1
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Abstract
Classifying the hematological malignancies by assigning cells to their normal counterpart and describing the nature of disease progression are entirely reliant on an accurate picture for the development of the multifarious types of blood and immune cells. In recent years, our understanding of the complex relationships between the various hematopoietic stem cell-derived cell lineages has undergone substantial revision. There has been similar progress in how we describe the nature of the "target" cells that genetic insults transform to give rise to the hematological malignancies. Here I describe how both longstanding and new information has influenced classifying, for diagnosis, the hematological malignancies.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
4
|
Brown G, Ceredig R. Modeling the Hematopoietic Landscape. Front Cell Dev Biol 2019; 7:104. [PMID: 31275935 PMCID: PMC6591273 DOI: 10.3389/fcell.2019.00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Some time ago, we proposed a continuum-like view of the lineages open to hematopoietic stem cells (HSCs); each HSC self-renews or chooses from the spectrum of all end-cell options and can then "merely" differentiate. Having selected a cell lineage, an individual HSC may still "step sideways" to an alternative, albeit closely related, fate: HSC and their progeny therefore remain versatile. The hematopoietic cytokines erythropoietin, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and ligand for the fms-like tyrosine kinase 3 instruct cell lineage. Sub-populations of HSCs express each of the cytokine receptors that are positively auto-regulated upon cytokine binding. Many years ago, Waddington proposed that the epigenetic landscape played an important role in cell lineage choice. This landscape is dynamic and unstable especially regarding DNA methylation patterns across genomic DNA. This may underlie the receptor diversity of HSC and their decision-making.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences - Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
5
|
Becker H, Greve G, Kataoka K, Mallm JP, Duque-Afonso J, Ma T, Niemöller C, Pantic M, Duyster J, Cleary ML, Schüler J, Rippe K, Ogawa S, Lübbert M. Identification of enhancer of mRNA decapping 4 as a novel fusion partner of MLL in acute myeloid leukemia. Blood Adv 2019; 3:761-765. [PMID: 30833276 PMCID: PMC6418506 DOI: 10.1182/bloodadvances.2018023879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023] Open
Abstract
mRNA decapping gene EDC4 is a novel fusion partner of MLL in AML. Genes functioning in mRNA decapping may compose a distinct group of MLL fusion partners that links MLL function with mRNA decapping in AML.
Collapse
Affiliation(s)
- Heiko Becker
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium partner site, Freiburg, Germany
| | - Gabriele Greve
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Jan-Philipp Mallm
- Division of Chromatin Networks and
- Single-cell Open Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Jesús Duque-Afonso
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pathology, Stanford University, Stanford, CA; and
| | - Tobias Ma
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Niemöller
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium partner site, Freiburg, Germany
| | | | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks and
- Single-cell Open Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Seishi Ogawa
- German Cancer Consortium partner site, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center, and
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium partner site, Freiburg, Germany
| |
Collapse
|
6
|
Min JW, Koh Y, Kim DY, Kim HL, Han JA, Jung YJ, Yoon SS, Choi SS. Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients. Mol Cells 2018; 41:465-475. [PMID: 29764005 PMCID: PMC5974623 DOI: 10.14348/molcells.2018.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/25/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Jae-Woong Min
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080,
Korea
| | - Dae-Yoon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080,
Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Woman’s University, Seoul 03760,
Korea
| | - Jeong A Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080,
Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
7
|
Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, Cheng A, Schaner Tooley CE. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Protein Sci 2017; 26:1639-1652. [PMID: 28556566 DOI: 10.1002/pro.3202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation.
Collapse
Affiliation(s)
- Kaitlyn M Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Nichola C Garbett
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Alan Cheng
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| |
Collapse
|
8
|
Perez PS, Nozawa SR, Macedo AA, Baranauskas JA. Windowing improvements towards more comprehensible models. Knowl Based Syst 2016. [DOI: 10.1016/j.knosys.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang J, Jiang H, Shao J, Mao R, Liu J, Ma Y, Fang X, Zhao N, Zheng S, Lin B. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis. BMC Neurol 2014; 14:207. [PMID: 25366337 PMCID: PMC4233052 DOI: 10.1186/s12883-014-0207-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023] Open
Abstract
Background SOX4 is a transcription factor required for tissue development and differentiation in vertebrates. Overexpression of SOX4 has been reported in many cancers including glioblastoma multiforme (GBM), however, the underlying mechanism of actions has not been studied. In this study, we investigated the role of SOX4 in GBM. Methods Kaplan-Meier analysis was performed to assess the association between SOX4 expression levels and survival times in primary GBM samples. Cre/lox P system was used to generate gain or loss of SOX4 in GBM cells, and microarray analysis uncovered the regulation network of SOX4 in GBM cells. Results High SOX4 expression was significantly associated with good prognosis of primary GBMs. SOX4 inhibited the growth of GBM cell line LN229, A172G and U87MG, partly via the activation of p53-p21 signaling and down-regulation of phosphorylated AKT1. Gene expression profiling and subsequent gene ontology analysis showed that SOX4 influenced several key pathways including the Wnt/ beta-catenin and TGF-beta signaling pathways. Conclusions Our study found that SOX4 acts as a tumor suppressor in GBM cells by induce cell cycle arrest and inhibiting cell growth. Electronic supplementary material The online version of this article (doi:10.1186/s12883-014-0207-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P R China. .,Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Huawei Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P R China. .,Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Jiaofang Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu Province, P R China.
| | - Ruifang Mao
- Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Jie Liu
- Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Yingying Ma
- Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Xuefeng Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Na Zhao
- Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P R China.
| | - Biaoyang Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P R China. .,Systems Biology Division and Propriumbio Research Center, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, Zhejiang Province, P R China. .,Department of Urology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Vonlanthen J, Okoniewski MJ, Menigatti M, Cattaneo E, Pellegrini-Ochsner D, Haider R, Jiricny J, Staiano T, Buffoli F, Marra G. A comprehensive look at transcription factor gene expression changes in colorectal adenomas. BMC Cancer 2014; 14:46. [PMID: 24472434 PMCID: PMC4078005 DOI: 10.1186/1471-2407-14-46] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological processes are controlled by transcription networks. Expression changes of transcription factor (TF) genes in precancerous lesions are therefore crucial events in tumorigenesis. Our aim was to obtain a comprehensive picture of these changes in colorectal adenomas. METHODS Using a 3-pronged selection procedure, we analyzed transcriptomic data on 34 human tissue samples (17 adenomas and paired samples of normal mucosa, all collected with ethics committee approval and written, informed patient consent) to identify TFs with highly significant tumor-associated gene expression changes whose potential roles in colorectal tumorigenesis have been under-researched. Microarray data were subjected to stringent statistical analysis of TF expression in tumor vs. normal tissues, MetaCore-mediated identification of TF networks displaying enrichment for genes that were differentially expressed in tumors, and a novel quantitative analysis of the publications examining the TF genes' roles in colorectal tumorigenesis. RESULTS The 261 TF genes identified with this procedure included DACH1, which plays essential roles in the proper proliferation and differentiation of retinal and leg precursor cell populations in Drosophila melanogaster. Its possible roles in colorectal tumorigenesis are completely unknown, but it was found to be markedly overexpressed (mRNA and protein) in all colorectal adenomas and in most colorectal carcinomas. However, DACH1 expression was absent in some carcinomas, most of which were DNA mismatch-repair deficient. When networks were built using the set of TF genes identified by all three selection procedures, as well as the entire set of transcriptomic changes in adenomas, five hub genes (TGFB1, BIRC5, MYB, NR3C1, and TERT) where identified as putatively crucial components of the adenomatous transformation process. CONCLUSION The transcription-regulating network of colorectal adenomas (compared with that of normal colorectal mucosa) is characterized by significantly altered expression of over 250 TF genes, many of which have never been investigated in relation to colorectal tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, Zurich 8051, Switzerland.
| |
Collapse
|
11
|
Ye P, Zhao L, Gonda TJ. The MYB oncogene can suppress apoptosis in acute myeloid leukemia cells by transcriptional repression of DRAK2 expression. Leuk Res 2013; 37:595-601. [PMID: 23398943 DOI: 10.1016/j.leukres.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
RNA interference-mediated suppression of MYB expression promoted apoptosis in the AML cell line U937, without affecting expression of the anti-apoptotic MYB target BCL2. This was accompanied by up-regulation of the pro-apoptotic gene DRAK2 and stimulation of caspase-9 activity. Moreover, RNA interference-mediated suppression of DRAK2 in U937 cells alleviated apoptosis induced by MYB down-regulation. Finally ChIP assays showed that in U937 cells MYB binds to a conserved element upstream of the DRAK2 transcription start site. Together, these findings identify a novel mechanism by which MYB suppresses apoptosis in an AML model cell line.
Collapse
Affiliation(s)
- Ping Ye
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
12
|
Coşkunpınar E, Anak S, Ağaoğlu L, Unüvar A, Devecioğlu O, Aydoğan G, Timur C, Oner AF, Yıldırmak Y, Celkan T, Yıldız I, Sarper N, Ozbek U. Analysis of Chromosomal Aberrations and FLT3 gene Mutations in Childhood Acute Myelogenous Leukemia Patients. Turk J Haematol 2012; 29:225-35. [PMID: 24744665 PMCID: PMC3986746 DOI: 10.5505/tjh.2012.24392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/21/2012] [Indexed: 11/17/2022] Open
Abstract
Objective: To identify the well-known common translocations and FLT3 mutations in childhood acute myelogenousleukemia (AML) patients in Turkey. Material and Methods: The study included 50 newly diagnosed patients in which t(15;17), t(8;21), and inv(16)chromosomal translocations were identified using real-time PCR and FLT3 gene mutations were identified via direct PCR amplification PCR-RE analysis. Results: In all, t(15;17) chromosomal aberrations were observed in 4 patients (8.0%), t(8;21) chromosomal aberrationswere observed in 12 patients (24.0%), inv(16) chromosomal aberrations were observed in 3 patients (6.0%), and FLT3-ITD mutations were observed in 2 patients (4.0%); FLT3-D835 point mutation heterozygosity was observed in only 1patient (2.0%) patient. Conclusion: Despite of the known literature, a patient with FLT3-ITD and FLT3-D835 double mutation shows a bettersurvival and this might be due to the complementation effect of the t(15;17) translocation. The reportedmutation ratein this article (4%) of FLT3 gene seems to be one of the first results for Turkish population.
Collapse
Affiliation(s)
- Ender Coşkunpınar
- İstanbul University, Institute of Experimental Medical Research, Department of Genetics, İstanbul, Turkey
| | - Sema Anak
- İstanbul University, School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Leyla Ağaoğlu
- İstanbul University, School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Ayşegül Unüvar
- İstanbul University, School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Omer Devecioğlu
- İstanbul University, School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Gönül Aydoğan
- Bakırköy Maternity and Children's Hospital, İstanbul, Turkey
| | - Cetin Timur
- Göztepe Education and Research Hospital, Department of Pediatric Hematology, İstanbul, Turkey
| | - Ahmet Faik Oner
- Yüzüncü Yıl University, School of Medicine, Department Of Pediatrics, Van, Turkey
| | - Yıldız Yıldırmak
- Şişli Etfal Education and Research Hospital, Department of Pediatric Hematology, İstanbul, Turkey
| | - Tiraje Celkan
- İstanbul University, Cerrahpaşa School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Inci Yıldız
- İstanbul University, Cerrahpaşa School of Medicine, Department of Pediatric Hematology-Oncology, İstanbul, Turkey
| | - Nazan Sarper
- Kocaeli University, School of Medicine, Department of Children's Health and Diseases, Kocaeli, Turkey
| | - Uğur Ozbek
- İstanbul University, Institute of Experimental Medical Research, Department of Genetics, İstanbul, Turkey
| |
Collapse
|
13
|
Lee JW, Kim HS, Hwang J, Kim YH, Lim GY, Sohn WJ, Yoon SR, Kim JY, Park TS, Oh SH, Park KM, Choi SU, Ryoo ZY, Lee S. Regulation of HOXA9 activity by predominant expression of DACH1 against C/EBPα and GATA-1 in myeloid leukemia with MLL-AF9. Biochem Biophys Res Commun 2012; 426:299-305. [PMID: 22902925 DOI: 10.1016/j.bbrc.2012.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 02/03/2023]
Abstract
Although MLL-AF9 caused by the chromosomal translocation t(9;11) has a critical role in acute myeloid leukemia, the molecular pathogenesis is poorly understood. Here, we identified that the cell fate determination factor DACH1 is directly up-regulated by MLL-AF9. Recently we showed that the forced expression of DACH1 in myeloid cells induced p27(Kip1) and repressed p21(Cip1), which is a pivotal characteristic of the myeloid progenitor. Consistent with our previous study, ectopic expression of DACH1 contributed to the maintenance of colonogenic activity and blocked the differentiation of myeloid progenitors. Moreover, we here identified an endogenous HOXA9-DACH1 complex mediated by the carboxyl terminus of DACH1 in t(9;11) leukemia cells. qRT-PCR revealed that DACH1 has a stronger transcription-promoting activity with HOXA9 than does PBX2 with HOXA9. Furthermore, C/EBPα and GATA-1 can directly bind to the promoter of DACH1 and act as a transcriptional suppressor. Expression of DACH1 is down-regulated during myeloid differentiation and shows an inverse pattern compared to C/EBPα and GATA-1 expression. However, ectopic expression of C/EBPα and/or GATA-1 could not abrogate the over-expression of DACH1 induced by MLL-AF9. Therefore, we postulate that the inability of C/EBPα and GATA-1 to down-regulate DACH1 expression induced by MLL-AF9 during myeloid differentiation may contribute to t(9;11) leukemogenesis.
Collapse
Affiliation(s)
- Jae-Woong Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lo MC, Peterson LF, Yan M, Cong X, Jin F, Shia WJ, Matsuura S, Ahn EY, Komeno Y, Ly M, Ommen HB, Chen IM, Hokland P, Willman CL, Ren B, Zhang DE. Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 2012; 120:1473-84. [PMID: 22740448 PMCID: PMC3423785 DOI: 10.1182/blood-2011-12-395335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/16/2012] [Indexed: 12/24/2022] Open
Abstract
Chromosome translocation 8q22;21q22 [t(8;21)] is commonly associated with acute myeloid leukemia (AML), and the resulting AML1-ETO fusion proteins are involved in the pathogenesis of AML. To identify novel molecular and therapeutic targets, we performed combined gene expression microarray and promoter occupancy (ChIP-chip) profiling using Lin(-)/Sca1(-)/cKit(+) cells, the major leukemia cell population, from an AML mouse model induced by AML1-ETO9a (AE9a). Approximately 30% of the identified common targets of microarray and ChIP-chip assays overlap with the human t(8;21)-gene expression molecular signature. CD45, a protein tyrosine phosphatase and a negative regulator of cytokine/growth factor receptor and JAK/STAT signaling, is among those targets. Its expression is substantially down-regulated in leukemia cells. Consequently, JAK/STAT signaling is enhanced. Re-expression of CD45 suppresses JAK/STAT activation, delays leukemia development, and promotes apoptosis of t(8;21)-positive cells. This study demonstrates the benefit of combining gene expression and promoter occupancy profiling assays to identify molecular and potential therapeutic targets in human cancers and describes a previously unappreciated signaling pathway involving t(8;21) fusion proteins, CD45, and JAK/STAT, which could be a potential novel target for treating t(8;21) AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- DNA, Neoplasm/metabolism
- Enzyme Activation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks/genetics
- Genes, Neoplasm/genetics
- Humans
- Janus Kinases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukocyte Common Antigens/metabolism
- Mice
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Reproducibility of Results
- STAT Transcription Factors/metabolism
- Signal Transduction/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Miao-Chia Lo
- Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1. Biochem Biophys Res Commun 2012; 420:91-5. [PMID: 22405764 DOI: 10.1016/j.bbrc.2012.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27(Kip1) and repressed p21(Cip1), which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21(Cip1), which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.
Collapse
|
16
|
Pereira S, Vayntrub T, Hiraki DD, Cherry AM, Arai S, Dvorak CC, Grumet FC. Short tandem repeat and human leukocyte antigen mutations or losses confound engraftment and typing analysis in hematopoietic stem cell transplants. Hum Immunol 2011; 72:503-9. [DOI: 10.1016/j.humimm.2011.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/16/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
17
|
Watson AS, Mortensen M, Simon AK. Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia. Cell Cycle 2011; 10:1719-25. [PMID: 21512311 DOI: 10.4161/cc.10.11.15673] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.
Collapse
|
18
|
Chetverina EV, Chetverin AB. Nanocolonies and diagnostics of oncological diseases associated with chromosomal translocations. BIOCHEMISTRY (MOSCOW) 2011; 75:1667-91. [DOI: 10.1134/s0006297910130109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abdul-Nabi AM, Yassin ER, Varghese N, Deshmukh H, Yaseen NR. In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML. PLoS One 2010; 5:e12464. [PMID: 20805992 PMCID: PMC2929205 DOI: 10.1371/journal.pone.0012464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 08/03/2010] [Indexed: 01/08/2023] Open
Abstract
Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Cell Differentiation/genetics
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Fusion
- Oncogenes/genetics
- Proto-Oncogene Proteins c-mdm2/genetics
- Time Factors
Collapse
Affiliation(s)
- Anmaar M. Abdul-Nabi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enas R. Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hrishikesh Deshmukh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nabeel R. Yaseen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Miller BG, Stamatoyannopoulos JA. Integrative meta-analysis of differential gene expression in acute myeloid leukemia. PLoS One 2010; 5:e9466. [PMID: 20209125 PMCID: PMC2830886 DOI: 10.1371/journal.pone.0009466] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous disease with an overall poor prognosis. Gene expression profiling studies of patients with AML has provided key insights into disease pathogenesis while exposing potential diagnostic and prognostic markers and therapeutic targets. A systematic comparison of the large body of gene expression profiling studies in AML has the potential to test the extensibility of conclusions based on single studies and provide further insights into AML. Methodology/Principal Findings In this study, we systematically compared 25 published reports of gene expression profiling in AML. There were a total of 4,918 reported genes of which one third were reported in more than one study. We found that only a minority of reported prognostically-associated genes (9.6%) were replicated in at least one other study. In a combined analysis, we comprehensively identified both gene sets and functional gene categories and pathways that exhibited significant differential regulation in distinct prognostic categories, including many previously unreported associations. Conclusions/Significance We developed a novel approach for granular, cross-study analysis of gene-by-gene data and their relationships with established prognostic features and patient outcome. We identified many robust novel prognostic molecular features in AML that were undetected in prior studies, and which provide insights into AML pathogenesis with potential diagnostic, prognostic, and therapeutic implications. Our database and integrative analysis are available online (http://gat.stamlab.org).
Collapse
Affiliation(s)
- Brady G. Miller
- Department of Hematology, University of Washington, Seattle, Washington, United States of America
| | - John A. Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Application of serial analysis of gene expression to the study of human genetic disease. Hum Genet 2009; 126:605-14. [PMID: 19590894 DOI: 10.1007/s00439-009-0719-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/02/2009] [Indexed: 02/06/2023]
Abstract
Sequence tag analysis using serial analysis of gene expression (SAGE) is a powerful strategy for the quantitative analysis of gene expression in human genetic disorders. SAGE facilitates the measurement of mRNA transcripts and generates a non-biased gene expression profile of normal and pathological disease tissue. In addition, the SAGE technique has the capacity of detecting the expression of novel transcripts allowing for the identification of previously uncharacterised genes, thus providing a unique advantage over the traditional microarray-based approach for expression profiling. The technique has been successful in providing pathological gene expression profiles in a number of common genetic disorders including diabetes, cardiovascular disease, Parkinson disease and Down syndrome. When combined with next generation sequencing platforms, SAGE has the potential to become a more powerful and sensitive technique making it more amenable for diagnostic use. This review will therefore discuss the application of SAGE to several common genetic disorders and will further evaluate its potential use in diagnosing human genetic disease.
Collapse
|
22
|
Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA, Ley TJ. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 2009; 119:1714-26. [PMID: 19451695 DOI: 10.1172/jci38248] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/25/2009] [Indexed: 11/17/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the t(15;17) chromosomal translocation, which results in fusion of the retinoic acid receptor alpha (RARA) gene to another gene, most commonly promyelocytic leukemia (PML). The resulting fusion protein, PML-RARA, initiates APL, which is a subtype (M3) of acute myeloid leukemia (AML). In this report, we identify a gene expression signature that is specific to M3 samples; it was not found in other AML subtypes and did not simply represent the normal gene expression pattern of primary promyelocytes. To validate this signature for a large number of genes, we tested a recently developed high throughput digital technology (NanoString nCounter). Nearly all of the genes tested demonstrated highly significant concordance with our microarray data (P < 0.05). The validated gene signature reliably identified M3 samples in 2 other AML datasets, and the validated genes were substantially enriched in our mouse model of APL, but not in a cell line that inducibly expressed PML-RARA. These results demonstrate that nCounter is a highly reproducible, customizable system for mRNA quantification using limited amounts of clinical material, which provides a valuable tool for biomarker measurement in low-abundance patient samples.
Collapse
Affiliation(s)
- Jacqueline E Payton
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim YH, Kim HS, Hwang JM, Lee JS, Kim SG, Park SY, Chang KT, Kim KS, Ryoo ZY, Lee SG. A Comparison of Gene Expression Profiles between Primary Human AML Cells and Therapy-related AML Cells. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.4.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Lee J, Hwang J, Kim HS, Kim S, Kim YH, Park SY, Kim KS, Ryoo ZY, Chang KT, Lee S. A comparison of gene expression profiles between primary human AML cells and AML cell line. Genes Genet Syst 2008; 83:339-45. [PMID: 18931459 DOI: 10.1266/ggs.83.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In acute myeloid leukemia (AML), hematologic malignancies are characterized by recurring chromosomal abnormalities. Chromosome translocation t(9;11)(p22;q23) is one of the most common genetic aberrations and results in the formation of the MLL-AF9 fusion gene that functions as a facilitator of cell growth directly. In order to study this type of AML, the cell lines with cytogenetically diagnosed t(9;11)(p22;q23), such as Mono Mac 6 (MM6), have been widely used. To examine whether there is any difference in gene expression between the primary human t(9;11) AML cells and MM6 cell line, genome-wide transcriptome analysis was performed on MM6 cell line using SAGE and the results were compared to the profile of primary human t(9;11) AML cells. 884 transcripts which were alternatively expressed between MM6 cells and primary human t(9;11) cells were identified through statistical analysis (P < 0.05) and 4-fold expression change. Of these transcripts, 830 (94%) matched to known genes or EST were classified by functional categories (http://david.abcc.ncifcrf.gov/). The majority of alternatively expressed genes in MM6 were involved in biosynthetic and metabolic processes, but HRAS, a protein that is known to be associated with leukemogenesis, was expressed only in MM6 cells and several other genes involved in Erk1/Erk2 MAPK pathway were also over-expressed in MM6. Therefore, since MM6 cell line has a similar expression profile to primary human t(9;11) AML in general and expresses uniquely a strong Erk1/Erk2 MAPK pathway including HRAS, it can be used as a model for HRAS-positive t(9;11) AML.
Collapse
Affiliation(s)
- Jinseok Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mrózek K, Carroll AJ, Maharry K, Rao KW, Patil SR, Pettenati MJ, Watson MS, Arthur DC, Tantravahi R, Heerema NA, Koduru PRK, Block AW, Qumsiyeh MB, Edwards CG, Sterling LJ, Holland KB, Bloomfield CD. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol 2008; 33:239-44. [PMID: 18636143 PMCID: PMC3607284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The Cancer and Leukemia Group B has performed central review of karyotypes submitted by institutional cytogenetics laboratories from patients with acute myeloid (AML) and acute lymphoblastic (ALL) leukemia since 1986. We assessed the role of central karyotype review in maintaining accurate, high quality cytogenetic data for clinical and translational studies using two criteria: the proportion of karyotypes rejected (i.e. inadequate), and, among accepted (i.e. adequate) cases, the proportion of karyotypes whose interpretation was changed on central karyotype review. We compared the first four years during which central karyotype review was performed with a recent 4-year period and found that the proportion of rejected samples decreased significantly for both AML and ALL. However, during the latter period, central karyotype reviews still found 8% of AML and 16% of ALL karyotypes inadequate. Among adequate cases, the karyotype was revised in 26% of both AML and ALL samples. Some revisions resulted in changing the patients' assignment to particular World Health Organization diagnostic categories and/or moving patients from one prognostic group to another. Overall, when both data on rejection rates and data on karyotype revisions made in accepted cases were considered together, 32% of AML and 38% of ALL samples submitted were either rejected or revised on central karyotype review during the recent 4-year period. These data underscore the necessity of continued central karyotype review in multi-institutional cooperative group studies.
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Division of Hematology and Oncology and the Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210-1228, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Serial analysis of gene expression (SAGE) is a method used to obtain comprehensive, unbiased and quantitative gene-expression profiles. Its major advantage over arrays is that it does not require a priori knowledge of the genes to be analyzed and reflects absolute mRNA levels. Since the original SAGE protocol was developed in a short-tag (10-bp) format, several modifications have been made to produce longer SAGE tags for more precise gene identification and to decrease the amount of starting material necessary. Several SAGE-like methods have also been developed for the genome-wide analysis of DNA copy-number changes and methylation patterns, chromatin structure and transcription factor targets. In this protocol, we describe the 17-bp longSAGE method for transcriptome profiling optimized for a small amount of starting material. The generation of such libraries can be completed in 7-10 d, whereas sequencing and data analysis require an additional 2-3 wk.
Collapse
Affiliation(s)
- Min Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, D740C, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
27
|
Zuyderduyn SD. Statistical analysis and significance testing of serial analysis of gene expression data using a Poisson mixture model. BMC Bioinformatics 2007; 8:282. [PMID: 17683533 PMCID: PMC2147036 DOI: 10.1186/1471-2105-8-282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 08/02/2007] [Indexed: 11/23/2022] Open
Abstract
Background Serial analysis of gene expression (SAGE) is used to obtain quantitative snapshots of the transcriptome. These profiles are count-based and are assumed to follow a Binomial or Poisson distribution. However, tag counts observed across multiple libraries (for example, one or more groups of biological replicates) have additional variance that cannot be accommodated by this assumption alone. Several models have been proposed to account for this effect, all of which utilize a continuous prior distribution to explain the excess variance. Here, a Poisson mixture model, which assumes excess variability arises from sampling a mixture of distinct components, is proposed and the merits of this model are discussed and evaluated. Results The goodness of fit of the Poisson mixture model on 15 sets of biological SAGE replicates is compared to the previously proposed hierarchical gamma-Poisson (negative binomial) model, and a substantial improvement is seen. In further support of the mixture model, there is observed: 1) an increase in the number of mixture components needed to fit the expression of tags representing more than one transcript; and 2) a tendency for components to cluster libraries into the same groups. A confidence score is presented that can identify tags that are differentially expressed between groups of SAGE libraries. Several examples where this test outperforms those previously proposed are highlighted. Conclusion The Poisson mixture model performs well as a) a method to represent SAGE data from biological replicates, and b) a basis to assign significance when testing for differential expression between multiple groups of replicates. Code for the R statistical software package is included to assist investigators in applying this model to their own data.
Collapse
Affiliation(s)
- Scott D Zuyderduyn
- Victor Ling Laboratory, Department of Cancer Genetics and Developmental Biology, BC Cancer Research Centre, 675 West 10th Ave,, Vancouver, Canada.
| |
Collapse
|
28
|
Peterson LF, Wang Y, Lo MC, Yan M, Kanbe E, Zhang DE. The multi-functional cellular adhesion molecule CD44 is regulated by the 8;21 chromosomal translocation. Leukemia 2007; 21:2010-9. [PMID: 17657222 DOI: 10.1038/sj.leu.2404849] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The 8;21 translocation is a common chromosomal abnormality in acute myeloid leukemia (AML). We recently identified a naturally occurring leukemogenic splice variant, AML1-ETO9a (acute myeloid leukemia-1 transcription factor and the eight-twenty-one corepressor-9a), of t(8;21). To understand the leukemic potential of AML1-ETO9a, we performed microarray analysis with the murine multipotential hematopoietic FDCP-mix A4 cell line. We identified changes in expression of various genes including CD44. CD44 is a type I transmembrane protein and functions as the major cellular adhesion molecule for hyaluronic acid, a component of the extracellular matrix. CD44 is expressed in most human cell types and is implicated in myeloid leukemia pathogenesis. We show that the presence of AML1-ETO9a significantly increased the expression of CD44 at both RNA and protein levels. Furthermore, the CD44 promoter is bound by AML1-ETO9a and AML1-ETO at the chromatin level. In addition, in the AML1-ETO9a leukemia mouse model CD44 is regulated in a cell context-dependent manner. Thus, our observations suggest that AML1-ETO and its splice variant AML1-ETO9a are able to regulate the expression of the CD44 gene, linking the 8;21 translocation to the regulation of a cell adhesion molecule that is involved in the growth and maintenance of the AML blast/stem cells.
Collapse
Affiliation(s)
- L F Peterson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wang SM. Understanding SAGE data. Trends Genet 2006; 23:42-50. [PMID: 17109989 DOI: 10.1016/j.tig.2006.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/05/2006] [Accepted: 11/01/2006] [Indexed: 02/08/2023]
Abstract
Serial analysis of gene expression (SAGE) is a method for identifying and quantifying transcripts from eukaryotic genomes. Since its invention, SAGE has been widely applied to analyzing gene expression in many biological and medical studies. Vast amounts of SAGE data have been collected and more than a thousand SAGE-related studies have been published since the mid-1990s. The principle of SAGE has been developed to address specific issues such as determination of normal gene structure and identification of abnormal genome structural changes. This review focuses on the general features of SAGE data, including the specificity of SAGE tags with respect to their original transcripts, the quantitative nature of SAGE data for differentially expressed genes, the reproducibility, the comparability of SAGE with microarray and the future potential of SAGE. Understanding these basic features should aid the proper interpretation of SAGE data to address biological and medical questions.
Collapse
Affiliation(s)
- San Ming Wang
- Center for Functional Genomics, ENH Research Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 1001 University Place, Evanston, IL 60201, USA.
| |
Collapse
|
30
|
Wang SM. Applying the SAGE technique to study the effects of electromagnetic field on biological systems. Proteomics 2006; 6:4765-8. [PMID: 16897688 DOI: 10.1002/pmic.200500881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Identification of genes alternatively expressed in electromagnetic field (EMF)-exposed cells could provide direct evidence for biological effects of EMF. As there are a few indications so far for certain genes to be influenced by EMF, genome-wide scans of the transcriptome appear to be necessary. Among the several technologies used for genome-wide gene expression analysis, serial analysis of gene expression (SAGE) is one promising method, which seems particularly applicable for EMF research. This review provides a brief description of the features of gene expression, illustrates the basic principle of SAGE, and discusses the advantages and limitations of SAGE as well as examples of application. This information should help investigators determine if the SAGE technique is an optimal method for evaluating the biological effects of EMF.
Collapse
Affiliation(s)
- San Ming Wang
- Center for Functional Genomics, ENH Research Institute, Department of Medicine, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
31
|
Lotem J, Sachs L. Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 2006; 25:7663-72. [PMID: 16847453 DOI: 10.1038/sj.onc.1209816] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embryonic stem cells are characterized by their differentiation to all cell types during embryogenesis. In adult life, different tissues also have somatic stem cells, called adult stem cells, which in specific niches can undergo multipotent differentiation. The use of these adult stem cells has considerable therapeutic potential for the regeneration of damaged tissues. In both embryonic and adult stem cells, differentiation is controlled by epigenetic mechanisms, and the plasticity of differentiation in these cells is associated with transcription accessibility for genes expressed in different normal tissues. Abnormalities in genetic and/or epigenetic controls can lead to development of cancer, which is maintained by self-renewing cancer stem cells. Although the genetic abnormalities produce defects in growth and differentiation in cancer stem cells, these cells have not always lost the ability to undergo differentiation through epigenetic changes that by-pass the genomic abnormalities, thus creating the basis for differentiation therapy. Like normal stem cells, cancer stem cells can show plasticity for differentiation. This plasticity of cancer stem cells is also associated with transcription accessibility for genes that are normally expressed in different tissues, including tissues other than those from which the cancers originated. This broad transcription accessibility can also contribute to the behavior of cancer cells by overexpressing genes that promote cell viability, growth and metastasis.
Collapse
Affiliation(s)
- J Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|