1
|
Eltayeb A, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic Factors Behind Long COVID: VI. Combined Impact of G3BPs and SARS-CoV-2 Nucleocapsid Protein on the Viral Persistence and Long COVID. J Cell Biochem 2025; 126:e70038. [PMID: 40415285 DOI: 10.1002/jcb.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The efficient transmission of SARS-CoV-2 caused the COVID-19 pandemic, which affected millions of people around the globe. Despite extensive efforts, specific therapeutic interventions and preventive measures against COVID-19 and its consequences, such as long COVID, have not yet been identified due to the lack of a comprehensive knowledge of the SARS-CoV-2 biology. Therefore, a deeper understanding of the sophisticated strategies employed by SARS-CoV-2 to bypass the host antiviral defense systems is needed. One of these strategies is the inhibition of the Ras GTPase-activating protein-binding protein (GAP SH3-binding protein or G3BP)-dependent host immune response by the SARS-CoV-2 nucleocapsid (N) protein. This inhibition disrupts the formation of stress granules (SGs), which are crucial for antiviral defense. By preventing SG formation, the virus enhances its replication and evades the host's immune response, leading to increased disease severity. Given the involvement of G3BP1 in SG formation and its ability to interact with viral proteins, along with the crucial role of the N protein in the replication of the virus, we hypothesize that these proteins may have a potential role in the pathogenesis of long COVID. Despite the current lack of direct evidence linking these proteins to long COVID, their interactions and functions suggest a possible connection that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
2
|
Vangala VNP, Uversky VN. Intrinsic disorder in protein interaction networks linking cancer with metabolic diseases. Comput Biol Chem 2025; 118:108493. [PMID: 40319601 DOI: 10.1016/j.compbiolchem.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Complex diseases are usually driven by numerous proteins that operate as intricate network systems. Deciphering of their signals is required for more advanced level understanding of the cellular processes driven by protein interactions. Therefore, placing diseases into a framework, where they can be viewed together, represents an important and fruitful approach. The goal of this study was to assess the intrinsic disorder present in the proteins forming PPI networks linking cancer with different human diseases. To this end, we used a set of bioinformatics tools to explore intrinsic disorder and liquid-liquid phase separation predispositions of 340 proteins reported earlier by Hirsch et al. (Cancer Cell (2010) 17(4), 348-361; doi: 10.1016/j.ccr.2010.01.022) as differently expressed in common chronic diseases, such as cancer, obesity, diabetes, and cardiovascular diseases. We further examined selected proteins from this set for their interactability and intrinsic disorder-based functionality. Our analyses demonstrated that intrinsically disordered proteins and proteins with intrinsically disordered regions may act as active network promoters and operate as highly connected hubs, which further enables them to play key roles in the disease pathways. The study also indicated that differently expressed proteins involved in disease progression could be characterized by diverse degrees of intrinsic disorder and LLPS propensity. We hope that our findings in combination with the outputs of the proteomic and functional genomic analyses contain essential clues that can be used in further medical research leading to the design of better therapies.
Collapse
Affiliation(s)
- Veda Naga Priya Vangala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Uversky VN. Functional diversity of intrinsically disordered proteins and their structural heterogeneity: Protein structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:1-15. [PMID: 39947745 DOI: 10.1016/bs.pmbts.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The fact that protein universe is enriched in intrinsic disorder is an accepted truism now. It is also recognized that the phenomenon of protein intrinsic disorder contains keys to answer numerous questions that do not have obvious solutions within the classic "lock-and-key"-based structure-function paradigm. In fact, reality is much more complex than the traditional "one-gene - one-protein - one-function" model, as many (if not most) proteins are multifunctional. This multifunctionality is commonly rooted in the presence of the intrinsically disordered or structurally flexible regions in a protein. Here, in addition to various events at the DNA (genetic variations), mRNA (alternative splicing, alternative promoter usage, alternative initiation of translation, and mRNA editing), and protein levels (post-translational modifications), intrinsic disorder and protein functionality are crucial for generation of proteoforms, which are functionally and structurally different protein forms produced from a single gene. Therefore, since a given protein exists as a dynamic conformational ensemble containing multiple proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials, "protein structure-function continuum" model represents a more realistic way to correlate protein structure and function.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
4
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Heredia-Torrejón M, Montañez R, González-Meneses A, Carcavilla A, Medina MA, Lechuga-Sancho AM. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J Rare Dis 2024; 19:327. [PMID: 39243101 PMCID: PMC11380411 DOI: 10.1186/s13023-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.
Collapse
Affiliation(s)
- María Heredia-Torrejón
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Mother and Child Health and Radiology Department. Area of Clinical Genetics, University of Cadiz. Faculty of Medicine, Cadiz, Spain
| | - Raúl Montañez
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
| | - Antonio González-Meneses
- Division of Dysmorphology, Department of Paediatrics, Virgen del Rocio University Hospital, Sevilla, Spain
- Department of Paediatrics, Medical School, University of Sevilla, Sevilla, Spain
| | - Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046, Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
- Biomedical Research Institute and nanomedicine platform of Málaga IBIMA-BIONAND, E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| | - Alfonso M Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Endocrinology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
| |
Collapse
|
6
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Haj Abdullah Alieh L, Cardoso de Toledo B, Hadarovich A, Toth-Petroczy A, Calegari F. Characterization of alternative splicing during mammalian brain development reveals the extent of isoform diversity and potential effects on protein structural changes. Biol Open 2024; 13:bio061721. [PMID: 39387301 PMCID: PMC11554263 DOI: 10.1242/bio.061721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Regulation of gene expression is critical for fate commitment of stem and progenitor cells during tissue formation. In the context of mammalian brain development, a plethora of studies have described how changes in the expression of individual genes characterize cell types across ontogeny and phylogeny. However, little attention has been paid to the fact that different transcripts can arise from any given gene through alternative splicing (AS). Considered a key mechanism expanding transcriptome diversity during evolution, assessing the full potential of AS on isoform diversity and protein function has been notoriously difficult. Here, we capitalize on the use of a validated reporter mouse line to isolate neural stem cells, neurogenic progenitors and neurons during corticogenesis and combine the use of short- and long-read sequencing to reconstruct the full transcriptome diversity characterizing neurogenic commitment. Extending available transcriptional profiles of the mammalian brain by nearly 50,000 new isoforms, we found that neurogenic commitment is characterized by a progressive increase in exon inclusion resulting in the profound remodeling of the transcriptional profile of specific cortical cell types. Most importantly, we computationally infer the biological significance of AS on protein structure by using AlphaFold2, revealing how radical protein conformational changes can arise from subtle changes in isoforms sequence. Together, our study reveals that AS has a greater potential to impact protein diversity and function than previously thought, independently from changes in gene expression.
Collapse
Affiliation(s)
| | | | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Germany
| |
Collapse
|
8
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
9
|
Yang Y, Xie Y, Li Z, Diala C, Ali M, Li R, Xu Y, Wu A, Kim P, Hosseini SR, Bi E, Zhao H, Zheng WJ. Systematic characterization of protein structural features of alternative splicing isoforms using AlphaFold 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578053. [PMID: 38464054 PMCID: PMC10925173 DOI: 10.1101/2024.01.30.578053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alternative splicing is an important cellular process in eukaryotes, altering pre-mRNA to yield multiple protein isoforms from a single gene. However, our understanding of the impact of alternative splicing events on protein structures is currently constrained by a lack of sufficient protein structural data. To address this limitation, we employed AlphaFold 2, a cutting-edge protein structure prediction tool, to conduct a comprehensive analysis of alternative splicing for approximately 3,000 human genes, providing valuable insights into its impact on the protein structural. Our investigation employed state of the art high-performance computing infrastructure to systematically characterize structural features in alternatively spliced regions and identified changes in protein structure following alternative splicing events. Notably, we found that alternative splicing tends to alter the structure of residues primarily located in coils and beta-sheets. Our research highlighted a significant enrichment of loops and highly exposed residues within human alternatively spliced regions. Specifically, our examination of the Septin-9 protein revealed potential associations between loops and alternative splicing, providing insights into its evolutionary role. Furthermore, our analysis uncovered two missense mutations in the Tau protein that could influence alternative splicing, potentially contributing to the pathogenesis of Alzheimer's disease. In summary, our work, through a thorough statistical analysis of extensive protein structural data, sheds new light on the intricate relationship between alternative splicing, evolution, and human disease.
Collapse
|
10
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 2023; 30:1844-1856. [PMID: 38036695 DOI: 10.1038/s41594-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein-carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Uversky VN. Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:179-210. [PMID: 38220424 DOI: 10.1016/bs.apcsb.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
14
|
Kurgan L, Hu G, Wang K, Ghadermarzi S, Zhao B, Malhis N, Erdős G, Gsponer J, Uversky VN, Dosztányi Z. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nat Protoc 2023; 18:3157-3172. [PMID: 37740110 DOI: 10.1038/s41596-023-00876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 09/24/2023]
Abstract
Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.
Collapse
Affiliation(s)
- Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gábor Erdős
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Zsuzsanna Dosztányi
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
15
|
Nsasra E, Dahan I, Eichler J, Yifrach O. It's Time for Entropic Clocks: The Roles of Random Chain Protein Sequences in Timing Ion Channel Processes Underlying Action Potential Properties. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1351. [PMID: 37761650 PMCID: PMC10527868 DOI: 10.3390/e25091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure-function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corresponding to unstructured random protein chains involved in timing cellular processes. Such clocks were shown to modulate ion channel processes underlying action potential generation, propagation, and transmission. In this review, we survey the role of entropic clocks in timing intra- and inter-molecular binding events of voltage-activated potassium channels involved in gating and clustering processes, respectively, and where both are known to occur according to a similar 'ball and chain' mechanism. We begin by delineating the thermodynamic and timing signatures of a 'ball and chain'-based binding mechanism involving entropic clocks, followed by a detailed analysis of the use of such a mechanism in the prototypical Shaker voltage-activated K+ channel model protein, with particular emphasis on ion channel clustering. We demonstrate how 'chain'-level alternative splicing of the Kv channel gene modulates entropic clock-based 'ball and chain' inactivation and clustering channel functions. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables the functional diversity underlying changes in electrical signaling.
Collapse
Affiliation(s)
| | | | | | - Ofer Yifrach
- Department of Life Sciences, School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (E.N.); (J.E.)
| |
Collapse
|
16
|
Gallo A, Dolfini D, Bernardini A, Gnesutta N, Mantovani R. NF-YA isoforms with alternative splicing of exon-5 in Aves. Genomics 2023; 115:110694. [PMID: 37536396 DOI: 10.1016/j.ygeno.2023.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
NF-YA, the regulatory subunit of the trimeric CCAAT-binding transcription factor NF-Y, is present in vertebrates in two major alternative spliced isoforms: NF-YAl and NF-YAs, differing for the presence of exon-3. NF-YAx, a third isoform without exon-3/-5, was reported only in human neuronal cells and tumors. These events affect the Trans-Activation Domain. We provide here evidence for the expression of NF-YAx and for the existence of a new isoform, NF-YAg, skipping only exon-5. These isoforms are abundant in Aves, but not in reptiles, and are the prevalent transcripts in the initial phases of embryo development in chicken. Finally, we analyzed NF-YAg and NF-YAx amino acid sequence using AlphaFold: absence of exon-5 denotes a global reduction of β-stranded elements, while removal of the disordered exon-3 sequence has limited effects on TAD architecture. These data identify an expanded program of NF-YA isoforms within the TAD in Aves, implying a role during early development.
Collapse
Affiliation(s)
- A Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - A Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - N Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
17
|
Skeldal S, Voss LF, Lende J, Pedersen SB, Mølgaard S, Kaas M, Demange P, Bentsen AH, Fuglsang M, Sander MR, Buttenschøn H, Gustafsen C, Madsen P, Glerup S. Alternative splicing regulates adaptor protein binding, trafficking, and activity of the Vps10p domain receptor SorCS2 in neuronal development. J Biol Chem 2023; 299:105102. [PMID: 37507021 PMCID: PMC10463258 DOI: 10.1016/j.jbc.2023.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The Vps10p domain receptor SorCS2 is crucial for the development and function of the nervous system and essential for brain-derived neurotrophic factor (BDNF)-induced changes in neuronal morphology and plasticity. SorCS2 regulates the subcellular trafficking of the BDNF signaling receptor TrkB as well as selected neurotransmitter receptors in a manner that is dependent on the SorCS2 intracellular domain (ICD). However, the cellular machinery and adaptor protein (AP) interactions that regulate receptor trafficking via the SorCS2 ICD are unknown. We here identify four splice variants of human SorCS2 differing in the insertion of an acidic cluster motif and/or a serine residue within the ICD. We show that each variant undergoes posttranslational proteolytic processing into a one- or two-chain receptor, giving rise to eight protein isoforms, the expression of which differs between neuronal and nonneuronal tissues and is affected by cellular stressors. We found that the only variants without the serine were able to rescue BDNF-induced branching of SorCS2 knockout hippocampal neurons, while variants without the acidic cluster showed increased interactions with clathrin-associated APs AP-1, AP-2, and AP-3. Using yeast two-hybrid screens, we further discovered that all variants bound dynein light chain Tctex-type 3; however, only variants with an acidic cluster motif bound kinesin light chain 1. Accordingly, splice variants showed markedly different trafficking properties and localized to different subcellular compartments. Taken together, our findings demonstrate the existence of eight functional SorCS2 isoforms with differential capacity for interactions with cytosolic ligands dynein light chain Tctex-type 3 and kinesin light chain 1, which potentially allows cell-type specific SorCS2 trafficking and BDNF signaling.
Collapse
Affiliation(s)
- Sune Skeldal
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Jonas Lende
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Simon Mølgaard
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Perline Demange
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Andreas Høiberg Bentsen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie Fuglsang
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Henriette Buttenschøn
- NIDO | Centre for Research and Education, Gødstrup Hospital, Herning, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Peder Madsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
18
|
Guo G, Wang X, Zhang Y, Li T. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1119-1132. [PMID: 37464880 PMCID: PMC10423696 DOI: 10.3724/abbs.2023131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Phase separation (PS) is an important mechanism underlying the formation of biomolecular condensates. Physiological condensates are associated with numerous biological processes, such as transcription, immunity, signaling, and synaptic transmission. Changes in particular amino acids or segments can disturb the protein's phase behavior and interactions with other biomolecules in condensates. It is thus presumed that variations in the phase-separating-prone domains can significantly impact the properties and functions of condensates. The dysfunction of condensates contributes to a number of pathological processes. Pharmacological perturbation of these condensates is proposed as a promising way to restore physiological states. In this review, we characterize the variations observed in PS proteins that lead to aberrant biomolecular compartmentalization. We also showcase recent advancements in bioinformatics of membraneless organelles (MLOs), focusing on available databases useful for screening PS proteins and describing endogenous condensates, guiding researchers to seek the underlying pathogenic mechanisms of biomolecular condensates.
Collapse
Affiliation(s)
- Gaigai Guo
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Xinxin Wang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Yi Zhang
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Tingting Li
- Department of Biomedical InformaticsSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- Key Laboratory for NeuroscienceMinistry of Education/National Health Commission of ChinaPeking UniversityBeijing100191China
| |
Collapse
|
19
|
Teboul R, Grabias M, Zucman-Rossi J, Letouzé E. Discovering cryptic splice mutations in cancers via a deep neural network framework. NAR Cancer 2023; 5:zcad014. [PMID: 36937541 PMCID: PMC10015341 DOI: 10.1093/narcan/zcad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.
Collapse
Affiliation(s)
- Raphaël Teboul
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Michalina Grabias
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Letouzé
- To whom correspondence should be addressed. Tel: +33 2 28 08 03 73;
| |
Collapse
|
20
|
Penna MS, Hu RC, Rodney GG, Cooper TA. The role of Limch1 alternative splicing in skeletal muscle function. Life Sci Alliance 2023; 6:e202201868. [PMID: 36977593 PMCID: PMC10052820 DOI: 10.26508/lsa.202201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Postnatal skeletal muscle development is a highly dynamic period associated with widespread alternative splicing changes required to adapt tissues to adult function. These splicing events have significant implications because the reversion of adult mRNA isoforms to fetal isoforms is observed in forms of muscular dystrophy. LIMCH1 is a stress fiber-associated protein that is alternatively spliced to generate uLIMCH1, a ubiquitously expressed isoform, and mLIMCH1, a skeletal muscle-specific isoform containing six additional exons simultaneously included after birth in the mouse. CRISPR/Cas9 was used to delete the six alternatively spliced exons of LIMCH1 in mice, thereby forcing the constitutive expression of the predominantly fetal isoform, uLIMCH1. mLIMCH1 knockout mice had significant grip strength weakness in vivo, and maximum force generated was decreased ex vivo. Calcium-handling deficits were observed during myofiber stimulation that could explain the mechanism by which mLIMCH1 knockout leads to muscle weakness. In addition, LIMCH1 is mis-spliced in myotonic dystrophy type 1, with the muscleblind-like (MBNL) family of proteins acting as the likely major regulator of Limch1 alternative splicing in skeletal muscle.
Collapse
Affiliation(s)
- Matthew S Penna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Rong-Chi Hu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Zhao T, Cheng F, Zhan D, Li J, Zheng C, Lu Y, Qin W, Liu Z. The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. J Proteome Res 2023. [PMID: 37191251 DOI: 10.1021/acs.jproteome.2c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)-target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617.
Collapse
Affiliation(s)
- Tingting Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Fang Cheng
- Department of Bioinformatics, Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| |
Collapse
|
22
|
Angira D, Chaudhary S, Abiramasundari A, Thiruvenkatam V. To Explore the Binding Affinity of Human γ-Secretase Activating Protein (GSAP) Isoform 4 with APP-C99 Peptides. ACS OMEGA 2023; 8:13435-13443. [PMID: 37065030 PMCID: PMC10099435 DOI: 10.1021/acsomega.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
γ-Secretase activating protein (GSAP) is known to play an important role in the β-amyloid pathway. It acts as a modulator and accentuates the truncation of the amyloid precursor protein C-99 fragment through the γ-secretase complex. GSAP has four isoforms, out of which canonical isoform 1, a 16 kDa C-terminal portion, has been extensively studied, whereas the function of other three isoforms remains unknown. Here, we explore the GSAP isoform 4 (GSAP_I4) expression and purification from inclusion bodies followed by the refolding of the protein. The secondary structure of GSAP_I4 is predicted using circular dichroism. The protein is further characterized by western blotting and mass spectroscopy analysis. Additionally, biochemical assays and in silico molecular docking and molecular simulation are performed to investigate the binding of GSAP_I4 and APP-C99 peptide fragments. The results reflect that although GSAP_I1 and GSAP_I4 share high sequence similarity, the isoform 4 does not show any affinity toward APP-C99 peptide fragments. This hints toward the fact that GSAP_I4 might have a different role in the living system that is yet unexplored.
Collapse
Affiliation(s)
- Deekshi Angira
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sonali Chaudhary
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Arumugam Abiramasundari
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Vijay Thiruvenkatam
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
23
|
Yamashita A, Shichino Y, Fujii K, Koshidaka Y, Adachi M, Sasagawa E, Mito M, Nakagawa S, Iwasaki S, Takao K, Shiina N. ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. iScience 2023; 26:106229. [PMID: 36876121 PMCID: PMC9982275 DOI: 10.1016/j.isci.2023.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Eri Sasagawa
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido 060-0812, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Corresponding author
| |
Collapse
|
24
|
Gautam P, Ajit K, Das M, Taliyan R, Roy R, Banerjee A. Age-related changes in gonadotropin-releasing hormone (GnRH) splice variants in mouse brain. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:193-209. [PMID: 36336790 DOI: 10.1002/jez.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of the mammalian reproductive axis. We investigated the spatiotemporal expression of GnRH splice variants (V1, V2, and V3) and splicing factors (Srsf7, Srsf9, and Tra-2) in the male mice brain. Further, using in silico tools, we predicted protein structure and the reason for the low translational efficiency of V2 and V3. Messenger RNA levels of GnRH variants and splicing factors were quantified using real-time reverse transcription-polymerase chain reaction at different age groups. Our data show that expression of almost all the variants alters with aging in all the brain regions studied; even in comparison to the hypothalamus, several brain areas were found to have higher expression of these variants. Hypothalamic expression of splicing factors such as Srsf7, Srsf9, and Tra-2 also change with aging. Computational studies have translation repressors site on the V3, which probably reduces its translation efficiency. Also, V2 is an intrinsically disordered protein that might have a regulatory or signaling function. In conclusion, this study provides novel crucial information and multiple starting points for future analysis of GnRH splice variants in the brain.
Collapse
Affiliation(s)
- Pooja Gautam
- Department of Biological Sciences, BITS Pilani, KK Birla, Goa Campus, Goa, India
| | - Kamal Ajit
- Department of Biological Sciences, BITS Pilani, KK Birla, Goa Campus, Goa, India
| | - Moitreyi Das
- Department of Zoology, Goa University, Goa, India
| | - Rajeev Taliyan
- Department of Pharmacy, BITS Pilani, Pilani Campus, Rajasthan, India
| | | | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani, KK Birla, Goa Campus, Goa, India
| |
Collapse
|
25
|
Fukuchi S, Noguchi T, Anbo H, Homma K. Exon Elongation Added Intrinsically Disordered Regions to the Encoded Proteins and Facilitated the Emergence of the Last Eukaryotic Common Ancestor. Mol Biol Evol 2022; 40:6931801. [PMID: 36529689 PMCID: PMC9825244 DOI: 10.1093/molbev/msac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Most prokaryotic proteins consist of a single structural domain (SD) with little intrinsically disordered regions (IDRs) that by themselves do not adopt stable structures, whereas the typical eukaryotic protein comprises multiple SDs and IDRs. How eukaryotic proteins evolved to differ from prokaryotic proteins has not been fully elucidated. Here, we found that the longer the internal exons are, the more frequently they encode IDRs in eight eukaryotes including vertebrates, invertebrates, a fungus, and plants. Based on this observation, we propose the "small bang" model from the proteomic viewpoint: the protoeukaryotic genes had no introns and mostly encoded one SD each, but a majority of them were subsequently divided into multiple exons (step 1). Many exons unconstrained by SDs elongated to encode IDRs (step 2). The elongated exons encoding IDRs frequently facilitated the acquisition of multiple SDs to make the last common ancestor of eukaryotes (step 3). One prediction of the model is that long internal exons are mostly unconstrained exons. Analytical results of the eight eukaryotes are consistent with this prediction. In support of the model, we identified cases of internal exons that elongated after the rat-mouse divergence and discovered that the expanded sections are mostly in unconstrained exons and preferentially encode IDRs. The model also predicts that SDs followed by long internal exons tend to have other SDs downstream. This prediction was also verified in all the eukaryotic species analyzed. Our model accounts for the dichotomy between prokaryotic and eukaryotic proteins and proposes a selective advantage conferred by IDRs.
Collapse
Affiliation(s)
- Satoshi Fukuchi
- Program for Information Systems, Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, Maebashi-shi, Japan
| | - Tamotsu Noguchi
- Pharmaceutical Education Research Center, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroto Anbo
- Program for Information Systems, Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, Maebashi-shi, Japan
| | | |
Collapse
|
26
|
Cognate RNA-Binding Modes by the Alternative-Splicing Regulator MBNL1 Inferred from Molecular Dynamics. Int J Mol Sci 2022; 23:ijms232416147. [PMID: 36555788 PMCID: PMC9780971 DOI: 10.3390/ijms232416147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The muscleblind-like protein family (MBNL) plays a prominent role in the regulation of alternative splicing. Consequently, the loss of MBNL function resulting from sequestration by RNA hairpins triggers the development of a neuromuscular disease called myotonic dystrophy (DM). Despite the sequence and structural similarities between the four zinc-finger domains that form MBNL1, recent studies have revealed that the four binding domains have differentiated splicing activity. The dynamic behaviors of MBNL1 ZnFs were simulated using conventional molecular dynamics (cMD) and steered molecular dynamics (sMD) simulations of a structural model of MBNL1 protein to provide insights into the binding selectivity of the four zinc-finger (ZnF) domains toward the GpC steps in YGCY RNA sequence. In accordance with previous studies, our results suggest that both global and local residue fluctuations on each domain have great impacts on triggering alternative splicing, indicating that local motions in RNA-binding domains could modulate their affinity and specificity. In addition, all four ZnF domains provide a distinct RNA-binding environment in terms of structural sampling and mobility that may be involved in the differentiated MBNL1 splicing events reported in the literature.
Collapse
|
27
|
Patil A. Enrichment patterns of intrinsic disorder in proteins. Biophys Rev 2022; 14:1487-1493. [PMID: 36659984 PMCID: PMC9842814 DOI: 10.1007/s12551-022-01016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered regions in proteins have been shown to be important in protein function. However, not all proteins contain the same amount of intrinsic disorder. The variation in the levels of intrinsic disorder in different types of proteins has been extensively studied over the last two decades. It is now known that the levels of intrinsic disorder vary in proteins across organisms, functions, diseases, and cellular locations. This review consolidates the known trends in the abundance of intrinsic disorder identified in groups of proteins across varying conditions and functions. It also presents new data towards the understanding of intrinsic disorder in cell type-specific proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01016-7.
Collapse
Affiliation(s)
- Ashwini Patil
- Combinatics Inc., 2-2-6 Sugano, Ichikawa-Shi, Chiba, 272-0824 Japan
| |
Collapse
|
28
|
Holguin-Cruz JA, Foster LJ, Gsponer J. Where protein structure and cell diversity meet. Trends Cell Biol 2022; 32:996-1007. [PMID: 35537902 DOI: 10.1016/j.tcb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction networks - interactomes - are charted with the hope to understand how phenotypes emerge and how they are altered in disease states. Early efforts to map interactomes have focused on the assembly of context agnostic, reference networks. However, recent studies have mapped interactomes across different cell lines and tissues, finding highly variable interactomes due to the rewiring of protein-protein interactions in different contexts. Increasing evidence points to significant links between protein structure and interactome diversity seen across cell types and tissues. We discuss how recent findings support the key role of alternative splicing and phosphorylation, two well-established regulators of protein structural and functional diversity, in defining cell type- and tissue-specific interactomes. Moreover, we show that intrinsically disordered protein regions are most favorably equipped to support interactome rewiring by acting as hubs of protein structure and function regulation.
Collapse
Affiliation(s)
- Jorge A Holguin-Cruz
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
29
|
Cascarina SM, Ross ED. Expansion and functional analysis of the SR-related protein family across the domains of life. RNA (NEW YORK, N.Y.) 2022; 28:1298-1314. [PMID: 35863866 PMCID: PMC9479744 DOI: 10.1261/rna.079170.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Serine/arginine-rich (SR) proteins comprise a family of proteins that is predominantly found in eukaryotes and plays a prominent role in RNA splicing. A characteristic feature of SR proteins is the presence of an S/R-rich low-complexity domain (RS domain), often in conjunction with spatially distinct RNA recognition motifs (RRMs). To date, 52 human proteins have been classified as SR or SR-related proteins. Here, using an unbiased series of composition criteria together with enrichment for known RNA binding activity, we identified >100 putative SR-related proteins in the human proteome. This method recovers known SR and SR-related proteins with high sensitivity (∼94%), yet identifies a number of additional proteins with many of the hallmark features of true SR-related proteins. Newly identified SR-related proteins display slightly different amino acid compositions yet similar levels of post-translational modification, suggesting that these new SR-related candidates are regulated in vivo and functionally important. Furthermore, candidate SR-related proteins with known RNA-binding activity (but not currently recognized as SR-related proteins) are nevertheless strongly associated with a variety of functions related to mRNA splicing and nuclear speckles. Finally, we applied our SR search method to all available reference proteomes, and provide maps of RS domains and Pfam annotations for all putative SR-related proteins as a resource. Together, these results expand the set of SR-related proteins in humans, and identify the most common functions associated with SR-related proteins across all domains of life.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
30
|
DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA. More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 2022; 15:974890. [PMID: 36187353 PMCID: PMC9525131 DOI: 10.3389/fnmol.2022.974890] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is the predominant cytoskeletal regulator within neuronal dendrites, abundant and specific enough to serve as a robust somatodendritic marker. It influences microtubule dynamics and microtubule/actin interactions to control neurite outgrowth and synaptic functions, similarly to the closely related MAP Tau. Though pathology of Tau has been well appreciated in the context of neurodegenerative disorders, the consequences of pathologically dysregulated MAP2 have been little explored, despite alterations in its immunoreactivity, expression, splicing and/or stability being observed in a variety of neurodegenerative and neuropsychiatric disorders including Huntington’s disease, prion disease, schizophrenia, autism, major depression and bipolar disorder. Here we review the understood structure and functions of MAP2, including in neurite outgrowth, synaptic plasticity, and regulation of protein folding/transport. We also describe known and potential mechanisms by which MAP2 can be regulated via post-translational modification. Then, we assess existing evidence of its dysregulation in various brain disorders, including from immunohistochemical and (phospho) proteomic data. We propose pathways by which MAP2 pathology could contribute to endophenotypes which characterize these disorders, giving rise to the concept of a “MAP2opathy”—a series of disorders characterized by alterations in MAP2 function.
Collapse
Affiliation(s)
- Rebecca A. DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon C. McKinney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Robert A. Sweet
| |
Collapse
|
31
|
Characterizations of a novel peptide encoded by a circular RNA using in-silico analyses. Biochem Biophys Res Commun 2022; 630:36-40. [PMID: 36137323 DOI: 10.1016/j.bbrc.2022.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
CircRNAs have gained importance in recent times due to their involvement in gene regulation and also in the prognosis of cancer. Generally, the circRNA directly interact with miRNA or RNA binding proteins to exert their action, but some of them can be translated. These translated peptides often participate in the regulation of cellular processes. The circPPP1R12A translated peptide has been shown to influence the functioning of the Mst pathway. The Mst signaling is noteworthy for its role in the process of development, but it also has a function as a regulator of apoptosis, which is significant for regulation of cancer. Overexpression of this novel peptide deactivates the Mst signaling to induce the expression of the proliferative oncogene, Yap. Its molecular interaction with the molecules in the Mst pathway is hitherto unknown. In this short report we present our findings from in-silico studies the plausible structure of the peptide through bioinformatics and dynamics simulation studies. This is the first such report on the structure of the novel peptide encoded by circPPP1R12A, which could be important to predict in future its molecular interactions to understand its functionality.
Collapse
|
32
|
Li X, Ren Z, Huang X, Yu T. LACTB, a Metabolic Therapeutic Target in Clinical Cancer Application. Cells 2022; 11:cells11172749. [PMID: 36078157 PMCID: PMC9454609 DOI: 10.3390/cells11172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Serine beta-lactamase-like protein (LACTB) is the only mammalian mitochondrial homolog evolved from penicillin-binding proteins and β-lactamases (PBP-βLs) in bacteria. LACTB, an active-site serine protease, polymerizes into stable filaments, which are localized to the intermembrane space (IMS) of mitochondrion and involved in the submitochondrial organization, modulating mitochondrial lipid metabolism. Cancer pathogenesis and progression are relevant to the alterations in mitochondrial metabolism. Metabolic reprogramming contributes to cancer cell behavior. This article (1) evidences the clinical implications of LACTB on neoplastic cell proliferation and migration and tumor growth and metastasis as well as LACTB’s involvement in chemotherapeutic and immunotherapeutic responses; (2) sketches the structural basis for LACTB activity and function; and (3) highlights the relevant regulatory mechanisms to LACTB. The abnormal expression of LACTB has been associated with clinicopathological features of cancer tissues and outcomes of anticancer therapies. With the current pioneer researches on the tumor-suppressed function, structural basis, and regulatory mechanism of LACTB, the perspective hints at a great appeal of enzymic property, polymerization, mutation, and epigenetic and post-translational modifications in investigating LACTB’s role in cancer pathogenesis. This perspective provides novel insights for LACTB as a metabolic regulator with potential to develop targeted cancer therapies or neoadjuvant therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohua Li
- School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China or
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
| | - Xiaohong Huang
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
- Correspondence: (X.H.); (T.Y.)
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China or
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266071, China
- Correspondence: (X.H.); (T.Y.)
| |
Collapse
|
33
|
Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Genetic variation associated with condensate dysregulation in disease. Dev Cell 2022; 57:1776-1788.e8. [PMID: 35809564 PMCID: PMC9339523 DOI: 10.1016/j.devcel.2022.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 03/11/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022]
Abstract
A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.
Collapse
Affiliation(s)
- Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susana W Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Victoria E Clark
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ido Sagi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Reixachs‐Solé M, Eyras E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1707. [PMID: 34979593 PMCID: PMC9542554 DOI: 10.1002/wrna.1707] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Marina Reixachs‐Solé
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
36
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
37
|
Bernardini A, Gallo A, Gnesutta N, Dolfini D, Mantovani R. Phylogeny of NF-YA trans-activation splicing isoforms in vertebrate evolution. Genomics 2022; 114:110390. [PMID: 35589059 DOI: 10.1016/j.ygeno.2022.110390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
NF-Y is a trimeric pioneer Transcription Factor (TF) whose target sequence -the CCAAT box- is present in ~25% of mammalian promoters. We reconstruct the phylogenetic history of the regulatory NF-YA subunit in vertebrates. We find that in addition to the remarkable conservation of the subunits-interaction and DNA-binding parts, the Transcriptional Activation Domain (TAD) is also conserved (>90% identity among bony vertebrates). We infer the phylogeny of the alternatively spliced exon-3 and partial splicing events of exon-7 -7N and 7C- revealing independent clade-specific losses of these regions. These isoforms shape the TAD. Absence of exon-3 in basal deuterostomes, cartilaginous fishes and hagfish, but not in lampreys, suggests that the "short" isoform is primordial, with emergence of exon-3 in chordates. Exon 7N was present in the vertebrate common ancestor, while 7C is a molecular innovation of teleost fishes. RNA-seq analysis in several species confirms expression of all these isoforms. We identify 3 blocks of amino acids in the TAD shared across deuterostomes, yet structural predictions and sequence analyses suggest an evolutionary drive for maintenance of an Intrinsically Disordered Region -IDR- within the TAD. Overall, these data help reconstruct the logic for alternative splicing of this essential eukaryotic TF.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
38
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
39
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
40
|
Kim BH, Woo TG, Kang SM, Park S, Park BJ. Splicing Variants, Protein-Protein Interactions, and Drug Targeting in Hutchinson-Gilford Progeria Syndrome and Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13020165. [PMID: 35205210 PMCID: PMC8871687 DOI: 10.3390/genes13020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is a biological operation that enables a messenger RNA to encode protein variants (isoforms) that give one gene several functions or properties. This process provides one of the major sources of use for understanding the proteomic diversity of multicellular organisms. In combination with post-translational modifications, it contributes to generating a variety of protein–protein interactions (PPIs) that are essential to cellular homeostasis or proteostasis. However, cells exposed to many kinds of stresses (aging, genetic changes, carcinogens, etc.) sometimes derive cancer or disease onset from aberrant PPIs caused by DNA mutations. In this review, we summarize how splicing variants may form a neomorphic protein complex and cause diseases such as Hutchinson-Gilford progeria syndrome (HGPS) and small cell lung cancer (SCLC), and we discuss how protein–protein interfaces obtained from the variants may represent efficient therapeutic target sites to treat HGPS and SCLC.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
- Correspondence:
| |
Collapse
|
41
|
Lyu J, Cheng C. Regulation of Alternative Splicing during Epithelial-Mesenchymal Transition. Cells Tissues Organs 2022; 211:238-251. [PMID: 34348273 PMCID: PMC8741878 DOI: 10.1159/000518249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is an essential mechanism of gene regulation, giving rise to remarkable protein diversity in higher eukaryotes. Epithelial-mesenchymal transition (EMT) is a developmental process that plays an essential role in metazoan embryogenesis. Recent studies have revealed that alternative splicing serves as a fundamental layer of regulation that governs cells to undergo EMT. In this review, we summarize recent findings on the functional impact of alternative splicing in EMT and EMT-associated activities. We then discuss the regulatory mechanisms that control alternative splicing changes during EMT.
Collapse
Affiliation(s)
- Jingyi Lyu
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA.,To whom correspondence should be addressed:
| |
Collapse
|
42
|
Desai J, Francis C, Longo K, Hoss A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3128-3141. [PMID: 35286381 PMCID: PMC8989546 DOI: 10.1093/nar/gkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is frequently involved in the diversification of protein function and can also be modulated for therapeutic purposes. Here we develop a predictive model, called Exon ByPASS (predicting Exon skipping Based on Protein amino acid SequenceS), to assess the criticality of exon inclusion based solely on information contained in the amino acid sequence upstream and downstream of the exon junctions. By focusing on protein sequence, Exon ByPASS predicts exon skipping independent of tissue and species in the absence of any intronic information. We validate model predictions using transcriptomic and proteomic data and show that the model can capture exon skipping in different tissues and species. Additionally, we reveal potential therapeutic opportunities by predicting synthetically skippable exons and neo-junctions arising in cancer cells.
Collapse
Affiliation(s)
- Jigar Desai
- To whom correspondence should be addressed. Tel: +1 704 214 7914;
| | | | | | - Andrew Hoss
- Wave Life Sciences, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
44
|
Kawachi T, Masuda A, Yamashita Y, Takeda JI, Ohkawara B, Ito M, Ohno K. Regulated splicing of large exons is linked to phase-separation of vertebrate transcription factors. EMBO J 2021; 40:e107485. [PMID: 34605568 DOI: 10.15252/embj.2020107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although large exons cannot be readily recognized by the spliceosome, many are evolutionarily conserved and constitutively spliced for inclusion in the processed transcript. Furthermore, whether large exons may be enriched in a certain subset of proteins, or mediate specific functions, has remained unclear. Here, we identify a set of nearly 3,000 SRSF3-dependent large constitutive exons (S3-LCEs) in human and mouse cells. These exons are enriched for cytidine-rich sequence motifs, which bind and recruit the splicing factors hnRNP K and SRSF3. We find that hnRNP K suppresses S3-LCE splicing, an effect that is mitigated by SRSF3 to thus achieve constitutive splicing of S3-LCEs. S3-LCEs are enriched in genes for components of transcription machineries, including mediator and BAF complexes, and frequently contain intrinsically disordered regions (IDRs). In a subset of analyzed S3-LCE-containing transcription factors, SRSF3 depletion leads to deletion of the IDRs due to S3-LCE exon skipping, thereby disrupting phase-separated assemblies of these factors. Cytidine enrichment in large exons introduces proline/serine codon bias in intrinsically disordered regions and appears to have been evolutionarily acquired in vertebrates. We propose that layered splicing regulation by hnRNP K and SRSF3 ensures proper phase-separation of these S3-LCE-containing transcription factors in vertebrates.
Collapse
Affiliation(s)
- Toshihiko Kawachi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Yamashita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
Basu S, Bahadur RP. Conservation and coevolution determine evolvability of different classes of disordered residues in human intrinsically disordered proteins. Proteins 2021; 90:632-644. [PMID: 34626492 DOI: 10.1002/prot.26261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
Structure, function, and evolution are interdependent properties of proteins. Diversity of protein functions arising from structural variations is a potential driving force behind protein evolvability. Intrinsically disordered proteins or regions (IDPs or IDRs) lack well-defined structure under normal physiological conditions, yet, they are highly functional. Increased occurrence of IDPs in eukaryotes compared to prokaryotes indicates strong correlation of protein evolution and disorderedness. IDPs generally have higher evolution rate compared to globular proteins. Structural pliability allows IDPs to accommodate multiple mutations without affecting their functional potential. Nevertheless, how evolutionary signals vary between different classes of disordered residues (DRs) in IDPs is poorly understood. This study addresses variation of evolutionary behavior in terms of residue conservation and intra-protein coevolution among structural and functional classes of DRs in IDPs. Analyses are performed on 579 human IDPs, which are classified based on length of IDRs, interacting partners and functional classes. We find short IDRs are less conserved than long IDRs or full IDPs. Functional classes which require flexibility and specificity to perform their activity comparatively evolve slower than others. Disorder promoting amino acids evolve faster than order promoting amino acids. Pro, Gly, Ile, and Phe have unique coevolving nature which further emphasizes on their roles in IDPs. This study sheds light on evolutionary footprints in different classes of DRs from human IDPs and enhances our understanding of the structural and functional potential of IDPs.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
46
|
Singh RS. Decoding 'Unnecessary Complexity': A Law of Complexity and a Concept of Hidden Variation Behind "Missing Heritability" in Precision Medicine. J Mol Evol 2021; 89:513-526. [PMID: 34341835 PMCID: PMC8327892 DOI: 10.1007/s00239-021-10023-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023]
Abstract
The high hopes for the Human Genome Project and personalized medicine were not met because the relationship between genotypes and phenotypes turned out to be more complex than expected. In a previous study we laid the foundation of a theory of complexity and showed that because of the blind nature of evolution, and molecular and historical contingency, cells have accumulated unnecessary complexity, complexity beyond what is necessary and sufficient to describe an organism. Here we provide empirical evidence and show that unnecessary complexity has become integrated into the genome in the form of redundancy and is relevant to molecular evolution of phenotypic complexity. Unnecessary complexity creates uncertainty between molecular and phenotypic complexity, such that phenotypic complexity (CP) is higher than molecular complexity (CM), which is higher than DNA complexity (CD). The qualitative inequality in complexity is based on the following hierarchy: CP > CM > CD. This law-like relationship holds true for all complex traits, including complex diseases. We present a hypothesis of two types of variation, namely open and closed (hidden) systems, show that hidden variation provides a hitherto undiscovered "third source" of phenotypic variation, beside genotype and environment, and argue that "missing heritability" for some complex diseases is likely to be a case of "diluted heritability". There is a need for radically new ways of thinking about the principles of genotype-phenotype relationship. Understanding how cells use hidden, pathway variation to respond to stress can shed light on why two individuals who share the same risk factors may not develop the same disease, or how cancer cells escape death.
Collapse
Affiliation(s)
- Rama S Singh
- Department of Biology, and Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada.
| |
Collapse
|
47
|
A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat Commun 2021; 12:4872. [PMID: 34381052 PMCID: PMC8358048 DOI: 10.1038/s41467-021-24998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B’s necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis. UNC5B is a Netrin-1 receptor expressed in endothelial cells that in the absence of ligand induces apoptosis. Here the authors identify an UNC5B splicing isoform that is insensitive to the pro-survival ligand Netrin-1 and is required for apoptosis-dependent blood vessel development.
Collapse
|
48
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
49
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
50
|
Oh J, Pradella D, Kim Y, Shao C, Li H, Choi N, Ha J, Di Matteo A, Fu XD, Zheng X, Ghigna C, Shen H. Global Alternative Splicing Defects in Human Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13123071. [PMID: 34202984 PMCID: PMC8235023 DOI: 10.3390/cancers13123071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Aberrant alternative splicing (AS) regulation plays a pivotal role in breast cancer development, progression, and resistance to therapeutical interventions. Indeed, cancer cells can adapt their own transcriptome by changing different AS programs, thus generating cancer-specific AS isoforms involved in every hallmark of cancer. Here, we investigated global AS errors occurring in human breast cancer cells by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing. Our results identified several dysregulated AS events potentially relevant for breast cancer-related biological processes and that provide a better comprehension of the molecular mechanisms that orchestrate the malignant transformation. Abstract Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.
Collapse
Affiliation(s)
- Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Davide Pradella
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Yoonseong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Anna Di Matteo
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
| | - Claudia Ghigna
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (A.D.M.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (Y.K.); (N.C.); (J.H.); (X.Z.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +82-62-715-2484 (H.S.)
| |
Collapse
|