1
|
Martin P, Kurth EA, Budean D, Momplaisir N, Qu E, Simien JM, Orellana GE, Brautigam CA, Smrcka AV, Haglund E. Biophysical characterization of the CXC chemokine receptor 2 ligands. PLoS One 2024; 19:e0298418. [PMID: 38625857 PMCID: PMC11020491 DOI: 10.1371/journal.pone.0298418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 04/18/2024] Open
Abstract
The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.
Collapse
Affiliation(s)
- Patrick Martin
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Emily A. Kurth
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - David Budean
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Nathalie Momplaisir
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Elaine Qu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jennifer M. Simien
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Grace E. Orellana
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chad A. Brautigam
- Department of Biophysics and the Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
2
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Melnik TN, Majorina MA, Vorobeva DE, Nagibina GS, Veselova VR, Glukhova KA, Pak MA, Ivankov DN, Uversky VN, Melnik BS. Design of stable circular permutants of the GroEL chaperone apical domain. Cell Commun Signal 2024; 22:90. [PMID: 38303060 PMCID: PMC10836027 DOI: 10.1186/s12964-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
Enhancing protein stability holds paramount significance in biotechnology, therapeutics, and the food industry. Circular permutations offer a distinctive avenue for manipulating protein stability while keeping intra-protein interactions intact. Amidst the creation of circular permutants, determining the optimal placement of the new N- and C-termini stands as a pivotal, albeit largely unexplored, endeavor. In this study, we employed PONDR-FIT's predictions of disorder propensity to guide the design of circular permutants for the GroEL apical domain (residues 191-345). Our underlying hypothesis posited that a higher predicted disorder value would correspond to reduced stability in the circular permutants, owing to the increased likelihood of fluctuations in the novel N- and C-termini. To substantiate this hypothesis, we engineered six circular permutants, positioning glycines within the loops as locations for the new N- and C-termini. We demonstrated the validity of our hypothesis along the set of the designed circular permutants, as supported by measurements of melting temperatures by circular dichroism and differential scanning microcalorimetry. Consequently, we propose a novel computational methodology that rationalizes the design of circular permutants with projected stability. Video Abstract.
Collapse
Affiliation(s)
- Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Maria A Majorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Daria E Vorobeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Victoria R Veselova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaja Str. 3, Puschino, Moscow Region, 142290, Russia
| | - Marina A Pak
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia.
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Ruan B, He Y, Chen Y, Choi EJ, Chen Y, Motabar D, Solomon T, Simmerman R, Kauffman T, Gallagher DT, Orban J, Bryan PN. Design and characterization of a protein fold switching network. Nat Commun 2023; 14:431. [PMID: 36702827 PMCID: PMC9879998 DOI: 10.1038/s41467-023-36065-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
To better understand how amino acid sequence encodes protein structure, we engineered mutational pathways that connect three common folds (3α, β-grasp, and α/β-plait). The structures of proteins at high sequence-identity intersections in the pathways (nodes) were determined using NMR spectroscopy and analyzed for stability and function. To generate nodes, the amino acid sequence encoding a smaller fold is embedded in the structure of an ~50% larger fold and a new sequence compatible with two sets of native interactions is designed. This generates protein pairs with a 3α or β-grasp fold in the smaller form but an α/β-plait fold in the larger form. Further, embedding smaller antagonistic folds creates critical states in the larger folds such that single amino acid substitutions can switch both their fold and function. The results help explain the underlying ambiguity in the protein folding code and show that new protein structures can evolve via abrupt fold switching.
Collapse
Affiliation(s)
- Biao Ruan
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA
| | - Yanan He
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Yingwei Chen
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA
| | - Eun Jung Choi
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA
| | - Yihong Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Dana Motabar
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA
- Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Tsega Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Richard Simmerman
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA
| | - Thomas Kauffman
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - D Travis Gallagher
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
- National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | - Philip N Bryan
- Potomac Affinity Proteins, 11305 Dunleith Pl, North Potomac, MD, 20878, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
5
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Blaber M. Variable and Conserved Regions of Secondary Structure in the β-Trefoil Fold: Structure Versus Function. Front Mol Biosci 2022; 9:889943. [PMID: 35517858 PMCID: PMC9062101 DOI: 10.3389/fmolb.2022.889943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
β-trefoil proteins exhibit an approximate C3 rotational symmetry. An analysis of the secondary structure for members of this diverse superfamily of proteins indicates that it is comprised of remarkably conserved β-strands and highly-divergent turn regions. A fundamental “minimal” architecture can be identified that is devoid of heterogenous and extended turn regions, and is conserved among all family members. Conversely, the different functional families of β-trefoils can potentially be identified by their unique turn patterns (or turn “signature”). Such analyses provide clues as to the evolution of the β-trefoil family, suggesting a folding/stability role for the β-strands and a functional role for turn regions. This viewpoint can also guide de novo protein design of β-trefoil proteins having novel functionality.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins. Proc Natl Acad Sci U S A 2020; 117:28775-28783. [PMID: 33148805 PMCID: PMC7682573 DOI: 10.1073/pnas.1920455117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although folded proteins are commonly depicted as simplistic combinations of β-strands and α-helices, the actual properties and functions of these secondary-structure elements in their native contexts are just partly understood. The principal reason is that the behavior of individual β- and α-elements is obscured by the global folding cooperativity. In this study, we have circumvented this problem by designing frustrated variants of the mixed α/β-protein S6, which allow the structural behavior of individual β-strands and α-helices to be targeted selectively by stopped-flow kinetics, X-ray crystallography, and solution-state NMR. Essentially, our approach is based on provoking intramolecular "domain swap." The results show that the α- and β-elements have quite different characteristics: The swaps of β-strands proceed via global unfolding, whereas the α-helices are free to swap locally in the native basin. Moreover, the α-helices tend to hybridize and to promote protein association by gliding over to neighboring molecules. This difference in structural behavior follows directly from hydrogen-bonding restrictions and suggests that the protein secondary structure defines not only tertiary geometry, but also maintains control in function and structural evolution. Finally, our alternative approach to protein folding and native-state dynamics presents a generally applicable strategy for in silico design of protein models that are computationally testable in the microsecond-millisecond regime.
Collapse
|
8
|
Khor S. Folding with a protein's native shortcut network. Proteins 2019; 86:924-934. [PMID: 29790602 DOI: 10.1002/prot.25524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
A complex network approach to protein folding is proposed, wherein a protein's contact map is reconceptualized as a network of shortcut edges, and folding is steered by a structural characteristic of this network. Shortcut networks are generated by a known message passing algorithm operating on protein residue networks. It is found that the shortcut networks of native structures (SCN0s) are relevant graph objects with which to study protein folding at a formal level. The logarithm form of their contact order (SCN0_lnCO) correlates significantly with folding rate of two-state and nontwo-state proteins. The clustering coefficient of SCN0s (CSCN0 ) correlates significantly with folding rate, transition-state placement and stability of two-state folders. Reasonable folding pathways for several model proteins are produced when CSCN0 is used to combine protein segments incrementally to form the native structure. The folding bias captured by CSCN0 is detectable in non-native structures, as evidenced by Molecular Dynamics simulation generated configurations for the fast folding Villin-headpiece peptide. These results support the use of shortcut networks to investigate the role protein geometry plays in the folding of both small and large globular proteins, and have implications for the design of multibody interaction schemes in folding models. One facet of this geometry is the set of native shortcut triangles, whose attributes are found to be well-suited to identify dehydrated intraprotein areas in tight turns, or at the interface of different secondary structure elements.
Collapse
Affiliation(s)
- Susan Khor
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Nemtseva EV, Gerasimova MA, Melnik TN, Melnik BS. Experimental approach to study the effect of mutations on the protein folding pathway. PLoS One 2019; 14:e0210361. [PMID: 30640946 PMCID: PMC6331109 DOI: 10.1371/journal.pone.0210361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Is it possible to compare the physicochemical properties of a wild-type protein and its mutant form under the same conditions? Provided the mutation has destabilized the protein, it may be more correct to compare the mutant protein under native conditions to the wild-type protein destabilized with a small amount of the denaturant. In general, is it appropriate to compare the properties of proteins destabilized by different treatments: mutations, pH, temperature, and denaturants like urea? These issues have compelled us to search for methods and ways of presentation of experimental results that would allow a comparison of mutant forms of proteins under different conditions and lead to conclusions on the effect of mutations on the protein folding/unfolding pathway. We have studied equilibrium unfolding of wild-type bovine carbonic anhydrase II (BCA II) and its six mutant forms using different urea concentrations. BCA II has been already studied in detail and is a good model object for validating new techniques. In this case, time-resolved fluorescence spectroscopy was chosen as the basic research method. The main features of this experimental method allowed us to compare different stages of unfolding of studied proteins and prove experimentally that a single substitution of the amino acid in three mutant forms of BCA II affected the native state of the protein but did not change its unfolding pathway. On the contrary, the inserted disulfide bridge in three other mutant forms of BCA II affected the protein unfolding pathway. An important result of this research is that we have validated the new approach allowing investigation of the effect of mutations on the folding of globular proteins, because in this way it is possible to compare proteins in the same structural states rather than under identical conditions.
Collapse
Affiliation(s)
- Elena V. Nemtseva
- Siberian Federal University, Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
10
|
Yang F, Wang H, Logan DT, Mu X, Danielsson J, Oliveberg M. The Cost of Long Catalytic Loops in Folding and Stability of the ALS-Associated Protein SOD1. J Am Chem Soc 2018; 140:16570-16579. [PMID: 30359015 DOI: 10.1021/jacs.8b08141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A conspicuous feature of the amyotrophic lateral sclerosis (ALS)-associated protein SOD1 is that its maturation into a functional enzyme relies on local folding of two disordered loops into a catalytic subdomain. To drive the disorder-to-order transition, the protein employs a single Zn2+ ion. The question is then if the entropic penalty of maintaining such disordered loops in the immature apoSOD1 monomer is large enough to explain its unusually low stability, slow folding, and pathological aggregation in ALS. To find out, we determined the effects of systematically altering the SOD1-loop lengths by protein redesign. The results show that the loops destabilize the apoSOD1 monomer by ∼3 kcal/mol, rendering the protein marginally stable and accounting for its aggregation behavior. Yet the effect on the global folding kinetics remains much smaller with a transition-state destabilization of <1 kcal/mol. Notably, this 1/3 transition-state to folded-state stability ratio provides a clear-cut example of the enigmatic disagreement between the Leffler α value from loop-length alterations (typically 1/3) and the "standard" reaction coordinates based on solvent perturbations (typically >2/3). Reconciling the issue, we demonstrate that the disagreement disappears when accounting for the progressive loop shortening that occurs along the folding pathway. The approach assumes a consistent Flory loop entropy scaling factor of c = 1.48 for both equilibrium and kinetic data and has the added benefit of verifying the tertiary interactions of the folding nucleus as determined by phi-value analysis. Thus, SOD1 not only represents a case where evolution of key catalytic function has come with the drawback of a destabilized apo state but also stands out as a well-suited model system for exploring the physicochemical details of protein self-organization.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Huabing Wang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Derek T Logan
- Division of Biochemistry & Structural Biology, Department of Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| |
Collapse
|
11
|
Farías-Rico JA, Ruud Selin F, Myronidi I, Frühauf M, von Heijne G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc Natl Acad Sci U S A 2018; 115:E9280-E9287. [PMID: 30224455 PMCID: PMC6176590 DOI: 10.1073/pnas.1812756115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein S6 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.
Collapse
Affiliation(s)
| | - Frida Ruud Selin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ioanna Myronidi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marie Frühauf
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden
| |
Collapse
|
12
|
Jarmolinska AI, Kadlof M, Dabrowski-Tumanski P, Sulkowska JI. GapRepairer: a server to model a structural gap and validate it using topological analysis. Bioinformatics 2018; 34:3300-3307. [DOI: 10.1093/bioinformatics/bty334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Aleksandra I Jarmolinska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw, Poland
| | - Michal Kadlof
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Wang H, Lang L, Logan DT, Danielsson J, Oliveberg M. Tricking a Protein To Swap Strands. J Am Chem Soc 2016; 138:15571-15579. [DOI: 10.1021/jacs.6b05151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huabing Wang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Lisa Lang
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Derek T. Logan
- Division
of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Box
124, 221 00 Lund, Sweden
| | - Jens Danielsson
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Arrhenius
Laboratories of Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Sacquin-Mora S. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? J R Soc Interface 2016; 12:rsif.2015.0876. [PMID: 26577596 DOI: 10.1098/rsif.2015.0876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues' side chains form a tight interaction network within the protein's core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
15
|
Cheng RR, Raghunathan M, Noel JK, Onuchic JN. Constructing sequence-dependent protein models using coevolutionary information. Protein Sci 2016; 25:111-22. [PMID: 26223372 PMCID: PMC4815312 DOI: 10.1002/pro.2758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022]
Abstract
Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid sites within the multiple sequence alignment of a protein family. Here, we use the maximum entropy-based approach called mean field Direct Coupling Analysis (mfDCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family. We use the inferred pairwise statistical couplings to generate the sequence-dependent heterogeneous interaction energies of a structure-based model (SBM) where only native contacts are considered. Considering the ribosomal S6 protein and its circular permutants as well as the SH3 protein, we demonstrate that these models quantitatively agree with experimental data on folding mechanisms. This work serves as a new framework for generating coevolutionary data-enriched models that can potentially be used to engineer key functional motions and novel interactions in protein systems.
Collapse
Affiliation(s)
- Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - Mohit Raghunathan
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| |
Collapse
|
16
|
Zhang Z, Ouyang Y, Chen T. Influences of heterogeneous native contact energy and many-body interactions on the prediction of protein folding mechanisms. Phys Chem Chem Phys 2016; 18:31304-31311. [DOI: 10.1039/c6cp06181h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining heterogenous native contact energies and many-body interactions could improve the prediction of Brønsted plots using a structure-based model.
Collapse
Affiliation(s)
- Zhuqing Zhang
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Yanhua Ouyang
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Tao Chen
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- China
| |
Collapse
|
17
|
Xia X, Longo LM, Sutherland MA, Blaber M. Evolution of a protein folding nucleus. Protein Sci 2015; 25:1227-40. [PMID: 26610273 DOI: 10.1002/pro.2848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome.
Collapse
Affiliation(s)
- Xue Xia
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mason A Sutherland
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| |
Collapse
|
18
|
Sugita M, Matsuoka M, Kikuchi T. Topological and sequence information predict that foldons organize a partially overlapped and hierarchical structure. Proteins 2015; 83:1900-13. [PMID: 26248725 DOI: 10.1002/prot.24874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022]
Abstract
It has been suggested that proteins have substructures, called foldons, which can cooperatively fold into the native structure. However, several prior investigations define foldons in various ways, citing different foldon characteristics, thereby making the concept of a foldon ambiguous. In this study, we perform a Gō model simulation and analyze the characteristics of substructures that cooperatively fold into the native-like structure. Although some results do not agree well with the experimental evidence due to the simplicity of our coarse-grained model, our results strongly suggest that cooperatively folding units sometimes organize a partially overlapped and hierarchical structure. This view makes us easy to interpret some different proposal about the foldon as a difference of the hierarchical structure. On the basis of this finding, we present a new method to assign foldons and their hierarchy, using structural and sequence information. The results show that the foldons assigned by our method correspond to the intermediate structures identified by some experimental techniques. The new method makes it easy to predict whether a protein folds sequentially into the native structure or whether some foldons fold into the native structure in parallel.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masanari Matsuoka
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
19
|
Kemplen KR, De Sancho D, Clarke J. The response of Greek key proteins to changes in connectivity depends on the nature of their secondary structure. J Mol Biol 2015; 427:2159-65. [PMID: 25861761 PMCID: PMC4451459 DOI: 10.1016/j.jmb.2015.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 11/15/2022]
Abstract
What governs the balance between connectivity and topology in regulating the mechanism of protein folding? We use circular permutation to vary the order of the helices in the all-α Greek key protein FADD (Fas-associated death domain) to investigate this question. Unlike all-β Greek key proteins, where changes in the order of secondary structure cause a shift in the folding nucleus, the position of the nucleus in FADD is unchanged, even when permutation reduces the complexity significantly. We suggest that this is because local helical contacts are so dominant that permutation has little effect on the entropic cost of forming the folding nucleus whereas, in all-β Greek key proteins, all interactions in the nucleus are long range. Thus, the type of secondary structure modulates the sensitivity of proteins to changes in connectivity.
Collapse
Affiliation(s)
- Katherine R Kemplen
- University of Cambridge Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - David De Sancho
- University of Cambridge Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jane Clarke
- University of Cambridge Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
20
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Longo LM, Kumru OS, Middaugh CR, Blaber M. Evolution and design of protein structure by folding nucleus symmetric expansion. Structure 2014; 22:1377-84. [PMID: 25242458 DOI: 10.1016/j.str.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Models of symmetric protein evolution typically invoke gene duplication and fusion events, in which repetition of a structural motif generates foldable, stable symmetric protein architecture. Success of such evolutionary processes suggests that the duplicated structural motif must be capable of nucleating protein folding. If correct, symmetric expansion of a folding nucleus sequence derived from an extant symmetric fold may be an elegant and computationally tractable solution to de novo protein design. We report the efficient de novo design of a β-trefoil protein by symmetric expansion of a β-trefoil folding nucleus, previously identified by ɸ-value analysis. The resulting protein, having exact sequence symmetry, exhibits superior folding properties compared to its naturally evolved progenitor-with the potential for redundant folding nuclei. In principle, folding nucleus symmetric expansion can be applied to any given symmetric protein fold (that is, nearly one-third of the known proteome) provided information of the folding nucleus is available.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
22
|
Kwa LG, Wensley BG, Alexander CG, Browning SJ, Lichman BR, Clarke J. The folding of a family of three-helix bundle proteins: spectrin R15 has a robust folding nucleus, unlike its homologous neighbours. J Mol Biol 2014; 426:1600-10. [PMID: 24373753 PMCID: PMC3988883 DOI: 10.1016/j.jmb.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/13/2022]
Abstract
Three homologous spectrin domains have remarkably different folding characteristics. We have previously shown that the slow-folding R16 and R17 spectrin domains can be altered to resemble the fast folding R15, in terms of speed of folding (and unfolding), landscape roughness and folding mechanism, simply by substituting five residues in the core. Here we show that, by contrast, R15 cannot be engineered to resemble R16 and R17. It is possible to engineer a slow-folding version of R15, but our analysis shows that this protein neither has a rougher energy landscape nor does change its folding mechanism. Quite remarkably, R15 appears to be a rare example of a protein with a folding nucleus that does not change in position or in size when its folding nucleus is disrupted. Thus, while two members of this protein family are remarkably plastic, the third has apparently a restricted folding landscape.
Collapse
Affiliation(s)
- Lee Gyan Kwa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Beth G Wensley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Crispin G Alexander
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Stuart J Browning
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin R Lichman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
23
|
Kier BL, Anderson JM, Andersen NH. Circular permutation of a WW domain: folding still occurs after excising the turn of the folding-nucleating hairpin. J Am Chem Soc 2014; 136:741-9. [PMID: 24350581 PMCID: PMC4051316 DOI: 10.1021/ja410824x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state.
Collapse
Affiliation(s)
- Brandon L. Kier
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | - Niels H. Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
24
|
Sugita M, Kikuchi T. Analyses of the folding properties of ferredoxin-like fold proteins by means of a coarse-grained Gō model: relationship between the free energy profiles and folding cores. Proteins 2013; 82:954-65. [PMID: 24214655 DOI: 10.1002/prot.24469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 11/07/2022]
Abstract
The folding mechanisms of proteins with multi-state transitions, the role of the intermediate states, and the precise mechanism how each transition occurs are significant on-going research issues. In this study, we investigate ferredoxin-like fold proteins which have a simple topology and multi-state transitions. We analyze the folding processes by means of a coarse-grained Gō model. We are able to reproduce the differences in the folding mechanisms between U1A, which has a high-free-energy intermediate state, and ADA2h and S6, which fold into the native structure through two-state transitions. The folding pathways of U1A, ADA2h, S6, and the S6 circular permutant, S6_p54-55, are reproduced and compared with experimental observations. We show that the ferredoxin-like fold contains two common regions consisting folding cores as predicted in other studies and that U1A produces an intermediate state due to the distinct cooperative folding of each core. However, because one of the cores of S6 loses its cooperativity and the two cores of ADA2h are tightly coupled, these proteins fold into the native structure through a two-state mechanism.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
25
|
Longo L, Lee J, Tenorio C, Blaber M. Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif. Structure 2013; 21:2042-50. [DOI: 10.1016/j.str.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
|
26
|
Nickson AA, Wensley BG, Clarke J. Take home lessons from studies of related proteins. Curr Opin Struct Biol 2012; 23:66-74. [PMID: 23265640 PMCID: PMC3578095 DOI: 10.1016/j.sbi.2012.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
The 'Fold Approach' involves a detailed analysis of the folding of several topologically, structurally and/or evolutionarily related proteins. Such studies can reveal determinants of the folding mechanism beyond the gross topology, and can dissect the residues required for folding from those required for stability or function. While this approach has not yet matured to the point where we can predict the native conformation of any polypeptide chain in silico, it has been able to highlight, amongst others, the specific residues that are responsible for nucleation, pathway malleability, kinetic intermediates, chain knotting, internal friction and Paracelsus switches. Some of the most interesting discoveries have resulted from the attempt to explain differences between homologues.
Collapse
Affiliation(s)
- Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|
27
|
Haglund E, Sułkowska JI, He Z, Feng GS, Jennings PA, Onuchic JN. The unique cysteine knot regulates the pleotropic hormone leptin. PLoS One 2012; 7:e45654. [PMID: 23029163 PMCID: PMC3454405 DOI: 10.1371/journal.pone.0045654] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022] Open
Abstract
Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a point of tension that allows dissipation of stress at a distance in leptin.
Collapse
Affiliation(s)
- Ellinor Haglund
- Department of Chemistry and Biochemistry and Center for theoretical Biological Physics (CTBP), University of California San Diego, La Jolla, California, United States of America
| | - Joanna I. Sułkowska
- Department of Chemistry and Biochemistry and Center for theoretical Biological Physics (CTBP), University of California San Diego, La Jolla, California, United States of America
| | - Zhao He
- Department of Pathology; School of Medicine and Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gen-Sheng Feng
- Department of Pathology; School of Medicine and Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry and Center for theoretical Biological Physics (CTBP), University of California San Diego, La Jolla, California, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological physics and Department of Physics and Astronomy, Chemistry, and Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
28
|
Folding circular permutants of IL-1β: route selection driven by functional frustration. PLoS One 2012; 7:e38512. [PMID: 22693643 PMCID: PMC3367917 DOI: 10.1371/journal.pone.0038512] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Interleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT "functional loop-packing route", despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins.
Collapse
|
29
|
Shandiz AT, Baxa MC, Sosnick TR. A "Link-Psi" strategy using crosslinking indicates that the folding transition state of ubiquitin is not very malleable. Protein Sci 2012; 21:819-27. [PMID: 22528473 DOI: 10.1002/pro.2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/09/2022]
Abstract
Using a combined crosslinking-ψ analysis strategy, we examine whether the structural content of the transition state of ubiquitin can be altered. A synthetic dichloroacetone crosslink is first introduced across two β strands. Whether the structural content in the transition state ensemble has shifted towards the region containing the crosslink is probed by remeasuring the ψ value at another region (ψ identifies the degree to which an inserted bi-Histidine metal ion binding site is formed in the transition state). For sites around the periphery of the obligate transition state nucleus, we find that the resulting changes in ψ values are near or at our detection limit, thereby indicating that the structural content of the transition state has not measurably changed upon crosslinking. This work demonstrates the utility of the simultaneous application of crosslinking and ψ-analysis for examining potential transition state heterogeneity in globular proteins.
Collapse
Affiliation(s)
- Ali T Shandiz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
30
|
Abstract
Surface charges of proteins have in several cases been found to function as "structural gatekeepers," which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges.
Collapse
|
31
|
Haglund E, Danielsson J, Kadhirvel S, Lindberg MO, Logan DT, Oliveberg M. Trimming down a protein structure to its bare foldons: spatial organization of the cooperative unit. J Biol Chem 2011; 287:2731-8. [PMID: 22117065 DOI: 10.1074/jbc.m111.312447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding of the ribosomal protein S6 is a malleable process controlled by two competing, and partly overlapping, folding nuclei. Together, these nuclei extend over most of the S6 structure, except the edge strand β2, which is consistently missing in the folding transition states; despite being part of the S6 four-stranded sheet, β2 seems not to be part of the cooperative unit of the protein. The question is then whether β2 can be removed from the S6 structure without compromising folding cooperativity or native state integrity. To investigate this, we constructed a truncated variant of S6 lacking β2, reducing the size of the protein from 96 to 76 residues (S6(Δβ2)). The new S6 variant expresses well in Escherichia coli and has a well dispersed heteronuclear single quantum correlation spectrum and a perfectly wild-type-like crystal structure, but with a smaller three-stranded β-sheet. Moreover, S6(Δβ2) displays an archetypical v-shaped chevron plot with decreased slope of the unfolding limb, as expected from a protein with maintained folding cooperativity and reduced size. The results support the notion that foldons, as defined by the structural distribution of the folding nuclei, represent a property-based level of hierarchy in the build-up of larger protein structures and suggest that the role of β2 in S6 is mainly in intermolecular binding, consistent with the position of this strand in the ribosomal assembly.
Collapse
Affiliation(s)
- Ellinor Haglund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Interdomain communication revealed in the diabetes drug target mitoNEET. Proc Natl Acad Sci U S A 2011; 108:5266-71. [PMID: 21402934 DOI: 10.1073/pnas.1017604108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MitoNEET is a recently identified drug target for a commonly prescribed diabetes drug, Pioglitazone. It belongs to a previously uncharacterized ancient family of proteins for which the hallmark is the presence of a unique 39 amino acid CDGSH domain. In order to characterize the folding landscape of this novel fold, we performed thermodynamic simulations on MitoNEET using a structure-based model. Additionally, we implement a method of contact map clustering to partition out alternate pathways in folding. This cluster analysis reveals a detour late in folding and enables us to carefully examine the folding mechanism of each pathway rather than the macroscopic average. We observe that tightness in a region distal to the iron-sulfur cluster creates a constraint in folding and additionally appears to mediate communication in folding between the two domains of the protein. We demonstrate that by making changes at this site we are able to tweak the order of folding events in the cluster binding domain as well as decrease the barrier to folding.
Collapse
|
33
|
What lessons can be learned from studying the folding of homologous proteins? Methods 2010; 52:38-50. [PMID: 20570731 PMCID: PMC2965948 DOI: 10.1016/j.ymeth.2010.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 01/30/2023] Open
Abstract
The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.
Collapse
|
34
|
Ohman A, Oman T, Oliveberg M. Solution structures and backbone dynamics of the ribosomal protein S6 and its permutant P(54-55). Protein Sci 2010; 19:183-9. [PMID: 19937661 DOI: 10.1002/pro.298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ribosomal protein S6 from Thermus thermophilus has served as a model system for the study of protein folding, especially for understanding the effects of circular permutations of secondary structure elements. This study presents the structure of a permutant protein, the 96-residue P(54-55), and the structure of its 101-residue parent protein S6(wt) in solution. The data also characterizes the effects of circular permutation on the backbone dynamics of S6. Consistent with crystallographic data on S6(wt), the overall solution structures of both P(54-55) and S6(wt) show a beta-sheet of four antiparallel beta-strands with two alpha-helices packed on one side of the sheet. In clear contrast to the crystal data, however, the solution structure of S6(wt) reveals a disordered loop in the region between beta-strands 2 and 3 (Leu43-Phe60) instead of a well-ordered stretch and associated hydrophobic mini-core observed in the crystal structure. Moreover, the data for P(54-55) show that the joined wild-type N- and C-terminals form a dynamically robust stretch with a hairpin structure that complies with the in silico design. Taken together, the results explain why the loop region of the S6(wt) structure is relatively insensitive to mutational perturbations, and why P(54-55) is more stable than S6(wt): the permutant incision at Lys54-Asp55 is energetically neutral by being located in an already disordered loop whereas the new hairpin between the wild-type N- and C-termini is stabilizing.
Collapse
Affiliation(s)
- Anders Ohman
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden.
| | | | | |
Collapse
|
35
|
Lonquety M, Chomilier J, Papandreou N, Lacroix Z. Prediction of Stability upon Point Mutation in the Context of the Folding Nucleus. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:151-6. [DOI: 10.1089/omi.2009.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mathieu Lonquety
- Scientific Data Management Laboratory, Arizona State University, Tempe, Arizona
- Protein Structure Prediction, IMPMC, Université Pierre et Marie Curie, UMR 7590 CNRS, Paris, France
| | - Jacques Chomilier
- Protein Structure Prediction, IMPMC, Université Pierre et Marie Curie, UMR 7590 CNRS, Paris, France
| | | | - Zoé Lacroix
- Scientific Data Management Laboratory, Arizona State University, Tempe, Arizona
- Pharmaceutical Genomics Division, Translational Genomics Research Institute, Scottsdale, Arizona
| |
Collapse
|
36
|
The HD-exchange motions of ribosomal protein S6 are insensitive to reversal of the protein-folding pathway. Proc Natl Acad Sci U S A 2009; 106:21619-24. [PMID: 19966220 DOI: 10.1073/pnas.0907665106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increasing number of protein structures are found to encompass multiple folding nuclei, allowing their structures to be formed by several competing pathways. A typical example is the ribosomal protein S6, which comprises two folding nuclei (sigma1 and sigma2) defining two competing pathways in the folding energy landscape: sigma1 --> sigma2 and sigma2 --> sigma1. The balance between the two pathways, and thus the order of folding events, is easily controlled by circular permutation. In this study, we make use of this ability to manipulate the folding pathway to demonstrate that the dynamic motions of the S6 structure are independent of how the protein folds. The HD-exchange protection factors remain the same upon complete reversal of the folding order. The phenomenon arises because the HD-exchange motions and the high-energy excitations controlling the folding pathway occur at separated free-energy levels: the Boltzmann distribution of unproductive unfolding attempts samples all unfolding channels in parallel, even those that end up in excessively high barriers. Accordingly, the findings provide a simple rationale for how to interpret native-state dynamics without the need to invoke fluctuations off the normal unfolding reaction coordinate.
Collapse
|
37
|
Faísca PFN. The nucleation mechanism of protein folding: a survey of computer simulation studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:373102. [PMID: 21832332 DOI: 10.1088/0953-8984/21/37/373102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The nucleation mechanism of protein folding, originally proposed by Baldwin in the early 1970s, was firstly observed by Shakhnovich and co-workers two decades later in the context of Monte Carlo simulations of a simple lattice model. At about the same time the extensive use of φ-value analysis provided the first experimental evidence that the folding of Chymotrypsin-inhibitor 2, a small single-domain protein, which folds with two-state kinetics, is also driven by a nucleation mechanism. Since then, the nucleation mechanism is generally considered the most common form of folding mechanism amongst two-state proteins. However, recent experimental data has put forward the idea that this may not necessarily be so, since the accuracy of the experimentally determined φ values, which are used to identify the critical (i.e. nucleating) residues, is typically poor. Here, we provide a survey of in silico results on the nucleation mechanism, ranging from simple lattice Monte Carlo to more sophisticated off-lattice molecular dynamics simulations, and discuss them in light of experimental data.
Collapse
Affiliation(s)
- Patrícia F N Faísca
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal
| |
Collapse
|
38
|
Prudhomme N, Chomilier J. Prediction of the protein folding core: application to the immunoglobulin fold. Biochimie 2009; 91:1465-74. [PMID: 19665046 DOI: 10.1016/j.biochi.2009.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/30/2009] [Indexed: 11/27/2022]
Abstract
We propose an algorithm that allows predicting residues important for the formation of the structure of globular proteins. It relies on a simulation that detects the amino acids presenting a maximum number of neighbours during the early steps of the folding process. They have been called MIR (Most Interacting Residues). Independently, description of the protein structures in fragments with closed ends shows the correlation between these extremities and the core of the globules. These fragments are of rather constant length, typically between 20 and 25 amino acids, and we have previously shown that their extremities are preferentially occupied by MIR. Introduction of rules derived from this fragment analysis of tertiary structures allows to smooth the distribution of MIR, for a better match between TEF ends and MIR. In order to assess this prediction of the folding core, a large family of structures has been used, with sequences as different as possible. A dataset of 56 immunoglobulin structures of various functions but common fold has been used in this study. This fold was chosen because it is one of the most populated with a large amount of data available on its nucleus. In the immunoglobulin domain, "functional and structural load is clearly separated: loops are responsible for binding and recognition while interactions between several residues of the buried core provide stability and fast folding"[1]. We then determined the positions susceptible of high importance for the folding process to occur and compared them to published data, either to High Throw Out Order (HTOO), Conservatism of Conservatism (CoC) or Phi value experiments. It results a reasonable agreement between the positions that we predict and experimental data. Besides, our prediction goes beyond the simple use of a null solvent accessibility of amino acids as a criterion to predict the core. We find the same quality of our prediction on the flavodoxin like superfamily.
Collapse
Affiliation(s)
- Nicolas Prudhomme
- Protein Structure Prediction, IMPMC, CNRS UMR 7590, Paris 6 University, 75015 Paris, France
| | | |
Collapse
|
39
|
Neuweiler H, Sharpe TD, Rutherford TJ, Johnson CM, Allen MD, Ferguson N, Fersht AR. The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family. J Mol Biol 2009; 390:1060-73. [PMID: 19445954 DOI: 10.1016/j.jmb.2009.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Studies on members of protein families with similar structures but divergent sequences provide insights into the effects of sequence composition on the mechanism of folding. Members of the peripheral subunit-binding domain (PSBD) family fold ultrafast and approach the smallest size for cooperatively folding proteins. Phi-Value analysis of the PSBDs E3BD and POB reveals folding via nucleation-condensation through structurally very similar, polarized transition states. Here, we present a Phi-value analysis of the family member BBL and found that it also folds by a nucleation-condensation mechanism. The mean Phi values of BBL, E3BD, and POB were near identical, indicating similar fractions of non-covalent interactions being formed in the transition state. Despite the overall conservation of folding mechanism in this protein family, however, the pattern of Phi values determined for BBL revealed a larger dispersion of the folding nucleus across the entire structure, and the transition state was less polarized. The observed plasticity of transition-state structure can be rationalized by the different helix-forming propensities of PSBD sequences. The very strong helix propensity in the first helix of BBL, relative to E3BD and POB, appears to recruit more structure formation in that helix in the transition state at the expense of weaker interactions in the second helix. Differences in sequence composition can modulate transition-state structure of even the smallest natural protein domains.
Collapse
|
40
|
An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 2009; 16:582-8. [DOI: 10.1038/nsmb.1592] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Faísca PFN, Travasso RDM, Ball RC, Shakhnovich EI. Identifying critical residues in protein folding: Insights from phi-value and P(fold) analysis. J Chem Phys 2009; 129:095108. [PMID: 19044896 DOI: 10.1063/1.2973624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply a simulational proxy of the phi-value analysis and perform extensive mutagenesis experiments to identify the nucleating residues in the folding "reactions" of two small lattice Go polymers with different native geometries. Our findings show that for the more complex native fold (i.e., the one that is rich in nonlocal, long-range bonds), mutation of the residues that form the folding nucleus leads to a considerably larger increase in the folding time than the corresponding mutations in the geometry that is predominantly local. These results are compared to data obtained from an accurate analysis based on the reaction coordinate folding probability P(fold) and on structural clustering methods. Our study reveals a complex picture of the transition state ensemble. For both protein models, the transition state ensemble is rather heterogeneous and splits up into structurally different populations. For the more complex geometry the identified subpopulations are actually structurally disjoint. For the less complex native geometry we found a broad transition state with microscopic heterogeneity. These findings suggest that the existence of multiple transition state structures may be linked to the geometric complexity of the native fold. For both geometries, the identification of the folding nucleus via the P(fold) analysis agrees with the identification of the folding nucleus carried out with the phi-value analysis. For the most complex geometry, however, the applied methodologies give more consistent results than for the more local geometry. The study of the transition state structure reveals that the nucleus residues are not necessarily fully native in the transition state. Indeed, it is only for the more complex geometry that two of the five critical residues show a considerably high probability of having all its native bonds formed in the transition state. Therefore, one concludes that, in general, the phi-value correlates with the acceleration/deceleration of folding induced by mutation, rather than with the degree of nativeness of the transition state, and that the "traditional" interpretation of phi-values may provide a more realistic picture of the structure of the transition state only for more complex native geometries.
Collapse
Affiliation(s)
- P F N Faísca
- Centro de Fisica Teorica e Computacional, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.
| | | | | | | |
Collapse
|
42
|
Nordlund A, Oliveberg M. SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease. HFSP JOURNAL 2008; 2:354-64. [PMID: 19436494 DOI: 10.2976/1.2995726] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/19/2022]
Abstract
Amyotropic lateral sclerosis (ALS) is a neurodegenerative disease linked to misfolding and aggregation of the homodimeric enzyme superoxide dismutase (SOD1). In contrast to the precursors of other neurodegenerative diseases, SOD1 is a soluble and simple-to-study protein with immunoglobulin-like structure. Also, there are more than 120 ALS-provoking SOD1 mutations at the disposal for detailed elucidation of the disease-triggering factors at molecular level. In this article, we review recent progress in the characterization of the folding and assembly pathway of the SOD1 dimer and how this is affected by ALS-provoking mutations. Despite the diverse nature of these mutations, the results offer so far a surprising simplicity. The ALS-provoking mutations decrease either protein stability or net repulsive charge: the classical hallmarks for a disease mechanism triggered by association of non-native protein. In addition, the mutant data identifies immature SOD1 monomers as the species from which the cytotoxic pathway emerges, and point at compromised folding cooperativity as a key disease determinant. The relative ease by which these data can be obtained makes SOD1 a promising model for elucidating also the origin of other neurodegenerative diseases where the precursor proteins are structurally more elusive.
Collapse
Affiliation(s)
- Anna Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
43
|
Haglund E, Lindberg MO, Oliveberg M. Changes of Protein Folding Pathways by Circular Permutation. J Biol Chem 2008; 283:27904-27915. [DOI: 10.1074/jbc.m801776200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Nickson AA, Stoll KE, Clarke J. Folding of a LysM domain: entropy-enthalpy compensation in the transition state of an ideal two-state folder. J Mol Biol 2008; 380:557-69. [PMID: 18538343 PMCID: PMC2441773 DOI: 10.1016/j.jmb.2008.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/14/2008] [Accepted: 05/09/2008] [Indexed: 10/27/2022]
Abstract
Protein-engineering methods (Phi-values) were used to investigate the folding transition state of a lysin motif (LysM) domain from Escherichia coli membrane-bound lytic murein transglycosylase D. This domain consists of just 48 structured residues in a symmetrical betaalphaalphabeta arrangement and is the smallest alphabeta protein yet investigated using these methods. An extensive mutational analysis revealed a highly robust folding pathway with no detectable transition state plasticity, indicating that LysM is an example of an ideal two-state folder. The pattern of Phi-values denotes a highly polarised transition state, with significant formation of the helices but no structure within the beta-sheet. Remarkably, this transition state remains polarised after circularisation of the domain, and exhibits an identical Phi-value pattern; however, the interactions within the transition state are uniformly weaker in the circular variant. This observation is supported by results from an Eyring analysis of the folding rates of the two proteins. We propose that the folding pathway of LysM is dominated by enthalpic rather than entropic considerations, and suggest that the lower entropy cost of formation of the circular transition state is balanced, to some extent, by the lower enthalpy of contacts within this structure.
Collapse
Affiliation(s)
| | | | - Jane Clarke
- University of Cambridge Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
45
|
Siltberg-Liberles J, Martinez A. Searching distant homologs of the regulatory ACT domain in phenylalanine hydroxylase. Amino Acids 2008; 36:235-49. [PMID: 18368466 DOI: 10.1007/s00726-008-0057-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/11/2008] [Indexed: 11/29/2022]
Abstract
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.
Collapse
|
46
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
47
|
Abstract
The "protein folding problem" consists of three closely related puzzles: (a) What is the folding code? (b) What is the folding mechanism? (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein folding has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and moving toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first.
Collapse
Affiliation(s)
- Ken A. Dill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
- Graduate Group in Biophysics, University of California, San Francisco, California 94143;
| | - S. Banu Ozkan
- Department of Physics, Arizona State University, Tempe, Arizona 85287;
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106;
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany;
| |
Collapse
|
48
|
Weikl TR. Loop-closure principles in protein folding. Arch Biochem Biophys 2008; 469:67-75. [PMID: 17662688 DOI: 10.1016/j.abb.2007.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Simple theoretical concepts and models have been helpful to understand the folding rates and routes of single-domain proteins. As reviewed in this article, a physical principle that appears to underly these models is loop closure.
Collapse
Affiliation(s)
- Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 14424 Potsdam, Germany.
| |
Collapse
|
49
|
Royer CA. The nature of the transition state ensemble and the mechanisms of protein folding: a review. Arch Biochem Biophys 2007; 469:34-45. [PMID: 17923105 DOI: 10.1016/j.abb.2007.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/28/2007] [Accepted: 08/01/2007] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine A Royer
- Institut National de la Santé et de la Recherche Médicale, Unité 554, Montpellier, France.
| |
Collapse
|
50
|
Lam AR, Borreguero JM, Ding F, Dokholyan NV, Buldyrev SV, Stanley HE, Shakhnovich E. Parallel folding pathways in the SH3 domain protein. J Mol Biol 2007; 373:1348-60. [PMID: 17900612 DOI: 10.1016/j.jmb.2007.08.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 08/06/2007] [Accepted: 08/14/2007] [Indexed: 11/16/2022]
Abstract
The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Go model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.
Collapse
Affiliation(s)
- A R Lam
- Center for Polymer Studies, Department of Physics, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|