CcP W191G and W191F variants also have low activity, as do redox ligands that bind within the W191G cavity. Crystal structures of complexes between Cc and CcP W191X (X = Y, F, or G), as well as W191G with four bound ligands reveal similar 1:1 association modes and heme pocket conformations. The ligands display structural disorder in the pocket and do not hydrogen bond to Asp235, as does Trp191. Well-ordered Tyr191 directs its hydroxyl group toward the porphyrin ring, with no basic residue in the range of interaction. CcP W191X (X = Y, F, or G) variants substituted with zinc-porphyrin (ZnP) undergo photoinduced ET with Cc(III). Their slow charge recombination kinetics that result from loss of the radical center allow resolution of difference spectra for the charge-separated state [ZnP(+), Cc(II)]. The change from a phenyl moiety at position 191 in W191F to a water-filled cavity in W191G produces effects on ET rates much weaker than the effects of the change from Trp to Phe. Low net reactivity of W191Y toward Cc(II) derives either from the inability of ZnP(+) or the Fe-CcP ferryl to oxidize Tyr or from the low potential of the resulting neutral Tyr radical.
Collapse
Affiliation(s)
- Thomas M. Payne
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Estella F. Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca 14850, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C)
| |
Collapse
|
6
|
McGovern RE, Feifel SC, Lisdat F, Crowley PB. Cytochrom-c-Calixaren-Kristalle auf Elektroden: intermolekularer Elektronentransfer zwischen definiert lokalisierten Redoxzentren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
McGovern RE, Feifel SC, Lisdat F, Crowley PB. Microscale Crystals of Cytochrome cand Calixarene on Electrodes: Interprotein Electron Transfer between Defined Sites. Angew Chem Int Ed Engl 2015; 54:6356-9. [DOI: 10.1002/anie.201500191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/11/2022]
|
8
|
Page TR, Hoffman BM. Control of cyclic photoinitiated electron transfer between cytochrome c peroxidase (W191F) and cytochrome c by formation of dynamic binary and ternary complexes. Biochemistry 2015; 54:1188-97. [PMID: 25629200 DOI: 10.1021/bi500888y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extensive studies of the physiological protein-protein electron-transfer (ET) complex between yeast cytochrome c peroxidase (CcP) and cytochrome c (Cc) have left unresolved questions about how formation and dissociation of binary and ternary complexes influence ET. We probe this issue through a study of the photocycle of ET between Zn-protoporphyrin IX-substituted CcP(W191F) (ZnPCcP) and Cc. Photoexcitation of ZnPCcP in complex with Fe(3+)Cc initiates the photocycle: charge-separation ET, [(3)ZnPCcP, Fe(3+)Cc] → [ZnP(+)CcP, Fe(2+)Cc], followed by charge recombination, [ZnP(+)CcP, Fe(2+)Cc] → [ZnPCcP, Fe(3+)Cc]. The W191F mutation eliminates fast hole hopping through W191, enhancing accumulation of the charge-separated intermediate and extending the time scale for binding and dissociation of the charge-separated complex. Both triplet quenching and the charge-separated intermediate were monitored during titrations of ZnPCcP with Fe(3+)Cc, Fe(2+)Cc, and redox-inert CuCc. The results require a photocycle that includes dissociation and/or recombination of the charge-separated binary complex and a charge-separated ternary complex, [ZnP(+)CcP, Fe(2+)Cc, Fe(3+)Cc]. The expanded kinetic scheme formalizes earlier proposals of "substrate-assisted product dissociation" within the photocycle. The measurements yield the thermodynamic affinity constants for binding the first and second Cc: KI = 10(-7) M(-1), and KII = 10(-4) M(-1). However, two-site analysis of the thermodynamics of formation of the ternary complex reveals that Cc binds at the weaker-binding site with much greater affinity than previously recognized and places upper bounds on the contributions of repulsion between the two Cc's of the ternary complex. In conjunction with recent nuclear magnetic resonance studies, the analysis further suggests a dynamic view of the ternary complex, wherein neither Cc necessarily faithfully adopts the crystal-structure configuration because of Cc-Cc repulsion.
Collapse
Affiliation(s)
- Taylor R Page
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | |
Collapse
|
9
|
De March M, Demitri N, De Zorzi R, Casini A, Gabbiani C, Guerri A, Messori L, Geremia S. Nitrate as a probe of cytochrome c surface: Crystallographic identification of crucial “hot spots” for protein–protein recognition. J Inorg Biochem 2014; 135:58-67. [DOI: 10.1016/j.jinorgbio.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 11/30/2022]
|
10
|
Takematsu K, Williamson H, Blanco-Rodríguez AM, Sokolová L, Nikolovski P, Kaiser JT, Towrie M, Clark IP, Vlček A, Winkler JR, Gray HB. Tryptophan-accelerated electron flow across a protein-protein interface. J Am Chem Soc 2013; 135:15515-25. [PMID: 24032375 PMCID: PMC3855362 DOI: 10.1021/ja406830d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new metallolabeled blue copper protein, Re126W122Cu(I) Pseudomonas aeruginosa azurin, which has three redox sites at well-defined distances in the protein fold: Re(I)(CO)3(4,7-dimethyl-1,10-phenanthroline) covalently bound at H126, a Cu center, and an indole side chain W122 situated between the Re and Cu sites (Re-W122(indole) = 13.1 Å, dmp-W122(indole) = 10.0 Å, Re-Cu = 25.6 Å). Near-UV excitation of the Re chromophore leads to prompt Cu(I) oxidation (<50 ns), followed by slow back ET to regenerate Cu(I) and ground-state Re(I) with biexponential kinetics, 220 ns and 6 μs. From spectroscopic measurements of kinetics and relative ET yields at different concentrations, it is likely that the photoinduced ET reactions occur in protein dimers, (Re126W122Cu(I))2 and that the forward ET is accelerated by intermolecular electron hopping through the interfacial tryptophan: *Re//←W122←Cu(I), where // denotes a protein-protein interface. Solution mass spectrometry confirms a broad oligomer distribution with prevalent monomers and dimers, and the crystal structure of the Cu(II) form shows two Re126W122Cu(II) molecules oriented such that redox cofactors Re(dmp) and W122-indole on different protein molecules are located at the interface at much shorter intermolecular distances (Re-W122(indole) = 6.9 Å, dmp-W122(indole) = 3.5 Å, and Re-Cu = 14.0 Å) than within single protein folds. Whereas forward ET is accelerated by hopping through W122, BET is retarded by a space jump at the interface that lacks specific interactions or water molecules. These findings on interfacial electron hopping in (Re126W122Cu(I))2 shed new light on optimal redox-unit placements required for functional long-range charge separation in protein complexes.
Collapse
Affiliation(s)
- Kana Takematsu
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Williamson
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ana María Blanco-Rodríguez
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| | - Lucie Sokolová
- Institute of Physical and Theoretical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Pavle Nikolovski
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T. Kaiser
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Antonín Vlček
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Jiang N, Kuznetsov A, Nocek JM, Hoffman BM, Crane BR, Hu X, Beratan DN. Distance-independent charge recombination kinetics in cytochrome c-cytochrome c peroxidase complexes: compensating changes in the electronic coupling and reorganization energies. J Phys Chem B 2013; 117:9129-41. [PMID: 23895339 PMCID: PMC3809023 DOI: 10.1021/jp401551t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Charge recombination rate constants vary no more than 3-fold for interprotein ET in the Zn-substituted wild type (WT) cytochrome c peroxidase (CcP):cytochrome c (Cc) complex and in complexes with four mutants of the Cc protein (i.e., F82S, F82W, F82Y, and F82I), despite large differences in the ET distance. Theoretical analysis indicates that charge recombination for all complexes involves a combination of tunneling and hopping via Trp191. For three of the five structures (WT and F82S(W)), the protein favors hopping more than that in the other two structures that have longer heme → ZnP distances (F82Y(I)). Experimentally observed biexponential ET kinetics is explained by the complex locking in alternative coupling pathways, where the acceptor hole state is either primarily localized on ZnP (slow phase) or on Trp191 (fast phase). The large conformational differences between the CcP:Cc interface for the F82Y(I) mutants compared to that the WT and F82S(W) complexes are predicted to change the reorganization energies for the CcP:Cc ET reactions because of changes in solvent exposure and interprotein ET distances. Since the recombination reaction is likely to occur in the inverted Marcus regime, an increased reorganization energy compensates the decreased role for hopping recombination (and the longer transfer distance) in the F82Y(I) mutants. Taken together, coupling pathway and reorganization energy effects for the five protein complexes explain the observed insensitivity of recombination kinetics to donor-acceptor distance and docking pose and also reveals how hopping through aromatic residues can accelerate long-range ET.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, Duke University, Durham, NC 27708
| | | | - Judith M. Nocek
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Xiangqian Hu
- Department of Chemistry, Duke University, Durham, NC 27708
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, NC 27708
- Department of Biochemistry, Duke University, Durham, NC 27708
- Department of Physics, Duke University, Durham, NC 27708
| |
Collapse
|
12
|
Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins. Chem Asian J 2013; 8:1646-60. [DOI: 10.1002/asia.201300347] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/20/2023]
|
13
|
Hamp T, Rost B. Alternative protein-protein interfaces are frequent exceptions. PLoS Comput Biol 2012; 8:e1002623. [PMID: 22876170 PMCID: PMC3410849 DOI: 10.1371/journal.pcbi.1002623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached 68%. Conversely, the interfaces differed entirely for 12-29% of all comparisons. All these estimates were calculated after redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few examples. An extreme case was a change of the interacting domains between two observations of the same biological interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the probability of observing alternative binding modes increases with the number of copies. Even after removing the special cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial for function.
Collapse
Affiliation(s)
- Tobias Hamp
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
| | - Burkhard Rost
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
- Institute of Advanced Study (IAS), TUM, Garching, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Moal IH, Fernández-Recio J. SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models. ACTA ACUST UNITED AC 2012; 28:2600-7. [PMID: 22859501 DOI: 10.1093/bioinformatics/bts489] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MOTIVATION Empirical models for the prediction of how changes in sequence alter protein-protein binding kinetics and thermodynamics can garner insights into many aspects of molecular biology. However, such models require empirical training data and proper validation before they can be widely applied. Previous databases contained few stabilizing mutations and no discussion of their inherent biases or how this impacts model construction or validation. RESULTS We present SKEMPI, a database of 3047 binding free energy changes upon mutation assembled from the scientific literature, for protein-protein heterodimeric complexes with experimentally determined structures. This represents over four times more data than previously collected. Changes in 713 association and dissociation rates and 127 enthalpies and entropies were also recorded. The existence of biases towards specific mutations, residues, interfaces, proteins and protein families is discussed in the context of how the data can be used to construct predictive models. Finally, a cross-validation scheme is presented which is capable of estimating the efficacy of derived models on future data in which these biases are not present. AVAILABILITY The database is available online at http://life.bsc.es/pid/mutation_database/.
Collapse
Affiliation(s)
- Iain H Moal
- Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Supercomputing Center, Barcelona, Spain
| | | |
Collapse
|
15
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
16
|
Volkov AN, Nicholls P, Worrall JA. The complex of cytochrome c and cytochrome c peroxidase: The end of the road? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1482-503. [DOI: 10.1016/j.bbabio.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
|
17
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano Groups as Probes of Protein Microenvironments and Dynamics. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano groups as probes of protein microenvironments and dynamics. Angew Chem Int Ed Engl 2011; 50:8333-7. [PMID: 21780257 DOI: 10.1002/anie.201101016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/26/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
19
|
Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH, Albeck S, Unger T, Hu W, Liu G, Delbecq S, Montelione G, Spiegel C, Liu DR, Baker D. A de novo protein binding pair by computational design and directed evolution. Mol Cell 2011; 42:250-60. [PMID: 21458342 PMCID: PMC3102007 DOI: 10.1016/j.molcel.2011.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/19/2010] [Accepted: 02/07/2011] [Indexed: 12/25/2022]
Abstract
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.
Collapse
Affiliation(s)
- John Karanicolas
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Center for Bioinformatics and Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045-7534
| | - Jacob E. Corn
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Irwin Chen
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | | | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Sun H. Peck
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Shira Albeck
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Wenxin Hu
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Scott Delbecq
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - Gaetano Montelione
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - David R. Liu
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| |
Collapse
|
20
|
Koshiyama T, Shirai M, Hikage T, Tabe H, Tanaka K, Kitagawa S, Ueno T. Post-Crystal Engineering of Zinc-Substituted Myoglobin to Construct a Long-Lived Photoinduced Charge-Separation System. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Koshiyama T, Shirai M, Hikage T, Tabe H, Tanaka K, Kitagawa S, Ueno T. Post-crystal engineering of zinc-substituted myoglobin to construct a long-lived photoinduced charge-separation system. Angew Chem Int Ed Engl 2011; 50:4849-52. [PMID: 21495132 DOI: 10.1002/anie.201008004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/14/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Tomomi Koshiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University iCeMS Lab Funai Center, Kyoto University Katsura, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Blanco-Rodríguez AM, Di Bilio AJ, Shih C, Museth AK, Clark IP, Towrie M, Cannizzo A, Sudhamsu J, Crane BR, Sýkora J, Winkler JR, Gray HB, Záliš S, Vlček A. Phototriggering electron flow through Re(I)-modified Pseudomonas aeruginosa azurins. Chemistry 2011; 17:5350-61. [PMID: 21469225 DOI: 10.1002/chem.201002162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/12/2010] [Indexed: 11/07/2022]
Abstract
The [Re(I)(CO)(3)(4,7-dimethyl-1,10-phenanthroline)(histidine-124)(tryptophan-122)] complex, denoted [Re(I)(dmp)(W122)], of Pseudomonas aeruginosa azurin behaves as a single photoactive unit that triggers very fast electron transfer (ET) from a distant (2 nm) Cu(I) center in the protein. Analysis of time-resolved (ps-μs) IR spectroscopic and kinetics data collected on [Re(I)(dmp)(W122)AzM] (in which M=Zn(II), Cu(II), Cu(I); Az=azurin) and position-122 tyrosine (Y), phenylalanine (F), and lysine (K) mutants, together with excited-state DFT/time-dependent (TD)DFT calculations and X-ray structural characterization, reveal the character, energetics, and dynamics of the relevant electronic states of the [Re(I)(dmp)(W122)] unit and a cascade of photoinduced ET and relaxation steps in the corresponding Re-azurins. Optical population of [Re(I)(imidazole-H124)(CO)(3)]→dmp (1)CT states (CT=charge transfer) is followed by around 110 fs intersystem crossing and about 600 ps structural relaxation to a (3)CT state. The IR spectrum indicates a mixed Re(I)(CO)(3),A→dmp/π→π(*)(dmp) character for aromatic amino acids A122 (A=W, Y, F) and Re(I)(CO)(3)→dmp metal-ligand charge transfer (MLCT) for [Re(I)(dmp)(K122)AzCu(II)]. In a few ns, the (3)CT state of [Re(I)(dmp)(W122)AzM] establishes an equilibrium with the [Re(I)(dmp(.-))(W122(.+))AzM] charge-separated state, (3)CS, whereas the (3)CT state of the other Y, F, and K122 proteins decays to the ground state. In addition to this main pathway, (3)CS is populated by fs- and ps-W(indole)→Re(II) ET from (1)CT and the initially "hot" (3)CT states, respectively. The (3)CS state undergoes a tens-of-ns dmp(.-)→W122(.+) ET recombination leading to the ground state or, in the case of the Cu(I) azurin, a competitively fast (≈30 ns over 1.12 nm) Cu(I)→W(.+) ET, to give [Re(I)(dmp(.-))(W122)AzCu(II)]. The overall photoinduced Cu(I)→Re(dmp) ET through [Re(I)(dmp)(W122)AzCu(I)] occurs over a 2 nm distance in <50 ns after excitation, with the intervening fast (3)CT-(3)CS equilibrium being the principal accelerating factor. No reaction was observed for the three Y, F, and K122 analogues. Although the presence of [Re(dmp)(W122)AzCu(II)] oligomers in solution was documented by mass spectrometry and phosphorescence anisotropy, the kinetics data do not indicate any significant interference from the intermolecular ET steps. The ground-state dmp-indole π-π interaction together with well-matched W/W(.+) and excited-state [Re(II)(CO)(3)(dmp(.-))]/[Re(I)(CO)(3)(dmp(.-))] potentials that result in very rapid electron interchange and (3)CT-(3)CS energetic proximity, are the main factors responsible for the unique ET behavior of [Re(I)(dmp)(W122)]-containing azurins.
Collapse
Affiliation(s)
- Ana María Blanco-Rodríguez
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sokolová L, Williamson H, Sýkora J, Hof M, Gray HB, Brutschy B, Vlcek A. Mass spectrometric characterization of oligomers in Pseudomonas aeruginosa azurin solutions. J Phys Chem B 2011; 115:4790-800. [PMID: 21452827 DOI: 10.1021/jp110460k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have employed laser-induced liquid bead ion desorption mass spectroscopy (LILBID MS) to study the solution behavior of Pseudomonas aeruginosa azurin as well as two mutants and corresponding Re-labeled derivatives containing a Re(CO)(3)(4,7-dimethyl-1,10-phenanthroline)(+) chromophore appended to a surface histidine. LILBID spectra show broad oligomer distributions whose particular patterns depend on the solution composition (pure H(2)O, 20-30 mM NaCl, 20 and 50 mM NaP(i) or NH(4)P(i) at pH = 7). The distribution maximum shifts to smaller oligomers upon decreasing the azurin concentration and increasing the buffer concentration. Oligomerization is less extensive for native azurin than its mutants. The oligomerization propensities of unlabeled and Re-labeled proteins are generally comparable, and only Re126 shows some preference for the dimer that persists even in highly diluted solutions. Peak shifts to higher masses and broadening in 20-50 mM NaP(i) confirm strong azurin association with buffer ions and solvation. We have found that LILBID MS reveals the solution behavior of weakly bound nonspecific protein oligomers, clearly distinguishing individual components of the oligomer distribution. Independently, average data on oligomerization and the dependence on solution composition were obtained by time-resolved anisotropy of the Re-label photoluminescence that confirmed relatively long rotation correlation times, 6-30 ns, depending on Re-azurin and solution composition. Labeling proteins with Re-chromophores that have long-lived phosphorescence extends the time scale of anisotropy measurements to hundreds of nanoseconds, thereby opening the way for investigations of large oligomers with long rotation times.
Collapse
Affiliation(s)
- Lucie Sokolová
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Shifting the equilibrium between the encounter state and the specific form of a protein complex by interfacial point mutations. J Am Chem Soc 2010; 132:11487-95. [PMID: 20672804 DOI: 10.1021/ja100867c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental studies have confirmed a long-held view that protein complex formation proceeds via a short-lived encounter state. The population of this transient intermediate, stabilized mainly by long-range electrostatic interactions, varies among different complexes. Here we show that the occupancy of the encounter state can be modulated across a broad range by single point mutations of interfacial residues. Using a combination of Monte Carlo simulations and paramagnetic relaxation enhancement NMR spectroscopy, we illustrate that it is possible to both enhance and diminish the binding specificity in an electron transfer complex of yeast cytochrome c (Cc) and cytochrome c peroxidase. The Cc T12A mutation decreases the population of the encounter to 10% as compared with 30% in the wild-type complex. More dramatically, the Cc R13A substitution reverses the relative occupancies of the stereospecific and the encounter forms, with the latter now being the dominant species with the population of 80%. This finding indicates that the encounter state can make a large contribution to the stability of a protein complex. Also, it appears that by adjusting the amount of the encounter through a judicious choice of point mutations, we can remodel the energy landscape of a protein complex and tune its binding specificity.
Collapse
|
25
|
Tejero J, Hannibal L, Mustovich A, Stuehr DJ. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. J Biol Chem 2010; 285:27232-27240. [PMID: 20592038 DOI: 10.1074/jbc.m110.138842] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitric-oxide synthases (NOS, EC 1.14.13.39) are modular enzymes containing attached flavoprotein and heme (NOSoxy) domains. To generate nitric oxide (NO), the NOS FMN subdomain must interact with the NOSoxy domain to deliver electrons to the heme for O(2) activation during catalysis. The molecular basis and how the interaction is regulated is unclear. We explored the role of eight positively charged residues that create an electropositive patch on NOSoxy in enabling the electron transfer by incorporating mutations that neutralized or reversed their individual charges. Stopped-flow and steady-state experiments revealed that individual charges at Lys(423), Lys(620), and Lys(660) were the most important in enabling heme reduction in nNOS. Charge reversal was more disruptive than neutralization in all cases, and the effects on heme reduction were not due to a weakening in the thermodynamic driving force for heme reduction. Mutant NO synthesis activities displayed a complex pattern that could be simulated by a global model for NOS catalysis. This analysis revealed that the mutations impact the NO synthesis activity only through their effects on heme reduction rates. We conclude that heme reduction and NO synthesis in nNOS is enabled by electrostatic interactions involving Lys(423), Lys(620), and Lys(660), which form a triad of positive charges on the NOSoxy surface. A simulated docking study reveals how electrostatic interactions of this triad can enable an FMN-NOSoxy interaction that is productive for electron transfer.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Luciana Hannibal
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Anthony Mustovich
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
26
|
Crowley PB, Matias PM, Mi H, Firbank SJ, Banfield MJ, Dennison C. Regulation of protein function: crystal packing interfaces and conformational dimerization. Biochemistry 2010; 47:6583-9. [PMID: 18479147 DOI: 10.1021/bi800125h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accepted view of interprotein electron transport involves molecules diffusing between donor and acceptor redox sites. An emerging alternative hypothesis is that efficient long-range electron transport can be achieved through proteins arranged in supramolecular assemblies. In this study, we have investigated the crystal packing interfaces in three crystal forms of plastocyanin, an integral component of the photosynthetic electron transport chain, and discuss their potential relevance to in vivo supramolecular assemblies. Symmetry-related protein chains within these crystals have Cu-Cu separations of <25 A, a distance that readily supports electron transfer. In one structure, the plastocyanin molecule exists in two forms in which a backbone displacement coupled with side chain rearrangements enables the modulation of protein-protein interfaces.
Collapse
Affiliation(s)
- Peter B Crowley
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
27
|
Ly HK, Marti MA, Martin DF, Alvarez-Paggi D, Meister W, Kranich A, Weidinger IM, Hildebrandt P, Murgida DH. Thermal Fluctuations Determine the Electron-Transfer Rates of Cytochrome c in Electrostatic and Covalent Complexes. Chemphyschem 2010; 11:1225-35. [DOI: 10.1002/cphc.200900966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Carver AM, De M, Bayraktar H, Rana S, Rotello VM, Knapp MJ. Intermolecular electron-transfer catalyzed on nanoparticle surfaces. J Am Chem Soc 2009; 131:3798-9. [PMID: 19243185 DOI: 10.1021/ja806064t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-functionalized nanoparticles enhance the rate of electron transfer (ET) between Cyt c(Fe(2+)) and Co(phen)(3)(3+) by a factor of 10(5) through simultaneous electrostatic binding of an ET donor and acceptor.
Collapse
Affiliation(s)
- Adrienne M Carver
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nomoto K, Kume S, Nishihara H. A single molecular system gating electron transfer by ring inversion of a methylpyridylpyrimidine ligand on copper. J Am Chem Soc 2009; 131:3830-1. [PMID: 19254028 DOI: 10.1021/ja8097564] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have succeeded in constructing an electron-transfer gating system involving a copper complex, 1.BF(4), that is regulated by the rotational motion of a pyridylpyrimidine ligand. 4-Methyl-2-(2'-pyridyl)pyrimidine confined between two bulky groups underwent a dynamic process derived from pyrimidine-ring coordination inversion between inner and outer isomers, and these isomers interconverted with each other in solution with a barrier of 73 kJ mol(-1) at 293 K. As the ring-inversion process induces a change in redox potential on the copper center, electron transfer between 1(+) and the electrode can be gated through on/off control of the inversion by changing the temperature, resulting in a -0.14 V shift of the electrode potential.
Collapse
Affiliation(s)
- Kuniharu Nomoto
- Department of Chemistry, Graduate school of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
30
|
Patel AD, Nocek JM, Hoffman BM. Kinetic-dynamic model for conformational control of an electron transfer photocycle: mixed-metal hemoglobin hybrids. J Phys Chem B 2008; 112:11827-37. [PMID: 18717535 PMCID: PMC2672620 DOI: 10.1021/jp8054679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is becoming increasingly clear that the transfer of an electron across a protein-protein interface is coupled to the dynamics of conformational conversion between and within ensembles of interface conformations. Electron transfer (ET) reactions in conformationally mobile systems provide a "clock" against which the rapidity of a dynamic process may be measured, and we here report a simple kinetic (master equation) model that self-consistently incorporates conformational dynamics into an ET photocycle comprised of a photoinitiated "forward" step and thermal return to ground. This kinetic/dynamic (KD) model assumes an ET complex exists as multiple interconverting conformations which partition into an ET-optimized (reactive; R) population and a less-reactive population ( S). We take the members of each population to be equivalent by constraining them to have the same conformational energy, the same average rate constant for conversion to members of the other population, and the same rate constants for forward and back ET. The result is a mapping of a complicated energy surface onto the simple "gating", two-well surface, but with rate constants that are defined microscopically. This model successfully describes the changes in the ET photocycle within the "predocked" mixed-metal hemoglobin (Hb) hybrid, [alpha(Zn), beta(Fe3+N 3 (-))], as conformational kinetics are modulated by variations in viscosity (eta = 1-15 cP; 20 degrees C). The description reveals how the conformational "routes" by which a hybrid progresses through a photocycle differ in different dynamic regimes. Even at eta = 1 cP, the populations are not in fast exchange, and ET involves a complex interplay between conformational and ET processes; at intermediate viscosities the hybrid exhibits "differential dynamics" in which the forward and back ET processes involve different initial ensembles of configurational substates; by eta = 15 cP, the slow-exchange limit is approached. Even at low viscosity, the ET-coupled motions are fairly slow, with rate constants of <10 (3) s (-1). Current ideas about Hb function lead to the testable hypothesis that ET in the hybrid may be coupled to allosteric fluctuations of the two [alpha 1, beta 2] dimers of Hb.
Collapse
Affiliation(s)
- Ami D Patel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
31
|
Replica exchange simulations of transient encounter complexes in protein-protein association. Proc Natl Acad Sci U S A 2008; 105:12855-60. [PMID: 18728193 DOI: 10.1073/pnas.0802460105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent paramagnetic relaxation enhancement (PRE) studies on several weakly interacting protein complexes have unequivocally demonstrated the existence of transient encounter complexes. Here, we present a computational method to study protein-protein binding by creating equilibrium ensembles that include both specific and nonspecific protein complexes. In a joint analysis of simulation and experiment we explore the physical nature and underlying physicochemical characteristics of encounter complexes involving three protein-protein interactions of the bacterial phosphotransferase system. Replica exchange Monte Carlo simulations using a coarse-grained energy function recover the structures of the specific complexes and produce binding affinities in good agreement with experiment. Together with the specific complex, a relatively small number of distinct nonspecific complexes largely accounts for the measured PRE data. The combined relative population of the latter is less than approximately 10%. The binding interfaces of the specific and nonspecific complexes differ primarily in size but exhibit similar amino acid compositions. We find that the overall funnel-shaped energy landscape of complex formation is dominated by the specific complex, a small number of structured nonspecific complexes, and a diffuse cloud of loosely bound complexes connecting the specific and nonspecific binding sites with each other and the unbound state. Nonspecific complexes may not only accelerate the binding kinetics by enhancing the rate of success of random diffusional encounters but also play a role in protein function as alternative binding modes.
Collapse
|
32
|
Pearl NM, Jacobson T, Meyen C, Clementz AG, Ok EY, Choi E, Wilson K, Vitello LB, Erman JE. Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: evidence for a single, catalytically active, cytochrome c binding domain. Biochemistry 2008; 47:2766-75. [PMID: 18232645 DOI: 10.1021/bi702271r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.
Collapse
Affiliation(s)
- Naw May Pearl
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J Mol Biol 2007; 375:1416-33. [PMID: 18083189 DOI: 10.1016/j.jmb.2007.11.063] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
We develop coarse-grained models and effective energy functions for simulating thermodynamic and structural properties of multiprotein complexes with relatively low binding affinity (K(d) >1 microM) and apply them to binding of Vps27 to membrane-tethered ubiquitin. Folded protein domains are represented as rigid bodies. The interactions between the domains are treated at the residue level with amino-acid-dependent pair potentials and Debye-Hückel-type electrostatic interactions. Flexible linker peptides connecting rigid protein domains are represented as amino acid beads on a polymer with appropriate stretching, bending, and torsion-angle potentials. In simulations of membrane-attached protein complexes, interactions between amino acids and the membrane are described by residue-dependent short-range potentials and long-range electrostatics. We parameterize the energy functions by fitting the osmotic second virial coefficient of lysozyme and the binding affinity of the ubiquitin-CUE complex. For validation, extensive replica-exchange Monte Carlo simulations are performed of various protein complexes. Binding affinities for these complexes are in good agreement with the experimental data. The simulated structures are clustered on the basis of distance matrices between two proteins and ranked according to cluster population. In approximately 70% of the complexes, the distance root-mean-square is less than 5 A from the experimental structures. In approximately 90% of the complexes, the binding interfaces on both proteins are predicted correctly, and in all other cases at least one interface is correct. Transient and nonspecifically bound structures are also observed. With the validated model, we simulate the interaction between the Vps27 multiprotein complex and a membrane-tethered ubiquitin. Ubiquitin is found to bind preferentially to the two UIM domains of Vps27, but transient interactions between ubiquitin and the VHS and FYVE domains are observed as well. These specific and nonspecific interactions are found to be positively cooperative, resulting in a substantial enhancement of the overall binding affinity beyond the approximately 300 microM of the specific domains. We also find that the interactions between ubiquitin and Vps27 are highly dynamic, with conformational rearrangements enabling binding of Vps27 to diverse targets as part of the multivesicular-body protein-sorting pathway.
Collapse
Affiliation(s)
- Young C Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
34
|
Gradinaru C, Crane BR. Comparison of intra- vs intermolecular long-range electron transfer in crystals of ruthenium-modified azurin. J Phys Chem B 2007; 110:20073-6. [PMID: 17034174 DOI: 10.1021/jp0644309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective metal-ion incorporation and ligand substitution are employed to control whether electrons tunnel over intra- or intermolecular separations in crystals of P. aeruginosa azurin modified with Ru-polypyridine complexes. Cu(1+)-to-Ru3+ electron transfer (ET) across a specific protein-protein interface in the crystal lattice has a time constant 5-10 times longer than ET between the same donor and acceptor within a single protein (tauET = 5 vs 0.5-1.0 micros). Slower intermolecular ET agrees well with a longer distance between redox centers across the inter-protein (18.9 A) compared to the intra-protein separation (17.0 A) and indicates that the closest donor/acceptor pair dominates crystal ET. Lowering the crystal pH accelerates inter-protein ET (tauET = 1.0 micros) but not intra-protein ET. Faster inter-protein ET likely results from a pH-induced peptide bond flip that perturbs hydrogen bonding in the path between Ru and Cu centers on adjacent molecules.
Collapse
|
35
|
Pearl NM, Jacobson T, Arisa M, Vitello LB, Erman JE. Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: mutations near the high-affinity cytochrome c binding site. Biochemistry 2007; 46:8263-72. [PMID: 17580971 PMCID: PMC2547122 DOI: 10.1021/bi700623u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fifteen single-site charge-reversal mutations of yeast cytochrome c peroxidase (CcP) have been constructed to determine the effect of localized charge on the catalytic properties of the enzyme. The mutations are located on the front face of CcP, near the cytochrome c binding site identified in the crystallographic structure of the yeast cytochrome c-CcP complex [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. The mutants are characterized by absorption spectroscopy and hydrogen peroxide reactivity at both pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1-ferrocytochrome c(C102T) as a substrate at pH 7.5. Some of the charge-reversal mutations cause detectable changes in the absorption spectrum, especially at pH 7.5, reflecting changes in the equilibrium between penta- and hexacoordinate heme species in the enzyme. An increase in the amount of hexacoordinate heme in the mutant enzymes correlates with an increase in the fraction of enzyme that does not react with hydrogen peroxide. Steady-state velocity measurements indicate that five of the 15 mutations cause large increases in the Michaelis constant (R31E, D34K, D37K, E118K, and E290K). These data support the hypothesis that the cytochrome c-CcP complex observed in the crystal is the dominant catalytically active complex in solution.
Collapse
Affiliation(s)
- Naw May Pearl
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - Timothy Jacobson
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - Moraa Arisa
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - Lidia B. Vitello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| | - James E. Erman
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115
| |
Collapse
|
36
|
Ueno T, Yokoi N, Abe S, Watanabe Y. Crystal structure based design of functional metal/protein hybrids. J Inorg Biochem 2007; 101:1667-75. [PMID: 17675160 DOI: 10.1016/j.jinorgbio.2007.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/11/2007] [Accepted: 06/18/2007] [Indexed: 11/23/2022]
Abstract
Preparation of metal/protein hybrids is growing into important topics in the field of bioinorganic chemistry. X-ray crystal structure analyses of them provide direct information on unique interactions of metal cations or metal cofactors to understand and design enzymatic functions. In this mini review, the authors focus on the recent studies on the metal/protein hybrids concerning crystal structure analyses since 2002 and our related works. The precise structural determination promise us to deeply understand coordination chemistry in protein scaffold and shows intriguing suggestions on rational design and application use for biocatalysts, metal drugs and so on.
Collapse
Affiliation(s)
- Takafumi Ueno
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
37
|
Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT, Stuehr DJ. A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007; 104:9254-9. [PMID: 17517617 PMCID: PMC1890481 DOI: 10.1073/pnas.0700332104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Mohammed Adam Fadlalla
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Anthony T. Mustovich
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Prytkova TR, Kurnikov IV, Beratan DN. Coupling coherence distinguishes structure sensitivity in protein electron transfer. Science 2007; 315:622-5. [PMID: 17272715 PMCID: PMC3523119 DOI: 10.1126/science.1134862] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Quantum mechanical analysis of electron tunneling in nine thermally fluctuating cytochrome b562 derivatives reveals two distinct protein-mediated coupling limits. A structure-insensitive regime arises for redox partners coupled through dynamically averaged multiple-coupling pathways (in seven of the nine derivatives) where heme-edge coupling leads to the multiple-pathway regime. A structure-dependent limit governs redox partners coupled through a dominant pathway (in two of the nine derivatives) where axial-ligand coupling generates the single-pathway limit and slower rates. This two-regime paradigm provides a unified description of electron transfer rates in 26 ruthenium-modified heme and blue-copper proteins, as well as in numerous photosynthetic proteins.
Collapse
Affiliation(s)
- Tatiana R. Prytkova
- Departments of Chemistry and Biochemistry, Duke University, Durham, NC 27708, USA
| | | | - David N. Beratan
- Departments of Chemistry and Biochemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Volkov AN, Worrall JAR, Holtzmann E, Ubbink M. Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci U S A 2006; 103:18945-50. [PMID: 17146057 PMCID: PMC1748157 DOI: 10.1073/pnas.0603551103] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physiological complex of yeast cytochrome c peroxidase and iso-1-cytochrome c is a paradigm for biological electron transfer. Using paramagnetic NMR spectroscopy, we have determined the conformation of the protein complex in solution, which is shown to be very similar to that observed in the crystal structure [Pelletier H, Kraut J (1992) Science 258:1748-1755]. Our results support the view that this transient electron transfer complex is dynamic. The solution structure represents the dominant protein-protein orientation, which, according to our estimates, is occupied for >70% of the lifetime of the complex, with the rest of the time spent in the dynamic encounter state. Based on the observed paramagnetic effects, we have delineated the conformational space sampled by the protein molecules during the dynamic part of the interaction, providing experimental support for the theoretical predictions of the classical Brownian dynamics study [Northrup SH, Boles JO, Reynolds JCL (1988) Science 241:67-70]. Our findings corroborate the dynamic behavior of this complex and offer an insight into the mechanism of the protein complex formation in solution.
Collapse
Affiliation(s)
- Alexander N. Volkov
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jonathan A. R. Worrall
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Elodie Holtzmann
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 2006; 45:4998-5009. [PMID: 16605268 PMCID: PMC2527545 DOI: 10.1021/bi0525573] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During apoptosis, cytochrome c (cyt c) is released from intermembrane space of mitochondria into the cytosol where it triggers the caspase-dependent machinery. We discovered that cyt c plays another critical role in early apoptosis as a cardiolipin (CL)-specific oxygenase to produce CL hydroperoxides required for release of pro-apoptotic factors [Kagan, V. E., et al. (2005) Nat. Chem. Biol. 1, 223-232]. We quantitatively characterized the activation of peroxidase activity of cyt c by CL and hydrogen peroxide. At low ionic strength and high CL/cyt c ratios, peroxidase activity of the CL/cyt c complex was increased >50 times. This catalytic activity correlated with partial unfolding of cyt c monitored by Trp(59) fluorescence and absorbance at 695 nm (Fe-S(Met(80)) band). The peroxidase activity increase preceded the loss of protein tertiary structure. Monounsaturated tetraoleoyl-CL (TOCL) induced peroxidase activity and unfolding of cyt c more effectively than saturated tetramyristoyl-CL (TMCL). TOCL/cyt c complex was found more resistant to dissociation by high salt concentration. These findings suggest that electrostatic CL/cyt c interactions are central to the initiation of the peroxidase activity, while hydrophobic interactions are involved when cyt c's tertiary structure is lost. In the presence of CL, cyt c peroxidase activity is activated at lower H(2)O(2) concentrations than for isolated cyt c molecules. This suggests that redistribution of CL in the mitochondrial membranes combined with increased production of H(2)O(2) can switch on the peroxidase activity of cyt c and CL oxidation in mitochondria-a required step in execution of apoptosis.
Collapse
Affiliation(s)
- Natalia A Belikova
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Suite 350, Pittsburgh, Pennsylvania 15219-3130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|