1
|
Saeki K, Wood IS, Wang WCK, Patil S, Sun Y, Schaeffer DF, Su GH, Kopp JL. Acvr1b Loss Increases Formation of Pancreatic Precancerous Lesions From Acinar and Ductal Cells of Origin. Cell Mol Gastroenterol Hepatol 2024; 18:101387. [PMID: 39111635 PMCID: PMC11404226 DOI: 10.1016/j.jcmgh.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma can develop from precursor lesions, including pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm (IPMN). Previous studies indicated that loss of Acvr1b accelerates the Kras-mediated development of papillary IPMN in the mouse pancreas; however, the cell type predominantly affected by these genetic changes remains unclear. METHODS We investigated the contribution of cellular origin by inducing IPMN associated mutations (KRASG12D expression and Acvr1b loss) specifically in acinar (Ptf1aCreER;KrasLSL-G12D;Acvr1bfl/fl mice) or ductal (Sox9CreER;KrasLSL-G12D;Acvr1bfl/fl mice) cells in mice. We then performed magnetic resonance imaging and a thorough histopathologic analysis of their pancreatic tissues. RESULTS The loss of Acvr1b increased the development of pancreatic intraepithelial neoplasia and IPMN-like lesions when either acinar or ductal cells expressed a Kras mutation. Magnetic resonance imaging, immunohistochemistry, and histology revealed large IPMN-like lesions in these mice that exhibited features of flat, gastric epithelium. In addition, cyst formation in both mouse models was accompanied by chronic pancreatitis. Experimental acute pancreatitis accelerated the development of large mucinous cysts and pancreatic intraepithelial neoplasia when acinar, but not ductal, cells expressed mutant Kras and lost Acvr1b. CONCLUSIONS These findings indicate that loss of Acvr1b in the presence of the Kras oncogene promotes the development of large and small precancerous lesions from both ductal and acinar cells. However, the IPMN-like phenotype was not equivalent to that observed when these mutations were made in all pancreatic cells during development. Our study underscores the significance of the cellular context in the initiation and progression of precursor lesions from exocrine cells.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Ian S Wood
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Wei Chuan Kevin Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shilpa Patil
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yanping Sun
- Oncology Precision Therapeutics and Imaging Core (OPTIC), Columbia University Medical Center, New York, New York
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Hermawan A, Putri H. Bioinformatics Analysis of the Genetic and Epigenetic Alterations of Bone Morphogenetic Protein Receptors in Metastatic Breast Cancer. Biochem Genet 2024; 62:594-620. [PMID: 37486509 DOI: 10.1007/s10528-023-10445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
The leading cause of mortality in patients with breast cancer is metastasis, and bone morphogenetic protein (BMP) signaling activation regulates metastasis in breast cancer. This study explored the genetic and epigenetic modification of BMP receptor genes associated with metastatic breast cancer cells using bioinformatics. The genetic and epigenetic alterations of BMP receptors (BMPR1A, BMPR1B, BMPR2, ACVR2A, ACVR1, ACVR2B, ACVR1B, HJV, and ENG) were examined using cBioportal and methSurv, respectively. mRNA expression was analyzed using TNM plot and bcgenex, and protein expression was studied using Human Protein Atlas. Prognostic value and ROC were investigated using Kaplan-Meier (KM) and ROC plot, respectively. Finally, mutant function was predicted using several databases, including PolyPhen-2, FATHMM, Mutation Assessor, and PredictSNP. Oncoprint analysis showed genetic alterations in BMPR1A (39%), BMPR1B (13%), BMPR2 (34%), ACVR2A (14%), ACVR1 (7%), ACVR2B (13), ACVR1B (35%), HJV (40%), and ENG (33%) across the patients with breast cancer in The Metastatic Breast Cancer Project. The mRNA and protein levels of BMPR2 were increased in metastatic breast tumor tissues compared with those in normal and breast tumor tissues. BMPR1A and BMPR2 showed the highest and lowest levels of epigenetic alterations among the BMP receptors, respectively. The patients with breast cancer who had low levels of BMPR2 had a better overall survival (OS) than those with high levels of BMPR2. Functional mutation prediction showed that mutants in BMPR2 (R272L, E274K, and L685F), ACVR2A (S127L), and ACVR1B (R484H), are deleterious, probably damaging, and possess a cancer phenotype. ROC plot revealed no BMP receptors correlated with endocrine therapy sensitivity. BMPR1B, BMPR2, and ACVR2A levels were significantly linked as moderate prediction of anti-HER2, BMPR2, and ACVR1B demonstrated moderate predictive potential for chemotherapy sensitivity. This study contributed in fully comprehending the significance of genetic and epigenetic alterations in BMP receptors and BMP signaling in metastatic breast cancer cells for the development of breast cancer treatment plans.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
3
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
5
|
Lee JW, Hruban RH, Wood LD. Molecular Understanding of the Development of Ductal Pancreatic Cancer. THE PANCREAS 2023:912-920. [DOI: 10.1002/9781119876007.ch119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.531983. [PMID: 37398090 PMCID: PMC10312454 DOI: 10.1101/2023.03.10.531983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or NF-kB inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L. McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J. Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L. Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G. Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J. Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Payano VJH, Lopes LVDA, Peixoto LR, Silva KAD, Ortiga-Carvalho TM, Tafuri A, Vago AR, Bloise E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses 2023; 15:v15051031. [PMID: 37243119 DOI: 10.3390/v15051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The activin-follistatin system regulates several cellular processes, including differentiation and tumorigenesis. We hypothesized that the immunostaining of βA-activin and follistatin varies in neoplastic cervical lesions. Cervical paraffin-embedded tissues from 162 patients sorted in control (n = 15), cervical intraepithelial neoplasia (CIN) grade 1 (n = 38), CIN2 (n = 37), CIN3 (n = 39), and squamous cell carcinoma (SCC; n = 33) groups were examined for βA-activin and follistatin immunostaining. Human papillomavirus (HPV) detection and genotyping were performed by PCR and immunohistochemistry. Sixteen samples were inconclusive for HPV detection. In total, 93% of the specimens exhibited HPV positivity, which increased with patient age. The most detected high-risk (HR)-HPV type was HPV16 (41.2%) followed by HPV18 (16%). The immunostaining of cytoplasmatic βA-activin and follistatin was higher than nuclear immunostaining in all cervical epithelium layers of the CIN1, CIN2, CIN3, and SCC groups. A significant decrease (p < 0.05) in the cytoplasmic and nuclear immunostaining of βA-activin was detected in all cervical epithelial layers from the control to the CIN1, CIN2, CIN3, and SCC groups. Only nuclear follistatin immunostaining exhibited a significant reduction (p < 0.05) in specific epithelial layers of cervical tissues from CIN1, CIN2, CIN3, and SCC compared to the control. Decreased immunostaining of cervical βA-activin and follistatin at specific stages of CIN progression suggests that the activin-follistatin system participates in the loss of the differentiation control of pre-neoplastic and neoplastic cervical specimens predominantly positive for HPV.
Collapse
Affiliation(s)
- Victor Jesus Huaringa Payano
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Lara Verônica de Araújo Lopes
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Larissa Rodrigues Peixoto
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Keila Alves da Silva
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Tania Maria Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Tafuri
- Laboratório de Anatomia Patológica Tafuri, Belo Horizonte 30170-133, MG, Brazil
| | - Annamaria Ravara Vago
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Enrrico Bloise
- Laboratório de Patogênese Molecular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| |
Collapse
|
8
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
9
|
Pinjusic K, Dubey OA, Egorova O, Nassiri S, Meylan E, Faget J, Constam DB. Activin-A impairs CD8 T cell-mediated immunity and immune checkpoint therapy response in melanoma. J Immunother Cancer 2022; 10:jitc-2022-004533. [PMID: 35580932 PMCID: PMC9125758 DOI: 10.1136/jitc-2022-004533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background Activin-A, a transforming growth factor β family member, is secreted by many cancer types and is often associated with poor disease prognosis. Previous studies have shown that Activin-A expression can promote cancer progression and reduce the intratumoral frequency of cytotoxic T cells. However, the underlying mechanisms and the significance of Activin-A expression for cancer therapies are unclear. Methods We analyzed the expression of the Activin-A encoding gene INHBA in melanoma patients and the influence of its gain- or loss-of-function on the immune infiltration and growth of BRAF-driven YUMM3.3 and iBIP2 mouse melanoma grafts and in B16 models. Using antibody depletion strategies, we investigated the dependence of Activin-A tumor-promoting effect on different immune cells. Immune-regulatory effects of Activin-A were further characterized in vitro and by an adoptive transfer of T cells. Finally, we assessed INHBA expression in melanoma patients who received immune checkpoint therapy and tested whether it impairs the response in preclinical models. Results We show that Activin-A secretion by melanoma cells inhibits adaptive antitumor immunity irrespective of BRAF status by inhibiting CD8+ T cell infiltration indirectly and even independently of CD4 T cells, at least in part by attenuating the production of CXCL9/10 by myeloid cells. In addition, we show that Activin-A/INHBA expression correlates with anti-PD1 therapy resistance in melanoma patients and impairs the response to dual anti-cytotoxic T-Lymphocyte associated protein 4/anti-PD1 treatment in preclinical models. Conclusions Our findings suggest that strategies interfering with Activin-A induced immune-regulation offer new therapeutic opportunities to overcome CD8 T cell exclusion and immunotherapy resistance.
Collapse
Affiliation(s)
- Katarina Pinjusic
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Olivier Andreas Dubey
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Olga Egorova
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Etienne Meylan
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Laboratory of Immuno-Oncology, Bordet Cancer Research Laboratories, Institut Jules Bordet, Faculty of Medicine, and Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Julien Faget
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Equipe Immunity and Cancer IRCM, INSERM U1194, Montpellier, France
| | - Daniel Beat Constam
- School of Life Sciences (SV), ISREC, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
11
|
Wang N, Lu L, Cao QF, Qian S, Ding J, Wang C, Duan H, Shen H, Qi J. Partial inhibition of activin receptor-like kinase 4 alleviates bladder fibrosis caused by bladder outlet obstruction. Exp Cell Res 2021; 406:112724. [PMID: 34237300 DOI: 10.1016/j.yexcr.2021.112724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
The bladder undergoes profound structural alterations after bladder outlet obstruction (BOO), characterized by hypertrophy of the bladder wall and accumulation of extracellular matrix (ECM). Transforming growth factor-β (TGF-β) has been found to promote fibrosis of the bladder induced by partial bladder outlet obstruction (pBOO). Activin receptor-like kinase 4 (ALK4) is a downstream receptor of the TGF-β superfamily. However, the role of the ALK4-Smad2/3 pathway in the pathogenesis of bladder fibrosis caused by pBOO remains unknown. This study focused on learning the role of ALK4 in the process of bladder fibrosis caused by pBOO. The pBOO mice models showed that ALK4 expression was found to upregulate in the wild-type bladder 6 weeks after pBOO compared to control group. Then, mice with heterozygous knockout of the ALK4 gene (ALK4+/-) were generated. Histological analysis and Western blot (WB) results showed significant suppression of collagen expression in the bladders of ALK4+/- mice after pBOO compared with WT mice. WB also showed that ALK4+/- mice demonstrated significant suppression of phosphorylated Smad2/3 (p-Smad2/3) expression in the bladder 6 weeks after pBOO but not of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase or protein 38 (p-ERK, p-JNK, p-P38) expression. This effect might have occurred through partial inactivation of the Smad2/3 signaling pathway. In vitro, ALK4 overexpression promoted collagen production in cultured BSMCs and activated the Smad2/3 signaling pathway. Taken together, our results demonstrated that ALK4 insufficiency alleviated bladder fibrosis in a mouse model of pBOO partly by suppressing Smad2/3 activity.
Collapse
Affiliation(s)
- Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China; Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Lu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Qi Feng Cao
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
13
|
Abstract
Pancreatic cancer is a genetic disease, and the recurrent genetic alterations characteristic of pancreatic cancer indicate the cellular processes that are targeted for malignant transformation. In addition to somatic alterations in the most common driver genes (KRAS, CDKN2A, TP53 and SMAD4), large-scale studies have revealed major roles for genetic alterations of the SWI/SNF and COMPASS complexes, copy number alterations in GATA6 and MYC that partially define phenotypes of pancreatic cancer, and the role(s) of polyploidy and chromothripsis as factors contributing to pancreatic cancer biology and progression. Germline variants that increase the risk of pancreatic cancer continue to be discovered along with a greater appreciation of the features of pancreatic cancers with mismatch repair deficiencies and homologous recombination deficiencies that confer sensitivity to therapeutic targeting. Wild-type KRAS pancreatic cancers, some of which are driven by alternative oncogenic events affecting NRG1 or NTRK1 - for which targeted therapies exist - further underscore that pancreatic cancer is formally entering the era of precision medicine. Given the vast developments within this field, here we review the wide-ranging and most current information related to pancreatic cancer genomics with the goal of integrating this information into a unifying description of the life history of pancreatic cancer.
Collapse
|
14
|
Marker Identification of the Grade of Dysplasia of Intraductal Papillary Mucinous Neoplasm in Pancreatic Cyst Fluid by Quantitative Proteomic Profiling. Cancers (Basel) 2020; 12:cancers12092383. [PMID: 32842508 PMCID: PMC7565268 DOI: 10.3390/cancers12092383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
The incidence of patients with pancreatic cystic lesions, particularly intraductal papillary mucinous neoplasm (IPMN), is increasing. Current guidelines, which primarily consider radiological features and laboratory data, have had limited success in predicting malignant IPMN. The lack of a definitive diagnostic method has led to low-risk IPMN patients undergoing unnecessary surgeries. To address this issue, we discovered IPMN marker candidates by analyzing pancreatic cystic fluid by mass spectrometry. A total of 30 cyst fluid samples, comprising IPMN dysplasia and other cystic lesions, were evaluated. Mucus was removed by brief sonication, and the resulting supernatant was subjected to filter-aided sample preparation and high-pH peptide fractionation. Subsequently, the samples were analyzed by LC-MS/MS. Using several bioinformatics tools, such as gene ontology and ingenuity pathway analysis, we detailed IPMNs at the molecular level. Among the 5834 proteins identified in our dataset, 364 proteins were differentially expressed between IPMN dysplasia. The 19 final candidates consistently increased or decreased with greater IPMN malignancy. CD55 was validated in an independent cohort by ELISA, Western blot, and IHC, and the results were consistent with the MS data. In summary, we have determined the characteristics of pancreatic cyst fluid proteins and discovered potential biomarkers for IPMN dysplasia.
Collapse
|
15
|
Zhao Y, Wu Z, Chanal M, Guillaumond F, Goehrig D, Bachy S, Principe M, Ziverec A, Flaman JM, Collin G, Tomasini R, Pasternack A, Ritvos O, Vasseur S, Bernard D, Hennino A, Bertolino P. Oncogene-Induced Senescence Limits the Progression of Pancreatic Neoplasia through Production of Activin A. Cancer Res 2020; 80:3359-3371. [PMID: 32554750 DOI: 10.1158/0008-5472.can-19-3763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly and aggressive cancer. Understanding mechanisms that drive preneoplastic pancreatic lesions is necessary to improve early diagnostic and therapeutic strategies. Mutations and inactivation of activin-like kinase (ALK4) have been demonstrated to favor PDAC onset. Surprisingly, little is known regarding the ligands that drive ALK4 signaling in pancreatic cancer or how this signaling pathway limits the initiation of neoplastic lesions. In this study, data mining and histologic analyses performed on human and mouse tumor tissues revealed that activin A is the major ALK4 ligand that drives PDAC initiation. Activin A, which is absent in normal acinar cells, was strongly induced during acinar-to-ductal metaplasia (ADM), which was promoted by pancreatitis or the activation of KrasG12D in mice. Activin A expression during ADM was associated with the cellular senescence program that is induced in precursor lesions. Blocking activin A signaling through the use of a soluble form of activin receptor IIB (sActRIIB-Fc) and ALK4 knockout in mice expressing KrasG12D resulted in reduced senescence associated with decreased expression of p21, reduced phosphorylation of H2A histone family member X (H2AX), and increased proliferation. Thus, this study indicates that activin A acts as a protective senescence-associated secretory phenotype factor produced by Kras-induced senescent cells during ADM, which limits the expansion and proliferation of pancreatic neoplastic lesions. SIGNIFICANCE: This study identifies activin A to be a beneficial, senescence-secreted factor induced in pancreatic preneoplastic lesions, which limits their proliferation and ultimately slows progression into pancreatic cancers.
Collapse
Affiliation(s)
- Yajie Zhao
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France.,Department of Geriatrics, Ruijin Hospital, School of Medicine, Shanghai Jia Tong University, Shanghai, China
| | - Zhichong Wu
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Marie Chanal
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - Delphine Goehrig
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Sophie Bachy
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Moitza Principe
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Audrey Ziverec
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Jean-Michel Flaman
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Guillaume Collin
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Richard Tomasini
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - David Bernard
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Ana Hennino
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Philippe Bertolino
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France.
| |
Collapse
|
16
|
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 2019; 9:biom9100605. [PMID: 31614935 PMCID: PMC6843654 DOI: 10.3390/biom9100605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family members from five NMTC-prone families and prioritized the identified variants using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and functional validation of causal variants in each family as well as the screening and genetic counseling of other individuals at risk of developing NMTC.
Collapse
|
17
|
Zhong X, Pons M, Poirier C, Jiang Y, Liu J, Sandusky GE, Shahda S, Nakeeb A, Schmidt CM, House MG, Ceppa EP, Zyromski NJ, Liu Y, Jiang G, Couch ME, Koniaris LG, Zimmers TA. The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. J Cachexia Sarcopenia Muscle 2019; 10:1083-1101. [PMID: 31286691 PMCID: PMC6818463 DOI: 10.1002/jcsm.12461] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal malignancy partly due to frequent, severe cachexia. Serum activin correlates with cachexia and mortality, while exogenous activin causes cachexia in mice. METHODS Isoform-specific activin expression and activities were queried in human and murine tumours and PDAC models. Activin inhibition was by administration of soluble activin type IIB receptor (ACVR2B/Fc) and by use of skeletal muscle specific dominant negative ACVR2B expressing transgenic mice. Feed-forward activin expression and muscle wasting activity were tested in vivo and in vitro on myotubes. RESULTS Murine PDAC tumour-derived cell lines expressed activin-βA but not activin-βB. Cachexia severity increased with activin expression. Orthotopic PDAC tumours expressed activins, induced activin expression by distant organs, and produced elevated serum activins. Soluble factors from PDAC elicited activin because conditioned medium from PDAC cells induced activin expression, activation of p38 MAP kinase, and atrophy of myotubes. The activin trap ACVR2B/Fc reduced tumour growth, prevented weight loss and muscle wasting, and prolonged survival in mice with orthotopic tumours made from activin-low cell lines. ACVR2B/Fc also reduced cachexia in mice with activin-high tumours. Activin inhibition did not affect activin expression in organs. Hypermuscular mice expressing dominant negative ACVR2B in muscle were protected for weight loss but not mortality when implanted with orthotopic tumours. Human tumours displayed staining for activin, and expression of the gene encoding activin-βA (INHBA) correlated with mortality in patients with PDAC, while INHBB and other related factors did not. CONCLUSIONS Pancreatic adenocarcinoma tumours are a source of activin and elicit a systemic activin response in hosts. Human tumours express activins and related factors, while mortality correlates with tumour activin A expression. PDAC tumours also choreograph a systemic activin response that induces organ-specific and gene-specific expression of activin isoforms and muscle wasting. Systemic blockade of activin signalling could preserve muscle and prolong survival, while skeletal muscle-specific activin blockade was only protective for weight loss. Our findings suggest the potential and need for gene-specific and organ-specific interventions. Finally, development of more effective cancer cachexia therapy might require identifying agents that effectively and/or selectively inhibit autocrine vs. paracrine activin signalling.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
| | - Marianne Pons
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Christophe Poirier
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Yanlin Jiang
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Jianguo Liu
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Safi Shahda
- IU Simon Cancer CenterIndianapolisINUSA
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Attila Nakeeb
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - C. Max Schmidt
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Michael G. House
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Eugene P. Ceppa
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Nicholas J. Zyromski
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Yunlong Liu
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Guanglong Jiang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Marion E. Couch
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
18
|
The Use of Genetically Engineered Mouse Models for Studying the Function of Mutated Driver Genes in Pancreatic Cancer. J Clin Med 2019; 8:jcm8091369. [PMID: 31480737 PMCID: PMC6780401 DOI: 10.3390/jcm8091369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.
Collapse
|
19
|
Pinto Y, Buchumenski I, Levanon EY, Eisenberg E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 2019; 46:71-82. [PMID: 29165639 PMCID: PMC5758889 DOI: 10.1093/nar/gkx1176] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
A-to-I RNA editing is an important post-transcriptional modification, known to be altered in tumors. It targets dozens of sites within miRNAs, some of which impact miRNA biogenesis and function, as well as many miRNA recognition sites. However, the full extent of the effect of editing on regulation by miRNAs and its behavior in human cancers is still unknown. Here we systematically characterized miRNA editing in 10 593 human samples across 32 cancer types and normal controls. We find that the majority of previously reported sites show little to no evidence for editing in this dataset, compile a list of 58 reliable miRNA editing sites, and study them across normal and cancer samples. Edited miRNA versions tend to suppress expression of known oncogenes, and, consistently, we observe a clear global tendency for hypo-editing in tumors, in strike contrast to the behavior for mRNA editing, allowing an accurate classification of normal/tumor samples based on their miRNA editing profile. In many cancers this profile correlates with patients' survival. Finally, thousands of miRNA binding sites are differentially edited in cancer. Our study thus establishes the important effect of RNA editing on miRNA-regulation in the tumor cell, with prospects for diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
21
|
Gao X, Zhao P, Hu J, Zhu H, Zhang J, Zhou Z, Zhao J, Tang F. MicroRNA-194 protects against chronic hepatitis B-related liver damage by promoting hepatocyte growth via ACVR2B. J Cell Mol Med 2018; 22:4534-4544. [PMID: 30044042 PMCID: PMC6111826 DOI: 10.1111/jcmm.13714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/03/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent infection with the hepatitis B virus leads to liver cirrhosis and hepatocellular carcinoma. MicroRNAs (miRNAs) play an important role in a variety of biological processes; however, the role of miRNAs in chronic hepatitis B (CHB)-induced liver damage remains poorly understood. Here, we investigated the role of miRNAs in CHB-related liver damage. Microarray analysis of the expression of miRNAs in 22 CHB patients and 33 healthy individuals identified miR-194 as one of six differentially expressed miRNAs. miR-194 was up-regulated in correlation with increased liver damage in the plasma or liver tissues of CHB patients. In mice subjected to 2/3 partial hepatectomy, miR-194 was up-regulated in liver tissues in correlation with hepatocyte growth and in parallel with the down-regulation of the activin receptor ACVR2B. Overexpression of miR-194 in human liver HL7702 cells down-regulated ACVR2B mRNA and protein expression, promoted cell proliferation, acceleratedG1 to S cell cycle transition, and inhibited apoptosis, whereas knockdown of miR-194 had the opposite effects. Luciferase reporter assays confirmed that ACVR2B is a direct target of miR-194, and overexpression of ACVR2B significantly repressed cell proliferation and G1 to S phase transition and induced cell apoptosis. ACVR2B overexpression abolished the effect of miR-194, indicating that miR-194 promotes hepatocyte proliferation and inhibits apoptosis by down-regulating ACVR2B. Taken together, these results indicate that miR-194 plays a crucial role in hepatocyte proliferation and liver regeneration by targeting ACVR2B and may represent a novel therapeutic target for the treatment of CHB-related liver damage.
Collapse
Affiliation(s)
- Xue Gao
- Department of Pathology302 HospitalBeijingChina
| | - Pan Zhao
- Clinical Trial CenterBeijing 302 HospitalBeijingChina
| | - Jie Hu
- Liver Surgery DepartmentZhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer InstituteFudan UniversityShanghaiChina
| | - Hongguang Zhu
- Department of PathologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Zhongwen Zhou
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| | | | - Feng Tang
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
22
|
Sikdar N, Saha G, Dutta A, Ghosh S, Shrikhande SV, Banerjee S. Genetic Alterations of Periampullary and Pancreatic Ductal Adenocarcinoma: An Overview. Curr Genomics 2018; 19:444-463. [PMID: 30258276 PMCID: PMC6128383 DOI: 10.2174/1389202919666180221160753] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic Ductal AdenoCarcinoma (PDAC) is one of the most lethal malignancies of all solid cancers. Precancerous lesions for PDAC include PanIN, IPMNs and MCNs. PDAC has a poor prognosis with a 5-year survival of approximately 6%. Whereas Periampulary AdenoCarcinoma (PAC) having four anatomic subtypes, pancreatic, Common Bile Duct (CBD), ampullary and duodenum shows relative better prognosis. The highest incidence of PDAC has been reported with black with respect to white population. Similarly, incidence rate of PAC also differs with different ethnic populations. Several lifestyle, environmental and occupational exposures including long-term diabetes, obesity, and smoking, have been linked to PDAC, however, for PAC the causal risk factors were poorly described. It is now clear that PDAC and PAC are a multi-stage process resulting from the accumulation of genomic alterations in the somatic DNA of normal cells as well as inherited mutations. Approximately 10% of PDAC have a familial inheritance. Germline mutations in CDKN2A, BRCA2, STK11, PALB2, PRSS1, etc., as well as certain syndromes have been well associated with predisposition to PDAC. KRAS, CDKN2A, TP53 and SMAD4 are the 4 "mountains" (high-frequency driver genes) which have been known to earliest somatic alterations for PDAC while relatively less frequent in PAC. Our understanding of the molecular carcinogenesis has improved in the last few years due to extensive research on PDAC which was not well explored in case of PAC. The genetic alterations that have been identified in PDAC and different subgroups of PAC are important implications for the development of genetic screening test, early diagnosis, and prognostic genetic markers. The present review will provide a brief overview of the incidence and prevalence of PDAC and PAC, mainly, increased risk in India, the several kinds of risk factors associated with the diseases as well as required genetic alterations for disease initiation and progression.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Address correspondence to this author at the Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road Kolkata 700108, India; Tel (1): +91-33
-25773240 (L); (2): +91-9830780397 (M); Fax: +91 33 35773049;, E-mail:
| | | | | | | | | | | |
Collapse
|
23
|
Miyazono K, Katsuno Y, Koinuma D, Ehata S, Morikawa M. Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Front Med 2018; 12:387-411. [PMID: 30043220 DOI: 10.1007/s11684-018-0646-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
24
|
Couto HL, Buzelin MA, Toppa NH, Bloise E, Wainstein AJ, Reis FM. Prognostic value of follistatin-like 3 in human invasive breast cancer. Oncotarget 2018; 8:42189-42197. [PMID: 28178680 PMCID: PMC5522059 DOI: 10.18632/oncotarget.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/10/2017] [Indexed: 11/27/2022] Open
Abstract
Follistatin-like 3 (FSTL3) binds and inactivates activin, a growth factor involved with cell growth and differentiation. We have previously shown FSTL3 overexpression in invasive breast cancers, but its clinical relevance remained unexplored. Here we evaluate FSTL3 as a prognostic tool and its relation with clinical and pathological features of breast cancer. A cohort of 154 women diagnosed with invasive breast cancer between 2008 and 2012 was followed up for 5 years. Tumor samples were processed by immunohistochemistry to detect FSTL3 expression in tumor epithelium. FSTL3 expression was classified semiquantitatively and tested for possible correlation with age, menopause status, stage, tumor histological type and grade, estrogen receptor, progesterone receptor, and HER2 expression. Survival plots with Kaplan-Mayer statistics were used to assess whether FSTL3 expression predicted disease-free survival. Our findings show that FSTL3 staining was unrelated to menopausal status, histological type, disease stage, or receptor profile. However, the intensity of FSTL3 immunostaining correlated inversely with tumor size (r = -0.366, p<0.001) and with nuclear grade (p<0.01). The intensity of FSTL3 expression in the tumoral epithelium was not predictive of the disease-free survival (p = 0.991, log-rank test), even though the follow-up length and the study size were sufficient to detect a significant reduction in disease-free survival among women with stage III-IV compared to stage I-II disease (p<0.001). FSTL3 expression in invasive breast cancer is inversely associated with tumor size and nuclear grade but it does not predict disease relapse in the short term.
Collapse
Affiliation(s)
- Henrique L Couto
- Division of Human Reproduction and Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Oncology, Hospital Alberto Cavalcanti, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nivaldo H Toppa
- Laboratório Analys Patologia, Belo Horizonte, Minas Gerais, Brazil
| | - Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alberto J Wainstein
- Department of Oncology, Hospital Alberto Cavalcanti, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Division of Human Reproduction and Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
26
|
Loomans HA, Arnold SA, Hebron K, Taylor CJ, Zijlstra A, Andl CD. Loss of ACVRIB leads to increased squamous cell carcinoma aggressiveness through alterations in cell-cell and cell-matrix adhesion proteins. Am J Cancer Res 2017; 7:2422-2437. [PMID: 29312797 PMCID: PMC5752684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 02/24/2023] Open
Abstract
Squamous cell carcinomas of the head and neck (HNSCC) and esophagus (ESCC) pose a global public health issue due to high mortality rates. Unfortunately, little progress has been made in improving patient outcomes. This is partially a result of a lack of understanding the mechanisms that drive SCC progression. Recently, Activin A signaling has been implicated in a number of cancers, yet the role of this pathway in SCC remains poorly understood. We have previously discovered that the Activin A ligand acts as a tumor suppressor when epithelial Activin receptor type IB (ACVRIB) is intact; however, this effect is lost upon ACVRIB downregulation. In the present study, we investigated the function of ACVRIB in the regulation of SCC. Using CRISPR/Cas9-mediated ACVRIB-knockout and knockdown using siRNA, we found an increased capacity to proliferate, migrate, and invade upon ACRIB loss, as ACVRIB-KO cells exhibited an altered cytoskeleton and aberrant expression of E-cadherin and integrins. Based on chemical inhibitor studies, our data suggests that these effects are mediated through ACVRIB-independent signaling via downstream activation of Smad1/5/8 and MEK/ERK. Overall, we present a novel mechanism of SCC progression upon ACVRIB loss by showing that Activin A can transduce a signal in the absence of ACVRIB.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer InstituteBethesda, MD, USA
| | - Shanna A Arnold
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Kate Hebron
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
| | - Chase J Taylor
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Andries Zijlstra
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Claudia D Andl
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
27
|
Loomans HA, Arnold SA, Quast LL, Andl CD. Esophageal squamous cell carcinoma invasion is inhibited by Activin A in ACVRIB-positive cells. BMC Cancer 2016; 16:873. [PMID: 27829391 PMCID: PMC5101642 DOI: 10.1186/s12885-016-2920-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a global public health issue, as it is the eighth most common cancer worldwide. The mechanisms behind ESCC invasion and progression are still poorly understood, and warrant further investigation into these processes and their drivers. In recent years, the ligand Activin A has been implicated as a player in the progression of a number of cancers. The objective of this study was to investigate the role of Activin A signaling in ESCC. Methods To investigate the role Activin A plays in ESCC biology, tissue microarrays containing 200 cores from 120 ESCC patients were analyzed upon immunofluorescence staining. We utilized three-dimensional organotypic reconstruct cultures of dysplastic and esophageal squamous tumor cells lines, in the context of fibroblast-secreted Activin A, to identify the effects of Activin A on cell invasion and determine protein expression and localization in epithelial and stromal compartments by immunofluorescence. To identify the functional consequences of stromal-derived Activin A on angiogenesis, we performed endothelial tube formation assays. Results Analysis of ESCC patient samples indicated that patients with high stromal Activin A expression had low epithelial ACVRIB, the Activin type I receptor. We found that overexpression of stromal-derived Activin A inhibited invasion of esophageal dysplastic squamous cells, ECdnT, and TE-2 ESCC cells, both positive for ACVRIB. This inhibition was accompanied by a decrease in expression of the extracellular matrix (ECM) protein fibronectin and podoplanin, which is often expressed at the leading edge during invasion. Endothelial tube formation was disrupted in the presence of conditioned media from fibroblasts overexpressing Activin A. Interestingly, ACVRIB-negative TE-11 cells did not show the prior observed effects in the context of Activin A overexpression, indicating a dependence on the presence of ACVRIB. Conclusions We describe the first observation of an inhibitory role for Activin A in ESCC progression that is dependent on the expression of ACVRIB. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2920-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Shanna A Arnold
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura L Quast
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Building 20, BMS 223, Orlando, FL, 32816, USA.
| |
Collapse
|
28
|
Loomans HA, Andl CD. Activin receptor-like kinases: a diverse family playing an important role in cancer. Am J Cancer Res 2016; 6:2431-2447. [PMID: 27904762 PMCID: PMC5126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023] Open
Abstract
The role and function of the members of the TGFβ superfamily has been a substantial area of research focus for the last several decades. During that time, it has become apparent that aberrations in TGFβ family signaling, whether through the BMP, Activin, or TGFβ arms of the pathway, can result in tumorigenesis or contribute to its progression. Downstream signaling regulates cellular growth under normal physiological conditions yet induces diverse processes during carcinogenesis, ranging from epithelial- to-mesenchymal transition to cell migration and invasion to angiogenesis. Due to these observations, the question has been raised how to utilize and target components of these signaling pathways in cancer therapy. Given that these cascades include both ligands and receptors, there are multiple levels at which to interfere. Activin receptor-like kinases (ALKs) are a group of seven type I receptors responsible for TGFβ family signal transduction and are utilized by many ligands within the superfamily. The challenge lies in specifically targeting the often-overlapping functional effects of BMP, Activin, or TGFβ signaling during cancer progression. This review focuses on the characteristic function of the individual receptors within each subfamily and their recognized roles in cancer. We next explore the clinical utility of therapeutically targeting ALKs as some have shown partial responses in Phase I clinical trials but disappointing outcomes when used in Phase II studies. Finally, we discuss the challenges and future directions of this body of work.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
29
|
Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma. Oncotarget 2016; 6:34228-44. [PMID: 26447543 PMCID: PMC4741448 DOI: 10.18632/oncotarget.5349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022] Open
Abstract
TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis.
Collapse
|
30
|
Qiu W, Tang SM, Lee S, Turk AT, Sireci AN, Qiu A, Rose C, Xie C, Kitajewski J, Wen HJ, Crawford HC, Sims PA, Hruban RH, Remotti HE, Su GH. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Gastroenterology 2016; 150:218-228.e12. [PMID: 26408346 PMCID: PMC4860725 DOI: 10.1053/j.gastro.2015.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Activin, a member of the transforming growth factor-β (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis. METHODS We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry. RESULTS Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of p16 in human IPMNs of increasing grades. CONCLUSIONS Loss of ACVR1B accelerates growth of mutant KRAS-induced pancreatic IPMNs in mice; this process appears to involve NOTCH4 and loss of p16. ACVR1B suppresses early stages of pancreatic tumorigenesis; the activin signaling pathway therefore might be a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sophia M. Tang
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sohyae Lee
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Andrew T. Turk
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anthony N. Sireci
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anne Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | | | - Chuangao Xie
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Jan Kitajewski
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Hui-Ju Wen
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Howard C. Crawford
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Helen E. Remotti
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Gloria H. Su
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
31
|
Vartholomaiou E, Echeverría PC, Picard D. Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis. Adv Cancer Res 2015; 129:1-30. [PMID: 26915999 DOI: 10.1016/bs.acr.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The molecular chaperone Hsp90 has attracted a lot of interest in cancer research ever since cancer cells were found to be more sensitive to Hsp90 inhibition than normal cells. Why that is has remained a matter of debate and is still unclear. In addition to increased Hsp90 dependence for some mutant cancer proteins and modifications of the Hsp90 machinery itself, a number of other characteristics of cancer cells probably contribute to this phenomenon; these include aneuploidy and overall increased numbers and levels of defective and mutant proteins, which all contribute to perturbed proteostasis. Work over the last two decades has demonstrated that many cancer-related proteins are Hsp90 clients, and yet only few of them have been extensively investigated, selected either on the basis of their obvious function as cancer drivers or because they proved to be convenient biomarkers for monitoring the effects of Hsp90 inhibitors. The purpose of our review is to go beyond these "usual suspects." We established a workflow to select poorly studied proteins that are related to cancer processes and qualify as Hsp90 clients. By discussing and taking a fresh look at these "unusual suspects," we hope to stimulate others to revisit them as novel therapeutic targets or diagnostic markers.
Collapse
Affiliation(s)
| | - Pablo C Echeverría
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Geneva, Switzerland.
| |
Collapse
|
32
|
Togashi Y, Kogita A, Sakamoto H, Hayashi H, Terashima M, de Velasco MA, Sakai K, Fujita Y, Tomida S, Kitano M, Okuno K, Kudo M, Nishio K. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer Lett 2014; 356:819-27. [PMID: 25449777 DOI: 10.1016/j.canlet.2014.10.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022]
Abstract
We previously reported that activin produces a signal with a tumor suppressive role in pancreatic cancer (PC). Here, the association between plasma activin A and survival in patients with advanced PC was investigated. Contrary to our expectations, however, patients with high plasma activin A levels had a significantly shorter survival period than those with low levels (median survival, 314 days vs. 482 days, P = 0.034). The cellular growth of the MIA PaCa-2 cell line was greatly enhanced by activin A via non-SMAD pathways. The cellular growth and colony formation of an INHBA (beta subunit of inhibin)-overexpressed cell line were also enhanced. In a xenograft study, INHBA-overexpressed cells tended to result in a larger tumor volume, compared with a control. The bodyweights of mice inoculated with INHBA-overexpressed cells decreased dramatically, and these mice all died at an early stage, suggesting the occurrence of activin-induced cachexia. Our findings indicated that the activin signal can promote cancer progression in a subset of PC and might be involved in cachexia. The activin signal might be a novel target for the treatment of PC.
Collapse
Affiliation(s)
- Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akihiro Kogita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan; Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroki Sakamoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayuki Kitano
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okuno
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
33
|
Le Bras GF, Loomans HA, Taylor C, Revetta F, Andl CD. Activin A balance regulates epithelial invasiveness and tumorigenesis. J Transl Med 2014; 94:1134-46. [PMID: 25068654 PMCID: PMC4309391 DOI: 10.1038/labinvest.2014.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022] Open
Abstract
Activin A (Act A) is a member of the TGFβ superfamily. Act A and TGFβ have multiple common downstream targets and have been described to merge in their intracellular signaling cascades and function. We have previously demonstrated that coordinated loss of E-cadherin and TGFβ receptor II (TβRII) results in epithelial cell invasion. When grown in three-dimensional organotypic reconstruct cultures, esophageal keratinocytes expressing dominant-negative mutants of E-cadherin and TβRII showed activated Smad2 in the absence of functional TβRII. However, we could show that increased levels of Act A secretion was able to induce Smad2 phosphorylation. Growth factor secretion can activate autocrine and paracrine signaling, which affects crosstalk between the epithelial compartment and the surrounding microenvironment. We show that treatment with the Act A antagonist Follistatin or with a neutralizing Act A antibody can increase cell invasion in organotypic cultures in a fibroblast- and MMP-dependent manner. Similarly, suppression of Act A with shRNA increases cell invasion and tumorigenesis in vivo. Therefore, we conclude that maintaining a delicate balance of Act A expression is critical for homeostasis in the esophageal microenvironment.
Collapse
Affiliation(s)
- Grégoire F. Le Bras
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Holli A. Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Chase Taylor
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Frank Revetta
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Claudia D. Andl
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| |
Collapse
|
34
|
Manda SS, Nirujogi RS, Pinto SM, Kim MS, Datta KK, Sirdeshmukh R, Prasad TSK, Thongboonkerd V, Pandey A, Gowda H. Identification and Characterization of Proteins Encoded by Chromosome 12 as Part of Chromosome-centric Human Proteome Project. J Proteome Res 2014; 13:3166-77. [DOI: 10.1021/pr401123v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Srikanth Srinivas Manda
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre
of Excellence in Bioinformatics, Bioinformatics Centre, School of
Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Raja Sekhar Nirujogi
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre
of Excellence in Bioinformatics, Bioinformatics Centre, School of
Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sneha Maria Pinto
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | | | - Keshava K. Datta
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
- School of
Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Ravi Sirdeshmukh
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - T. S. Keshava Prasad
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Visith Thongboonkerd
- Medical
Proteomics Unit, Office for Research and Development, Faculty of Medicine
Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok 10700, Thailand
| | - Akhilesh Pandey
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Harsha Gowda
- Institute
of Bioinformatics, International Technology Park, Bangalore 560066, India
| |
Collapse
|
35
|
Togashi Y, Sakamoto H, Hayashi H, Terashima M, de Velasco MA, Fujita Y, Kodera Y, Sakai K, Tomida S, Kitano M, Ito A, Kudo M, Nishio K. Homozygous deletion of the activin A receptor, type IB gene is associated with an aggressive cancer phenotype in pancreatic cancer. Mol Cancer 2014; 13:126. [PMID: 24886203 PMCID: PMC4047430 DOI: 10.1186/1476-4598-13-126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
Background Transforming growth factor, beta (TGFB) signal is considered to be a tumor suppressive pathway based on the frequent genomic deletion of the SMAD4 gene in pancreatic cancer (PC); however; the role of the activin signal, which also belongs to the TGFB superfamily, remains largely unclear. Methods and results We found a homozygous deletion of the activin A receptor, type IB (ACVR1B) gene in 2 out of 8 PC cell lines using array-comparative genomic hybridization, and the absence of ACVR1B mRNA and protein expression was confirmed in these 2 cell lines. Activin A stimulation inhibited cellular growth and increased the phosphorylation level of SMAD2 and the expression level of p21CIP1/WAF1 in the Sui66 cell line (wild-type ACVR1B and SMAD4 genes) but not in the Sui68 cell line (homozygous deletion of ACVR1B gene). Stable ACVR1B-knockdown using short hairpin RNA cancelled the effects of activin A on the cellular growth of the PC cell lines. In addition, ACVR1B-knockdown significantly enhanced the cellular growth and colony formation abilities, compared with controls. In a xenograft study, ACVR1B-knockdown resulted in a significantly elevated level of tumorigenesis and a larger tumor volume, compared with the control. Furthermore, in clinical samples, 6 of the 29 PC samples (20.7%) carried a deletion of the ACVR1B gene, while 10 of the 29 samples (34.5%) carried a deletion of the SMAD4 gene. Of note, 5 of the 6 samples with a deletion of the ACVR1B gene also had a deletion of the SMAD4 gene. Conclusion We identified a homozygous deletion of the ACVR1B gene in PC cell lines and clinical samples and proposed that the deletion of the ACVR1B gene may mediate an aggressive cancer phenotype in PC. Our findings provide novel insight into the role of the activin signal in PC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
36
|
Abstract
Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer-the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
37
|
Makohon-Moore A, Brosnan JA, Iacobuzio-Donahue CA. Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Med 2013; 5:26. [PMID: 23673020 PMCID: PMC4064313 DOI: 10.1186/gm430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a highly lethal tumor type for which there are few viable therapeutic options. It is also caused by the accumulation of mutations in a variety of genes. These genetic alterations can be grouped into those that accumulate during pancreatic intraepithelial neoplasia (precursor lesions) and thus are present in all cells of the infiltrating carcinoma, and those that accumulate specifically within the infiltrating carcinoma during subclonal evolution, resulting in genetic heterogeneity. Despite this heterogeneity there are nonetheless commonly altered cellular functions, such as pathways controlling the cell cycle, DNA damage repair, intracellular signaling and development, which could provide for a variety of drug targets. This review aims to summarize current knowledge of the genetics and genomics of pancreatic cancer from its inception to metastatic colonization, and to provide examples of how this information can be translated into the clinical setting for therapeutic benefit and personalized medicine.
Collapse
Affiliation(s)
- Alvin Makohon-Moore
- Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Jacqueline A Brosnan
- Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| |
Collapse
|
38
|
Evolutionary variation and adaptation in a conserved protein kinase allosteric network: implications for inhibitor design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1322-9. [PMID: 23499783 DOI: 10.1016/j.bbapap.2013.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/17/2023]
Abstract
The activation of protein kinases involves conformational changes in key functional regions of the kinase domain, a detailed understanding of which is essential for the design of selective protein kinase inhibitors. Through statistical analysis of protein kinase sequences and crystal structures from diverse organisms, we recently proposed that the activation of protein kinases involves a hidden strain switch in the catalytic loop. Specifically, we demonstrated that the backbone torsion-angles of residues in the catalytic loop switch from a "relaxed" to "strained" conformation upon kinase activation and the strained geometry results in a network of hydrogen bonds involving conserved non-catalytic residues in the ATP and substrate binding lobes. Here, we further explore this activation mechanism by analyzing families that lack the canonical hydrogen bonding interactions with the strained backbone. We find that alternative mechanisms have evolved to maintain catalytic loop strain. In PIM kinase, for example, two water molecules account for the lack of a conserved aspartate in the substrate binding by hydrogen bonds to the strained backbone. We discuss the relevance of these findings in the design of family-specific allosteric inhibitors, and in predicting the structural and functional impact of cancer mutations that alter the strain associated hydrogen bonding network. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
|
39
|
Abstract
BACKGROUND Activins control the growth of several tumour types including thoracic malignancies. In the present study, we investigated their expression and function in malignant pleural mesothelioma (MPM). METHODS The expression of activins and activin receptors was analysed by quantitative PCR in a panel of MPM cell lines. Activin A expression was further analysed by immunohistochemistry in MPM tissue specimens (N=53). Subsequently, MPM cells were treated with activin A, activin receptor inhibitors or activin-targeting siRNA and the impact on cell viability, proliferation, migration and signalling was assessed. RESULTS Concomitant expression of activin subunits and receptors was found in all cell lines, and activin A was overexpressed in most cell lines compared with non-malignant mesothelial cells. Similarly, immunohistochemistry demonstrated intense staining of tumour cells for activin A in a subset of patients. Treatment with activin A induced SMAD2 phosphorylation and stimulated clonogenic growth of mesothelioma cells. In contrast, treatment with kinase inhibitors of activin receptors (SB-431542, A-8301) inhibited MPM cell viability, clonogenicity and migration. Silencing of activin A expression by siRNA oligonucleotides further confirmed these results and led to reduced cyclin D1/3 expression. CONCLUSION Our study suggests that activin A contributes to the malignant phenotype of MPM cells via regulation of cyclin D and may represent a valuable candidate for therapeutic interference.
Collapse
|
40
|
Ripoche D, Gout J, Pommier RM, Jaafar R, Zhang CX, Bartholin L, Bertolino P. Generation of a conditional mouse model to target Acvr1b disruption in adult tissues. Genesis 2012; 51:120-7. [PMID: 23109354 DOI: 10.1002/dvg.22352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator of many embryonic processes, but little is known about its signaling in adult tissues and in pathological conditions where Alk4 mutations had been reported. Conventional deletion of Alk4 gene (Acvr1b) results in early embryonic lethality prior gastrulation, which has precluded study of Alk4 functions in postnatal and adult mice. To circumvent this problem, we have generated a conditional Acvr1b floxed-allele by flanking the fifth and sixth exons of the Acvr1b gene with loxP sites. Cre-mediated deletion of the floxed allele generates a deleted allele, which behaves as an Acvr1b null allele leading to embryonic lethality in homozygous mutant animals. A tamoxifen-inducible approach to target disruption of Acvr1b specifically in adult tissues was used and proved to be efficient for studying Alk4 functions in various organs. We report, therefore, a novel conditional model allowing investigation of biological role played by Alk4 in a variety of tissue-specific contexts.
Collapse
Affiliation(s)
- Doriane Ripoche
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Fields SZ, Parshad S, Anne M, Raftopoulos H, Alexander MJ, Sherman ML, Laadem A, Sung V, Terpos E. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs 2012; 22:87-101. [PMID: 23127248 DOI: 10.1517/13543784.2013.738666] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antagonists of activin receptor signaling may be beneficial for cancer-related anemia and bone disease caused by malignancies such as multiple myeloma and solid tumors. AREAS COVERED We review evidence of dysregulated signaling by activin receptor pathways in anemia, myeloma-associated osteolysis, and metastatic bone disease, as well as potential involvement in carcinogenesis. We then review properties of activin receptor antagonists in clinical development. EXPERT OPINION Sotatercept is a novel receptor fusion protein that functions as a soluble trap to sequester ligands of activin receptor type IIA (ActRIIA). Preclinically, the murine version of sotatercept increased red blood cells (RBC) in a model of chemotherapy-induced anemia, inhibited tumor growth and metastasis, and exerted anabolic effects on bone in diverse models of multiple myeloma. Clinically, sotatercept increases RBC markedly in healthy volunteers and patients with multiple myeloma. With a rapid onset of action differing from erythropoietin, sotatercept is in clinical development as a potential first-in-class therapeutic for cancer-related anemia, including those characterized by ineffective erythropoiesis as in myelodysplastic syndromes. Anabolic bone activity in early clinical studies and potential antitumor effects make sotatercept a promising therapeutic candidate for multiple myeloma and malignant bone diseases. Antitumor activity has been observed preclinically with small-molecule inhibitors of transforming growth factor-β receptor type I (ALK5) that also antagonize the closely related activin receptors ALK4 and ALK7. LY-2157299, the first such inhibitor to enter clinical studies, has shown an acceptable safety profile so far in patients with advanced cancer. Together, these data identify activin receptor antagonists as attractive therapeutic candidates for multiple diseases.
Collapse
Affiliation(s)
- Scott Z Fields
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Pancreatic cancer is a disease caused by the accumulation of genetic alterations in specific genes. Elucidation of the human genome sequence, in conjunction with technical advances in the ability to perform whole exome sequencing, have provided new insight into the mutational spectra characteristic of this lethal tumour type. Most recently, exomic sequencing has been used to clarify the clonal evolution of pancreatic cancer as well as provide time estimates of pancreatic carcinogenesis, indicating that a long window of opportunity may exist for early detection of this disease while in the curative stage. Moving forward, these mutational analyses indicate potential targets for personalised diagnostic and therapeutic intervention as well as the optimal timing for intervention based on the natural history of pancreatic carcinogenesis and progression.
Collapse
|
43
|
Pérez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, Silverstein KAT, Grützmann R, Aust D, Rümmele P, Knösel T, Herd C, Stemple DL, Kettleborough R, Brosnan JA, Li A, Morgan R, Knight S, Yu J, Stegeman S, Collier LS, ten Hoeve JJ, de Ridder J, Klein AP, Goggins M, Hruban RH, Chang DK, Biankin AV, Grimmond SM, APGI, Wessels LFA, Wood SA, Iacobuzio-Donahue CA, Pilarsky C, Largaespada DA, Adams DJ, Tuveson DA. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 2012; 486:266-270. [PMID: 22699621 PMCID: PMC3376394 DOI: 10.1038/nature11114] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.
Collapse
Affiliation(s)
- Pedro A. Pérez-Mancera
- Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, and Department of Oncology, Robinson Way, Cambridge CB2 0RE, UK
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Allen Li
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Aaron L. Sarver
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, University of Minnesota, 425 Delaware St SE MMC 806, Minneapolis, MN 55455, USA
| | - Kevin A. T. Silverstein
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, University of Minnesota, 425 Delaware St SE MMC 806, Minneapolis, MN 55455, USA
| | - Robert Grützmann
- Department of Surgery, University Hospital Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Petra Rümmele
- Institute of Pathology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Thomas Knösel
- Institute of Pathology, University Hospital of Jena, Bachstraße 18, 07743 Jena Germany
| | - Colin Herd
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Derek L. Stemple
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ross Kettleborough
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Jacqueline A. Brosnan
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ang Li
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Richard Morgan
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Spencer Knight
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jun Yu
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Shane Stegeman
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, 4111, Australia
| | - Lara S. Collier
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jelle J. ten Hoeve
- Delft Bioinformatics Group, Department of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
- Bioinformatics and Statistics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen de Ridder
- Delft Bioinformatics Group, Department of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Alison P. Klein
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael Goggins
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H. Hruban
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - David K. Chang
- The Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, 372 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool NSW 2170, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, 372 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool NSW 2170, Australia
| | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - APGI
- Australian Pancreatic Cancer Genome Initiative, The Kinghorn Cancer Centre, 372 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lodewyk F. A. Wessels
- Delft Bioinformatics Group, Department of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
- Bioinformatics and Statistics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Stephen A. Wood
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, 4111, Australia
| | - Christine A. Iacobuzio-Donahue
- Departments of Oncology and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Sidney Cancer Center and Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christian Pilarsky
- Department of Surgery, University Hospital Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - David A. Tuveson
- Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, and Department of Oncology, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
44
|
Ashida S, Orloff MS, Bebek G, Zhang L, Zheng P, Peehl DM, Eng C. Integrated Analysis Reveals Critical Genomic Regions in Prostate Tumor Microenvironment Associated with Clinicopathologic Phenotypes. Clin Cancer Res 2012; 18:1578-87. [DOI: 10.1158/1078-0432.ccr-11-2535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Katkoori VR, Shanmugam C, Jia X, Vitta SP, Sthanam M, Callens T, Messiaen L, Chen D, Zhang B, Bumpers HL, Samuel T, Manne U. Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas. PLoS One 2012; 7:e30020. [PMID: 22276141 PMCID: PMC3261849 DOI: 10.1371/journal.pone.0030020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 12/12/2011] [Indexed: 12/15/2022] Open
Abstract
Although the prognostic value of p53 abnormalities in Stage III microsatellite stable (MSS) colorectal cancers (CRCs) is known, the gene expression profiles specific to the p53 status in the MSS background are not known. Therefore, the current investigation has focused on identification and validation of the gene expression profiles associated with p53 mutant phenotypes in MSS Stage III CRCs. Genomic DNA extracted from 135 formalin-fixed paraffin-embedded tissues, was analyzed for microsatellite instability (MSI) and p53 mutations. Further, mRNA samples extracted from five p53-mutant and five p53-wild-type MSS-CRC snap-frozen tissues were profiled for differential gene expression by Affymetrix Human Genome U133 Plus 2.0 arrays. Differentially expressed genes were further validated by the high-throughput quantitative nuclease protection assay (qNPA), and confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and by immunohistochemistry (IHC). Survival rates were estimated by Kaplan-Meier and Cox regression analyses. A higher incidence of p53 mutations was found in MSS (58%) than in MSI (30%) phenotypes. Both univariate (log-rank, P = 0.025) and multivariate (hazard ratio, 2.52; 95% confidence interval, 1.25-5.08) analyses have demonstrated that patients with MSS-p53 mutant phenotypes had poor CRC-specific survival when compared to MSS-p53 wild-type phenotypes. Gene expression analyses identified 84 differentially expressed genes. Of 49 down-regulated genes, LPAR6, PDLIM3, and PLAT, and, of 35 up-regulated genes, TRIM29, FUT3, IQGAP3, and SLC6A8 were confirmed by qNPA, qRT-PCR, and IHC platforms. p53 mutations are associated with poor survival of patients with Stage III MSS CRCs and p53-mutant and wild-type phenotypes have distinct gene expression profiles that might be helpful in identifying aggressive subsets.
Collapse
Affiliation(s)
- Venkat R. Katkoori
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chandrakumar Shanmugam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xu Jia
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Swaroop P. Vitta
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meenakshi Sthanam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tom Callens
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bin Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Harvey L. Bumpers
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Temesgen Samuel
- Department of Pathology, Tuskegee University, Tuskegee, Alabama, United States of America
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
46
|
Spitz MR, Gorlov IP, Amos CI, Dong Q, Chen W, Etzel CJ, Gorlova OY, Chang DW, Pu X, Zhang D, Wang L, Cunningham JM, Yang P, Wu X. Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke. Cancer Discov 2011; 1:420-9. [PMID: 22586632 DOI: 10.1158/2159-8290.cd-11-0080] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung cancer in lifetime never smokers is distinct from that in smokers, but the role of separate or overlapping carcinogenic pathways has not been explored. We therefore evaluated a comprehensive panel of 11,737 single-nucleotide polymorphisms (SNP) in inflammatory-pathway genes in a discovery phase (451 lung cancer cases, 508 controls from Texas). SNPs that were significant were evaluated in a second external population (303 cases, 311 controls from the Mayo Clinic). An intronic SNP in the ACVR1B gene, rs12809597, was replicated with significance and restricted to those reporting adult exposure to environmental tobacco smoke. Another promising candidate was an SNP in NR4A1, although the replication OR did not achieve statistical significance. ACVR1B belongs to the TGFR-β superfamily, contributing to resolution of inflammation and initiation of airway remodeling. An inflammatory microenvironment (second-hand smoking, asthma, or hay fever) is necessary for risk from these gene variants to be expressed. These findings require further replication, followed by targeted resequencing, and functional validation.
Collapse
Affiliation(s)
- Margaret R Spitz
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hong SM, Park JY, Hruban RH, Goggins M. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med 2011. [PMID: 21631264 DOI: 10.1043/2010-0566-ra.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The introduction of genome- and epigenome-wide screening techniques has dramatically improved our understanding of the molecular mechanisms underlying the development of pancreatic cancer. There are now 3 recognized histologic precursors of pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm. Each of these precursor lesions is associated with specific molecular alterations. OBJECTIVE To understand the molecular characteristics of pancreatic ductal adenocarcinoma and its precursor lesions. DATA SOURCES PubMed (US National Library of Medicine). CONCLUSIONS In this review, we briefly summarize recent research findings on the genetics and epigenetics of pancreatic cancer. In addition, we characterize these molecular alterations in the context of the histologic subtypes of pancreatic cancer.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
48
|
Dyrsø T, Li J, Wang K, Lindebjerg J, Kølvraa S, Bolund L, Jakobsen A, Bruun-Petersen G, Li S, Crüger DG. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization. Cancer Genet 2011; 204:84-95. [PMID: 21504706 DOI: 10.1016/j.cancergencyto.2010.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material comprised fresh samples from 40 MSS tumors and 20 MSI tumors obtained from 60 Danish CRC patients. We identified five small genomic regions (<15 megabases) exhibiting recurrent copy number loss, which, to our knowledge, have not been reported in previously published aCGH studies of CRC: 3p25.3, 3p21.2-p21.31, 5q13.2, 12q24.23-q24.31, and 12q24.23-q24.31. These regions contain several potentially important tumor suppressor genes that may play a role in a significant proportion of both sporadic MSS CRC and MSI CRC. Furthermore, the generated aCGH data are in support of the recently proposed classification of sporadic CRC into MSS CIN+, MSI CIN-, MSI CIN+, and MSS CIN- cancers.
Collapse
Affiliation(s)
- Thomas Dyrsø
- Department of Clinical Genetics, Vejle Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
CONTEXT The introduction of genome- and epigenome-wide screening techniques has dramatically improved our understanding of the molecular mechanisms underlying the development of pancreatic cancer. There are now 3 recognized histologic precursors of pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm. Each of these precursor lesions is associated with specific molecular alterations. OBJECTIVE To understand the molecular characteristics of pancreatic ductal adenocarcinoma and its precursor lesions. DATA SOURCES PubMed (US National Library of Medicine). CONCLUSIONS In this review, we briefly summarize recent research findings on the genetics and epigenetics of pancreatic cancer. In addition, we characterize these molecular alterations in the context of the histologic subtypes of pancreatic cancer.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
50
|
Tschöp K, Conery AR, Litovchick L, DeCaprio JA, Settleman J, Harlow E, Dyson N. A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev 2011; 25:814-30. [PMID: 21498571 PMCID: PMC3078707 DOI: 10.1101/gad.2000211] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/07/2011] [Indexed: 01/01/2023]
Abstract
pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells.
Collapse
Affiliation(s)
- Katrin Tschöp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Andrew R. Conery
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Larisa Litovchick
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachustts 02215, USA
| | - James A. DeCaprio
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachustts 02215, USA
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ed Harlow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|