1
|
Weinrauch AM, Kwan GT, Giacomin M, Bouyoucos IA, Tresguerres M, Goss GG. Evolutionary insights into gut acidification: invertebrate-like mechanisms in the basal vertebrate hagfish. J Exp Biol 2025; 228:jeb249641. [PMID: 39882670 DOI: 10.1242/jeb.249641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Acidification is a key component of digestion throughout metazoans. The gut digestive fluid of many invertebrates is acidified by the vesicular-type H+-ATPase (VHA). In contrast, vertebrates generate acidic gut fluids using the gastric H+/K+-ATPase (HKA), an evolutionary innovation linked with the appearance of a true stomach that greatly improves digestion, absorption and immune function. Hagfishes are the most basal extant vertebrates, and their mechanism of digestive acidification remains unclear. Herein, we report that the stomachless Pacific hagfish (Eptatretus stoutii) acidify their gut using the VHA, and searches of E. stoutii gut transcriptomes and the genome of a closely related hagfish species (E. burgerii) indicate they lack HKA, consistent with its emergence following the 2R whole-genome duplication. Immunostaining revealed prominent VHA presence in the apical membrane of enterocytes and sub-apical expression of both VHA and soluble adenylyl cyclase. Interestingly, akin to vertebrates, VHA was also observed in immature pancreatic-like zymogen granules and was noticeably absent from the mature granules. Furthermore, isolated gut sacs from fed hagfish demonstrate increased VHA-dependent luminal H+ secretion that is stimulated by the cAMP pathway. Overall, these results suggest that the hagfish gut shares the trait of VHA-dependent acidification with invertebrates, while simultaneously performing some roles of the pancreas and intestine of gnathostomes.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Alberta, 116 St and 85 Ave, Edmonton, AB, Canada, T6G 2R3
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, BC, Canada, V0R 1B0
| | - Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marina Giacomin
- Department of Biological Sciences, University of Alberta, 116 St and 85 Ave, Edmonton, AB, Canada, T6G 2R3
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, BC, Canada, V0R 1B0
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 116 St and 85 Ave, Edmonton, AB, Canada, T6G 2R3
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield, BC, Canada, V0R 1B0
| |
Collapse
|
2
|
Li Z, McComic S, Chen R, Kim WTH, Gaithuma AK, Mooney B, Macaluso KR, Mulenga A, Swale DR. ATP-sensitive inward rectifier potassium channels regulate secretion of pro-feeding salivary proteins in the lone star tick (Amblyomma americanum). Int J Biol Macromol 2023; 253:126545. [PMID: 37652342 DOI: 10.1016/j.ijbiomac.2023.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - William Tae Heung Kim
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Brian Mooney
- Department of Biochemistry, Charles W Gehrlke Proteomics Center, University of Missouri, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Albert Mulenga
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Sajadi F, Vergara-Martínez MF, Paluzzi JPV. The V-type H +-ATPase is targeted in antidiuretic hormone control of the Malpighian "renal" tubules. Proc Natl Acad Sci U S A 2023; 120:e2308602120. [PMID: 38096413 PMCID: PMC10743368 DOI: 10.1073/pnas.2308602120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
| | - María Fernanda Vergara-Martínez
- Department of Biology, York University, Toronto, ONM3J 1P3, Canada
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, México
| | | |
Collapse
|
4
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
5
|
Nepomuceno DB, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Sant'Anna MRV, Araújo RN, Gontijo NF. cAMP: A second messenger involved in the mechanism of midgut alkalinization in Lutzomyia longipalpis. INSECT SCIENCE 2022; 29:1059-1070. [PMID: 34730278 DOI: 10.1111/1744-7917.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The sand fly Lutzomyia longipalpis is the main vector of Leishmania infantum in the Americas. Female sand flies ingest sugar-rich solutions and blood, which are digested in the midgut. Digestion of nutrients is an essential function performed by digestive enzymes, which require appropriate physiological conditions. One of the main aspects that influence enzymatic activity is the gut pH, which must be tightly controlled. Considering second messengers are frequently involved in the coordination of tightly regulated physiological events, we investigated if the second messenger cAMP would participate in the process of alkalinization in the abdominal midgut of female L. longipalpis. In midguts containing the indicator dye bromothymol-blue, cAMP stimulated the alkalinization of the midgut lumen. Through another technique based on the use of fluorescein as a pH indicator, we propose that cAMP is involved in the alkalinization of the midgut by activating HCO3- transport from the enterocyte's cytoplasm to the lumen. The results strongly suggested that the carrier responsible for this process would be a HCO3- /Cl- antiporter located in the enterocytes' apical membrane. Hematophagy promotes the release of alkalinizing hormones in the hemolymph; however, when the enzyme adenylyl cyclase, responsible for cAMP production, was inhibited, we observed that the hemolymph from blood-fed L. longipalpis' females did not stimulate midgut alkalinization. This result indicated that hormone-stimulated alkalinization is mediated by cAMP. In the present study, we provide evidences that cAMP has a key role in the control of intestinal pH.
Collapse
Affiliation(s)
- Denise Barguil Nepomuceno
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
McKenzie EKG, Kwan GT, Tresguerres M, Matthews PGD. A pH-powered mechanochemical engine regulates the buoyancy of Chaoborus midge larvae. Curr Biol 2022; 32:927-933.e5. [PMID: 35081331 DOI: 10.1016/j.cub.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
The freshwater aquatic larvae of the Chaoborus midge are the world's only truly planktonic insects, regulating their buoyancy using two pairs of internal air-filled sacs, one in the thorax and the other in the seventh abdominal segment. In 1911, August Krogh demonstrated the larvae's ability to control their buoyancy by exposing them to an increase in hydrostatic pressure.1 However, how these insects control the volume of their air-sacs has remained a mystery. Gas is not secreted into the air-sacs, as the luminal gas composition is always the same as that dissolved in the surrounding water.1,2 Instead, the air-sac wall was thought to play some role.3-6 Here we reveal that bands of resilin in the air-sac's wall are responsible for the changes in volume. These bands expand and contract in response to changes in pH generated by an endothelium that envelops the air-sac. Vacuolar type H+ V-ATPase (VHA) in the endothelium acidifies and shrinks the air-sac, while alkalinization and expansion are regulated by the cyclic adenosine monophosphate signal transduction pathway. Thus, Chaoborus air-sacs function as mechanochemical engines, transforming pH changes into mechanical work against hydrostatic pressure. As the resilin bands interlaminate with bands of cuticle, changes in resilin volume are constrained to a single direction along the air-sac's longitudinal axis. This makes the air-sac functionally equivalent to a cross-striated pH muscle and demonstrates a unique biological role for resilin as an active structural element.
Collapse
Affiliation(s)
- Evan K G McKenzie
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Philip G D Matthews
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Lee H, Koh JY. Roles for H + /K + -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes. Glia 2020; 69:1110-1125. [PMID: 33314298 DOI: 10.1002/glia.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Vacuolar ATPase (v-ATPase) is the main proton pump that acidifies vesicles such as lysosomes. Disruption in the lysosomal localization of v-ATPase leads to lysosomal dysfunction, thus contributing to the pathogenesis of lysosomal storage disorders and neurodegenerative diseases such as Alzheimer's disease. Recent studies showed that increases in cyclic AMP (cAMP) levels acidify lysosomes and consequently enhance autophagy flux. Although the upregulation of v-ATPase function may be the key mechanism underlying the cAMP-mediated lysosomal acidification, it is unknown whether a mechanism independent of v-ATPase may be contributing to this phenomenon. In the present study, we modeled v-ATPase dysfunction in brain cells by blocking lysosomal acidification in cortical astrocytes through treatment with bafilomycin A1, a selective v-ATPase inhibitor. We observed that cAMP reversed the pH changes via the activation of protein kinase A; interestingly, cAMP also increased autophagy flux even in the presence of bafilomycin A1, suggesting the presence of an alternative route of proton entry. Notably, pharmacological inhibitors and siRNAs of H+ /K+ -ATPase markedly shifted the lysosomal pH toward more alkaline values in bafilomycin A1/cAMP-treated astrocytes, suggesting that H+ /K+ -ATPase may be the alternative route of proton entry for lysosomal acidification. Furthermore, the cAMP-mediated reversal of lysosomal pH was nullified in the absence of ZnT3 that interacts with H+ /K+ -ATPase. Our results suggest that the H+ /K+ -ATPase/ZnT3 complex is recruited to lysosomes in a cAMP-dependent manner and functions as an alternative proton pump for lysosomes when the v-ATPase function is downregulated, thus providing insight into the potential development of a new class of lysosome-targeted therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Huikyong Lee
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Kim HN, Seo BR, Kim H, Koh JY. Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3. Sci Rep 2020; 10:9175. [PMID: 32514052 PMCID: PMC7280249 DOI: 10.1038/s41598-020-66292-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cilostazol, a phosphodiesterase 3 inhibitor, reduces the amyloid-beta (Aβ) burden in mouse models of Alzheimer disease by as yet unidentified mechanisms. In the present study, we examined the possibility that cilostazol ameliorates lysosomal dysfunction. Astrocytes treated with bafilomycin A1 (BafA1) exhibited markedly reduced DND-189 and acridine orange (AO) fluorescence, indicating reduced lysosomal acidity. In both cases, BafA1-induced alkalization was reversed by addition of cilostazol, dibutyryl cAMP or forskolin. All three agents significantly increased free zinc levels in lysosomes, and addition of the zinc chelator TPEN abrogated lysosomal reacidification. These treatments did not raise free zinc levels or reverse BafA1-mediated lysosomal alkalization in metallothionein 3 (Mt3)-null astrocytes, indicating that the increases in zinc in astrocytes were derived mainly from Mt3. Lastly, in FITC-Aβ-treated astrocytes, cilostazol reversed lysosomal alkalization, increased cathepsin D activity, and reduced Aβ accumulation in astrocytes. Cilostazol also reduced mHtt aggregate formation in GFP-mHttQ74–expressing astrocytes. Collectively, our results present the novel finding that cAMP/PKA can overcome the v-ATPase blocking effect of BafA1 in a zinc- and Mt3-dependent manner.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
10
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
11
|
Maity C, Ghosh D, Guha S. Assays for Intracellular Cyclic Adenosine Monophosphate (cAMP) and Lysosomal Acidification. Methods Mol Biol 2020; 1996:161-178. [PMID: 31127555 DOI: 10.1007/978-1-4939-9488-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic adenosine monophosphate (3',5'-cAMP) is a multifunctional second messenger which controls extremely diverse and physiologically important biochemical pathways. Among its myriad roles, 3',5'-cAMP functions as an intracellular regulator of lysosomal pH, which is essential for the activity of acidic lysosomal enzymes. Defects in lysosomal acidification are attributed to many diseases like macular degeneration, Parkinson's, Alzheimer's, and cystic fibrosis. Strategic re-acidification of defective lysosomes by pharmacological increase of intracellular cAMP offers exciting therapeutic potential in these diseases. Modular assays for accurate assessment of intracellular cAMP and lysosomal pH are a critical component of this research. We describe label-free targeted metabolomics for quantitating intracellular cAMP and integrated assays for measuring lysosomal pH. These hybrid assays offer fast, unbiased information on intracellular cAMP concentrations and lysosomal pH that can be applied to many cell types and putative drug screening strategies.
Collapse
Affiliation(s)
- Chiranjit Maity
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonia Guha
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Yee DP, Hildebrand M, Tresguerres M. Dynamic subcellular translocation of V-type H + -ATPase is essential for biomineralization of the diatom silica cell wall. THE NEW PHYTOLOGIST 2020; 225:2411-2422. [PMID: 31746463 DOI: 10.1111/nph.16329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Diatom cell walls, called frustules, are main sources of biogenic silica in the ocean and their intricate morphology is an inspiration for nanoengineering. Here we show dynamic aspects of frustule biosynthesis involving acidification of the silica deposition vesicle (SDV) by V-type H+ ATPase (VHA). Transgenic Thalassiosira pseudonana expressing the VHA B subunit tagged with enhanced green fluorescent protein (VHAB -eGFP) enabled subcellular protein localization in live cells. In exponentially growing cultures, VHAB -eGFP was present in various subcellular localizations including the cytoplasm, SDVs and vacuoles. We studied the role of VHA during frustule biosynthesis in synchronized cell cultures of T. pseudonana. During the making of new biosilica components, VHAB -eGFP first localized in the girdle band SDVs, and subsequently in valve SDVs. In single cell time-lapse imaging experiments, VHAB -eGFP localization in SDVs precluded accumulation of the acidotropic silica biomineralization marker PDMPO. Furthermore, pharmacological VHA inhibition prevented PDMPO accumulation in the SDV, frustule biosynthesis and cell division, as well as insertion of the silicalemma-associated protein SAP1 into the SDVs. Finally, partial inhibition of VHA activity affected the nanoscale morphology of the valve. Altogether, these results indicate that VHA is essential for frustule biosynthesis by acidifying the SDVs and regulating the insertion of other structural proteins into the SDV.
Collapse
Affiliation(s)
- Daniel P Yee
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
D'Silva NM, O'Donnell MJ. Mechanisms of transport of H +, Na + and K +, across the distal gastric caecum of larval Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:103997. [PMID: 31846613 DOI: 10.1016/j.jinsphys.2019.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Measured changes in ion fluxes, transepithelial potential (TEP) and basolateral membrane potential (Vb) in response to ion transporter inhibitors were used to assess the mechanisms of transport of H+, Na+ and K+, across the distal gastric caecum of larval Aedes aegypti, a vector of yellow fever. Preparations were stimulated with 5-hydroxytryptamine (5-HT, 10-6 M) in order to maintain stable rates of H+, Na+, and K+ transport across the distal caecum. Transepithelial potential (TEP), basolateral membrane potential (Vb), and H+, Na+ and K+ fluxes all declined after the addition of a vacuolar-type H+-ATPase (VA) inhibitor, n-ethlymaleimide (NEM), consistent with a primary role for VA in energizing ion transport across the distal gastric caecum. Amiloride also inhibited H+, Na+, and K+ fluxes, consistent with an apically expressed VA that is coupled to a cation:H+ antiporter (AeNHE8), analogous to the coupling of apical VA and cation:nH+ antiporter in Malpighian tubules. A working model of transport of H+, Na+ and K+ across the distal gastric caecum proposes that coupling of VA and AeNHE8 in the apical membrane leads to the removal of intracellular Na+ or K+, thus creating favourable ion gradients to promote the activity of two transporters in the basal membrane, cation:H+ antiporter (AeNHE3) and a bumetanide-sensitive cation chloride cotransporter (CCC).
Collapse
Affiliation(s)
- N M D'Silva
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - M J O'Donnell
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
14
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
D'Silva NM, O'Donnell MJ. The gastric caecum of larval Aedes aegypti: stimulation of epithelial ion transport by 5-hydroxytryptamine and cAMP. ACTA ACUST UNITED AC 2018; 221:jeb.172866. [PMID: 29217627 DOI: 10.1242/jeb.172866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
We report measurements of ion transport across the gastric caecum of larvae of Aedes aegypti, a vector of yellow fever that inhabits a variety of aquatic habitats ranging from freshwater to brackish water. We provide the first measurements of the effect of 5-hydroxytryptamine (5-HT) on transepithelial potential (TEP), luminal ion concentrations and electrochemical potentials, as well as basolateral membrane potential and H+, Na+ and K+ fluxes. TEP, basolateral membrane potential, and H+, K+ and Na+ fluxes across the gastric caeca declined within 3-6 min after isolation of the entire midgut from the larva. 5-HT restored both the TEP and active accumulation of H+, K+ and Na+ in the lumen. Additionally, 5-HT restored H+, K+ and Na+ fluxes across the distal caecum of freshwater larvae, and restored H+ fluxes across the distal caecum of brackish water larvae. There was no effect of 5-HT on ion fluxes across the proximal caecum. We have also shown that 5-HT restores the basolateral membrane potential in cells of the distal, but not proximal, caecum. Effects of 5-HT on TEP and basolateral membrane potential were mimicked by application of cAMP but not by a phorbol ester. We provide a working model which proposes that 5-HT and cAMP stimulate the vacuolar H+-ATPase of the distal caecum. Our results provide evidence that the gastric caecum is functionally distinct from the adjacent anterior midgut and we discuss possible roles of the gastric caecum in osmoregulation. We also describe similarities in the arrangement of ion transporters in the caecum with those of the Malpighian tubules.
Collapse
Affiliation(s)
- Natalie M D'Silva
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, Canada, L8S 4K1
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
17
|
Thiel D, Hugenschütt M, Meyer H, Paululat A, Quijada-Rodriguez AR, Purschke G, Weihrauch D. Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). ACTA ACUST UNITED AC 2016; 220:425-436. [PMID: 27852754 DOI: 10.1242/jeb.145615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Ammonia is a toxic waste product from protein metabolism and needs to be either converted into less toxic molecules or, in the case of fish and aquatic invertebrates, excreted directly as is. In contrast to fish, very little is known regarding the ammonia excretion mechanism and the participating excretory organs in marine invertebrates. In the current study, ammonia excretion in the marine burrowing polychaete Eurythoe complanata was investigated. As a potential site for excretion, the 100-200 µm long, 30-50 µm wide and up to 25 µm thick dentrically branched, well ventilated and vascularized branchiae (gills) were identified. In comparison to the main body, the branchiae showed considerably higher mRNA expression levels of Na+/K+-ATPase, V-type H+-ATPase, cytoplasmic carbonic anhydrase (CA-2), a Rhesus-like protein, and three different ammonia transporters (AMTs). Experiments on the intact organism revealed that ammonia excretion did not occur via apical ammonia trapping, but was regulated by a basolateral localized V-type H+-ATPase, carbonic anhydrase and intracellular cAMP levels. Interestingly, the V-type H+-ATPase seems to play a role in ammonia retention. A 1 week exposure to 1 mmol l-1 NH4Cl (HEA) did not cause a change in ammonia excretion rates, while the three branchial expressed AMTs showed a tendency to be down-regulated. This indicates a shift of function in the branchial ammonia excretion processes under these conditions.
Collapse
Affiliation(s)
- Daniel Thiel
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Maja Hugenschütt
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Heiko Meyer
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Achim Paululat
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | | | - Günter Purschke
- University of Osnabrück, Fachbereich Biologie, Department of Zoology, Osnabrück 49069, Germany
| | - Dirk Weihrauch
- University of Manitoba, Department of Biological Sciences, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Laughlin RC, Drake KL, Morrill JC, Adams LG. Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates. PLoS One 2016; 11:e0147027. [PMID: 26783758 PMCID: PMC4718665 DOI: 10.1371/journal.pone.0147027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVF vaccine, authentic recombinant MP-12 (arMP-12). From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with arMP-12. While the serology and protective response induced by arMP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood of vaccinated calves over a time course of 21 days before and after vaccination with arMP-12. The time course RNAs were sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to the vaccine induced immune response and its regulation. Additional bioinformatic analyses identified a correlative relationship between specific host immune response genes and protective immunity prior to the detection of protective serum neutralizing antibody responses. These results contribute an important proof of concept for identifying molecular and genetic components underlying the immune response to RVF vaccination and protection prior to serologic detection.
Collapse
Affiliation(s)
- Richard C. Laughlin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States of America
| | - Kenneth L. Drake
- Seralogix LLC, 335 Bee Cave Rd, Suite 607, Austin, TX 78746, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, United States of America
- * E-mail:
| |
Collapse
|
19
|
Onken H, Moffett DF. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti). ACTA ACUST UNITED AC 2015; 218:2023-9. [PMID: 25944920 DOI: 10.1242/jeb.119529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022]
Abstract
The transepithelial voltage (Vte) and the volume of isolated posterior midguts of adult female yellow fever mosquitoes (Aedes aegypti) were monitored. In all experiments, the initial Vte after filling the midgut was lumen negative, but subsequently became lumen positive at a rate of approximately 1 mV min(-1). Simultaneously, the midgut volume decreased, indicating spontaneous fluid absorption. When the midguts were filled and bathed with mosquito saline, the average rate of fluid absorption was 36.5±3.0 nl min(-1) (N=4, ±s.e.m.). In the presence of theophylline (10 mmol l(-1)), Vte reached significantly higher lumen-positive values, but the rate of fluid absorption was not affected (N=6). In the presence of NaCN (5 mmol l(-1)), Vte remained close to 0 mV (N=4) and fluid absorption was reduced (14.4±1.3 nl min(-1), N=3, ±s.e.m.). When midguts were filled with buffered NaCl (154 mmol l(-1) plus 1 mmol l(-1) HEPES) and bathed in mosquito saline with theophylline, fluid absorption was augmented (50.0±5.8 nl min(-1), N=12, ±s.e.m.). Concanamycin A (10 µmol l(-1)), ouabain (1 mmol l(-1)), and acetazolamide (1 mmol l(-1)) affected Vte in different ways, but all reduced fluid absorption by 60-70% of the value before addition of the drugs.
Collapse
Affiliation(s)
- Horst Onken
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA
| | - David F Moffett
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
20
|
Roa JN, Munévar CL, Tresguerres M. Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells. Comp Biochem Physiol A Mol Integr Physiol 2014; 174:29-37. [PMID: 24746982 PMCID: PMC6278952 DOI: 10.1016/j.cbpa.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022]
Abstract
In this study we characterized mitochondrion-rich (MR) cells and regulation of acid/base (A/B) relevant ion-transporting proteins in leopard shark (Triakis semifasciata) gills. Immunohistochemistry revealed that leopard shark gills posses two separate cell populations that abundantly express either Na⁺/K⁺-ATPase (NKA) or V-H⁺-ATPase (VHA), but not both ATPases together. Co-immunolocalization with mitochondrial Complex IV demonstrated, for the first time in shark gills, that both NKA- and VHA-rich cells are also MR cells, and that all MR cells are either NKA- or VHA-rich cells. Additionally we localized the anion exchanger pendrin to VHA-rich cells, but not NKA-rich cells. In starved sharks, VHA was localized throughout the cell cytoplasm and pendrin was present at the apical pole (but not in the membrane). However, in a significant number of gill cells from fed leopard sharks, VHA translocated to the basolateral membrane (as previously described in dogfish), and pendrin translocated to the apical membrane. Our results highlight the importance of translocation of ion-transporting proteins to the cell membrane as a regulatory mechanism for A/B regulation.
Collapse
Affiliation(s)
- Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 93092-0202, USA
| | - Christian L Munévar
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 93092-0202, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 93092-0202, USA.
| |
Collapse
|
21
|
Abstract
Specialized cells in the body express high levels of V-ATPase in their plasma membrane and respond to hormonal and nonhormonal cues to regulate extracellular acidification. Mutations in or loss of some V-ATPase subunits cause several disorders, including renal distal tubular acidosis and male infertility. This review focuses on the regulation of V-ATPase-dependent luminal acidification in renal intercalated cells and epididymal clear cells, which are key players in these physiological processes.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
22
|
Paluzzi JP, Yeung C, O'Donnell MJ. Investigations of the signaling cascade involved in diuretic hormone stimulation of Malpighian tubule fluid secretion in Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1179-1185. [PMID: 24080126 DOI: 10.1016/j.jinsphys.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 05/28/2023]
Abstract
In insects, the excretory system is comprised of the Malpighian tubules (MTs) and the hindgut, which collectively function to maintain ionic and osmotic balance of the haemolymph and rid the organism of toxic compounds or elements in excess. Secretion by the Malpighian tubules of insects is regulated by a variety of hormones including peptidergic factors as well as biogenic amines. In Rhodnius prolixus, two endogenous diuretic hormones have been identified; the biogenic amine serotonin (5-hydroxytryptamine, 5-HT) and the corticotropin releasing factor-related peptide, RhoprCRF. Both factors significantly increase secretion by MTs and are known to elevate intracellular levels of cAMP. Interestingly, applying sub-maximal doses of these two diuretic factors in combination on isolated MTs in vitro reveals synergistic effects as rates of fluid secretion are significantly higher than would be expected if rates of secretion from MTs treated with each factor alone were summed. This observed synergism suggests that different downstream targets may be activated by the two diuretic factors, but that some cellular elicitors may be shared since cAMP is elevated in response to either diuretic hormone. This study investigated the signaling cascade involved in the diuretic hormone regulation of Malpighian tubule fluid secretion. Bioassays were performed in physiological as well as modified salines (e.g. calcium-free) alone or in the presence of a variety of pharmacological compounds that interfere with prospective intracellular targets, such as the apical cation/H(+) exchanger. Intriguingly, only amiloride yielded differential effects on the two diuretics with 5HT-stimulated secretion being blocked, whereas in contrast, RhoprCRF-stimulated secretion was unaffected. In addition, experiments examining the role of extracellular and intracellular calcium on fluid secretion rate showed that both diuretics are dependent on intracellular calcium availability. Finally, fluid secretion stimulated by either diuretic hormone was also sensitive to inhibition of cAMP-dependent protein kinase A. Taken together, these results suggest that each diuretic hormone activates pathways dependent upon intracellular calcium and cAMP.
Collapse
Affiliation(s)
- Jean-Paul Paluzzi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | | | | |
Collapse
|
23
|
Baumann O, Bauer A. Development of apical membrane organization and V-ATPase regulation in blowfly salivary glands. J Exp Biol 2013; 216:1225-34. [DOI: 10.1242/jeb.077420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SUMMARY
Secretory cells in blowfly salivary gland are specialized via morphological and physiological attributes in order to serve their main function, i.e. the transport of solutes at a high rate in response to a hormonal stimulus, namely serotonin (5-HT). This study examines the way that 5-HT-insensitive precursor cells differentiate into morphologically complex 5-HT-responsive secretory cells. By means of immunofluorescence microscopy, immunoblotting and measurements of the transepithelial potential changes, we show the following. (1) The apical membrane of the secretory cells becomes organized into an elaborate system of canaliculi and is folded into pleats during the last pupal day and the first day of adulthood. (2) The structural reorganization of the apical membrane is accompanied by an enrichment of actin filaments and phosphorylated ERM protein (phospho-moesin) at this membrane domain and by the deployment of the membrane-integral part of vacuolar-type H+-ATPase (V-ATPase). These findings suggest a role for phospho-moesin, a linker between actin filaments and membrane components, in apical membrane morphogenesis. (3) The assembly and activation of V-ATPase can be induced immediately after eclosion by way of 8-CPT-cAMP, a membrane-permeant cAMP analogue. (4) 5-HT, however, produces the assembly and activation of V-ATPase only in flies aged for at least 2 h after eclosion, indicating that, at eclosion, the 5-HT receptor/adenylyl cyclase/cAMP signalling pathway is inoperative upstream of cAMP. (5) 5-HT activates both the Ca2+ signalling pathway and the cAMP signalling cascade in fully differentiated secretory cells. However, the functionality of these signalling cascades does not seem to be established in a tightly coordinated manner during cell differentation.
Collapse
Affiliation(s)
- Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Alexandra Bauer
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Gomes FM, Carvalho DB, Machado EA, Miranda K. Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res 2013; 352:313-26. [PMID: 23397424 DOI: 10.1007/s00441-013-1563-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
Defoliation caused by Anticarsia gemmatalis larvae affects the commercial production of the soybean. Although regulation of the digestion of soybean components has become part of the suggested strategy to overcome problems caused by Anticarsia larvae, few studies have focused on the morphological and cellular aspects of Anticarsia intestinal tissue. We have therefore further analyzed the morphology and ultrastructure of the midgut of 5th instar larvae of A. gemmatalis. Dissected midgut was subjected to chemical or cryo-fixation and then to several descriptive and analytical techniques associated with both light and electron microscopy in order to correlate anatomical and physiological aspects of this organ. Histological analysis revealed typical anatomy composed of a cell layer limited by a peritrophic membrane. The identified lepidoptera-specific goblet cells were shown to contain several mitochondria inside microvilli of the goblet cell cavity and a vacuolar H(+)-ATPase possibly coupled to a K(+)-pumping system. Columnar cells were present and exhibited microvilli dispersed along the apical region that also presented secretory characteristics. We additionally found evidence for the secretion of polyphosphate (PolyP) into the midgut, a result corroborating previous reports suggesting an excretion route from the goblet cell cavity toward the luminal space. Thus, our results suggest that the Anticarsia midgut not only possesses several typical lepidopteran features but also presents some unique aspects such as the presence of a tubular network and PolyP-containing apocrine secretions, plus an apparent route for the release of cellular debris by the goblet cells.
Collapse
Affiliation(s)
- F M Gomes
- Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
25
|
Efetova M, Petereit L, Rosiewicz K, Overend G, Haußig F, Hovemann BT, Cabrero P, Dow JAT, Schwärzel M. Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo. J Cell Sci 2012; 126:778-88. [PMID: 23264735 DOI: 10.1242/jcs.114140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.
Collapse
Affiliation(s)
- Marina Efetova
- Institute for Biology/Genetics, Free University Berlin, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fechner L, Baumann O, Walz B. Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina. Cell Calcium 2012; 53:94-101. [PMID: 23131569 DOI: 10.1016/j.ceca.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022]
Abstract
Ca(2+) and cAMP signalling pathways interact in a complex manner at multiple sites. This crosstalk fine-tunes the spatiotemporal patterns of Ca(2+) and cAMP signals. In salivary glands of the blowfly Calliphora vicina fluid secretion is stimulated by serotonin (5-hydroxytryptamine, 5-HT) via activation of two different 5-HT receptors coupled to the InsP(3)/Ca(2+) (Cv5-HT(2α)) or the cAMP pathway (Cv5-HT(7)), respectively. We have shown recently in permeabilized gland cells that cAMP sensitizes InsP(3)-induced Ca(2+) release to InsP(3). Here we study the effects of the cAMP signalling pathway on 5-HT-induced oscillations in transepithelial potential (TEP) and in intracellular [Ca(2+)]. We show: (1) Blocking the activation of the cAMP pathway by cinanserin suppresses the generation of TEP and Ca(2+) oscillations, (2) application of 8-CPT-cAMP in the presence of cinanserin restores 5-HT-induced TEP and Ca(2+) oscillations, (3) 8-CPT-cAMP sensitizes the InsP(3)/Ca(2+) signalling pathway to 5-HT and the Cv5-HT(2α) receptor agonist 5-MeOT, (4) 8-CPT-cAMP induces Ca(2+) oscillations in cells loaded with subthreshold concentrations of InsP(3), (5) inhibition of protein kinase A by H-89 abolishes 5-HT-induced TEP and Ca(2+) spiking and mimics the effect of cinanserin. These results suggest that activation of the cyclic AMP pathway promotes the generation of 5-HT-induced Ca(2+) oscillations in blowfly salivary glands.
Collapse
Affiliation(s)
- Lennart Fechner
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | |
Collapse
|
27
|
Heindorff K, Blenau W, Walz B, Baumann O. Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland. Cell Calcium 2012; 52:103-12. [PMID: 22633849 DOI: 10.1016/j.ceca.2012.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 01/18/2023]
Abstract
Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca(2+)-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca(2+), cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent manner. The existence of a Ca(2+)/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca(2+)/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca(2+)/CaM-dependent AC serves as a link between the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response.
Collapse
Affiliation(s)
- Kristoffer Heindorff
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
28
|
Schewe B, Blenau W, Walz B. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity. J Exp Biol 2012; 215:1337-45. [DOI: 10.1242/jeb.063172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H+-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pHi) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pHi regulation microfluorometrically and show that: (1) under resting conditions, the application of Na+-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na+-dependent glutamate transporter; (2) the maintenance of resting pHi is Na+, Cl–, concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na+ sensitive and requires V-ATPase activity; (4) the Na+/H+ antiporter is not involved in pHi recovery after a NH4Cl prepulse; and (5) at least one Na+-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na+-dependent transporter maintain normal pHi values of pH 7.5. We have also detected the presence of a Na+-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pHi-regulating transporter, its activity affects steady-state pHi in C. vicina salivary gland cells.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Nutrition Science, Department of Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Blenau
- Oberursel Bee Research Institute, Goethe-University Frankfurt/Main, Department of Life Science, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
29
|
Baumann O, Walz B. The blowfly salivary gland - a model system for analyzing the regulation of plasma membrane V-ATPase. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:450-458. [PMID: 22133312 DOI: 10.1016/j.jinsphys.2011.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium.
Collapse
Affiliation(s)
- Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | | |
Collapse
|
30
|
Moffett DF, Jagadeshwaran U, Wang Z, Davis HM, Onken H, Goss GG. Signaling by intracellular Ca2+ and H+ in larval mosquito (Aedes aegypti) midgut epithelium in response to serosal serotonin and lumen pH. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:506-512. [PMID: 22172381 DOI: 10.1016/j.jinsphys.2011.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
The midgut of larval mosquitoes (Aedes aegypti) mediates a cycle of alkali secretion in the anterior segment (AMG) followed by partial reacidification in the posterior segment (PMG); both processes are serotonin-dependent. Here we report that intracellular Ca(2+)(Ca(i)(2+)) as indicated by Fura-2 fluorescence, is elevated in both tissues in response to serotonin, but the time courses differ characteristically in the two gut segments, and Ca(2+)-free solution abolishes the serotonin response in AMG, but not in PMG, whereas Thapsigargin, an inhibitor of endoplasmic Ca(2+) transport, abolished responsiveness to 5-HT in PMG. These results suggest the origins for the Ca(2+) signal differ between the two tissues. Quantitative real-time RT-PCR revealed expression of 5 putative 5-HT receptor types in AMG, including 5-HT(2)-like receptors which would be expected to initiate a Ca(2+) signal. None of these receptors were highly expressed in PMG. Cyclic AMP (cAMP) is a secretagogue for both tissues, but H89, an inhibitor of Protein Kinase A (PKA), is also a secretagogue, suggesting that the stimulatory effect of cAMP involves a non-PKA pathway. Cytochalasins B and D block the effect of 5-HT in AMG, suggesting a vesicle-fusion mechanism of activation of the basal V-ATPase in this tissue. Finally, in PMG, elevation of luminal pH increases (Ca(i)(2+)) and decreases intracellular pH as measured by BCECF fluorescence. These responses suggest that the rate of acid secretion by PMG might be responsive to local demand for luminal reacidification as well as to serosal serotonin.
Collapse
Affiliation(s)
- David F Moffett
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Kane PM. Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 2012; 13:117-23. [PMID: 22044153 PMCID: PMC3536023 DOI: 10.2174/138920312800493142] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 11/22/2022]
Abstract
Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved proton pumps consisting of a peripheral membrane subcomplex called V1, which contains the sites of ATP hydrolysis, attached to an integral membrane subcomplex called Vo, which encompasses the proton pore. V-ATPase regulation by reversible dissociation, characterized by release of assembled V1 sectors into the cytosol and inhibition of both ATPase and proton transport activities, was first identified in tobacco hornworm and yeast. It has since become clear that modulation of V-ATPase assembly level is also a regulatory mechanism in mammalian cells. In this review, the implications of reversible disassembly for V-ATPase structure are discussed, along with insights into underlying subunit-subunit interactions provided by recent structural work. Although initial experiments focused on glucose deprivation as a trigger for disassembly, it is now clear that V-ATPase assembly can be regulated by other extracellular conditions. Consistent with a complex, integrated response to extracellular signals, a number of different regulatory proteins, including RAVE/rabconnectin, aldolase and other glycolytic enzymes, and protein kinase A have been suggested to control V-ATPase assembly and disassembly. It is likely that multiple signaling pathways dictate the ultimate level of assembly and activity. Tissue-specific V-ATPase inhibition is a potential therapy for osteoporosis and cancer; the possibility of exploiting reversible disassembly in design of novel V-ATPase inhibitors is discussed.
Collapse
Affiliation(s)
- Patricia M Kane
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
32
|
Tiburcy F, Beyenbach KW, Wieczorek H. Protein kinase A dependent and independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti. J Exp Biol 2012. [DOI: 10.1242/jeb.078360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Summary
Transepithelial ion transport in insect Malpighian tubules is energized by an apical V-ATPase. In hematophagous insects, a blood meal during which the animal ingests huge amounts of salt and water stimulates transepithelial transport processes linked to V-ATPase activation, but how this is accomplished is still unclear. Here we report that membrane-permeant derivatives of cAMP increase the bafilomycin-sensitive ATPase activity in Malpighian tubules of Aedes aegypti twofold and activate ATP-dependent transport processes. In parallel, membraneassociation of the V1 subunits C and D increases, consistent with the assembly of the holoenzyme. The protein kinase A inhibitor H-89 abolishes all cAMP-induced effects, consistent with PKA being involved in V-ATPase activation. Metabolic inhibition induced by KCN, azide and 2,4-dinitrophenol, respectively, also induces assembly of functional V-ATPases at the membrane without protein kinase A involvement, indicating a phosphorylation independent activation mechanism.
Collapse
|
33
|
Firmino KCS, Faleiros RO, Masui DC, McNamara JC, Furriel RPM. Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:24-31. [DOI: 10.1016/j.cbpb.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
34
|
Beyenbach KW, Piermarini PM. Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti. Acta Physiol (Oxf) 2011; 202:387-407. [PMID: 20946239 PMCID: PMC3032036 DOI: 10.1111/j.1748-1716.2010.02195.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isolated Malpighian tubules of the yellow fever mosquito secrete NaCl and KCl from the peritubular bath to the tubule lumen via active transport of Na(+) and K(+) by principal cells. Lumen-positive transepithelial voltages are the result. The counter-ion Cl(-) follows passively by electrodiffusion through the paracellular pathway. Water follows by osmosis, but specific routes for water across the epithelium are unknown. Remarkably, the transepithelial secretion of NaCl, KCl and water is driven by a H(+) V-ATPase located in the apical brush border membrane of principal cells and not the canonical Na(+), K(+) -ATPase. A hypothetical cation/H(+) exchanger moves Na(+) and K(+) from the cytoplasm to the tubule lumen. Also remarkable is the dynamic regulation of the paracellular permeability with switch-like speed which mediates in part the post-blood-meal diuresis in mosquitoes. For example, the blood meal the female mosquito takes to nourish her eggs triggers the release of kinin diuretic peptides that (i) increases the Cl(-) conductance of the paracellular pathway and (ii) assembles V(1) and V(0) complexes to activate the H(+) V-ATPase and cation/H(+) exchange close by. Thus, transcellular and paracellular pathways are both stimulated to quickly rid the mosquito of the unwanted salts and water of the blood meal. Stellate cells of the tubule appear to serve a metabolic support role, exporting the HCO(3)(-) generated during stimulated transport activity. Septate junctions define the properties of the paracellular pathway in Malpighian tubules, but the proteins responsible for the permselectivity and barrier functions of the septate junction are unknown.
Collapse
Affiliation(s)
- K W Beyenbach
- Department of Biomedical Sciences, VRT 8004, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
35
|
Lahn M, Dosche C, Hille C. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl− changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 2011; 300:C1323-36. [DOI: 10.1152/ajpcell.00320.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na+ and Cl− concentrations ([Na+]i, [Cl−]i) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl− measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl−]i is 1.6 times above the Cl− electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na+-K+-2Cl− cotransporter (NKCC) and anion exchanger using bumetanide and 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid disodium salt. In contrast, rapid Cl− reuptake after extracellular Cl− removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl−]i does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na+]i rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na+]i rise is Cl− dependent and inhibited by bumetanide. The Ca2+-ionophore ionomycin also causes a bumetanide-sensitive [Na+]i rise. We propose that a Ca2+-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na+ uptake during saliva secretion and that the concomitantly transported Cl− is recycled back to the bath.
Collapse
Affiliation(s)
- Mattes Lahn
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Dosche
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Hille
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
36
|
Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S. Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 2010; 21:1745-55. [PMID: 20798260 DOI: 10.1681/asn.2009050477] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Medicine, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1961-8. [PMID: 20599533 DOI: 10.1016/j.bbamem.2010.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
Subunit G is an essential stalk subunit of the eukaryotic proton pump V(1)V(O) ATPase. Previously the structure of the N-terminal region, G(1)(-)(59), of the 13kDa subunit G was solved at higher resolution. Here solution NMR was performed to determine the structure of the recombinant C-terminal region (G(61)(-)(101)) of subunit G of the Saccharomyces cerevisiae V(1)V(O) ATPase. The protein forms an extended alpha-helix between residues 64 and 100, whereby the first five- and the last residues of G(61)(-)(101) are flexible. The surface charge distribution of G(61)(-)(101) reveals an amphiphilic character at the C-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The hydrophobic surface pattern is mainly formed by alanine residues. The alanine residues 72, 74 and 81 were exchanged by a single cysteine in the entire subunit G. Cysteines at positions 72 and 81 showed disulfide formation. In contrast, no crosslink could be formed for the mutant Ala74Cys. Together with the recently determined NMR solution structure of G(1)(-)(59), the presented solution structure of G(61)(-)(101) enabled us to present a first structural model of the entire subunit G of the S. cerevisiae V(1)V(O) ATPase.
Collapse
|
38
|
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29:2515-26. [PMID: 20581803 DOI: 10.1038/emboj.2010.138] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/28/2010] [Indexed: 01/04/2023] Open
Abstract
Glucose is the preferred carbon source for most cell types and a major determinant of cell growth. In yeast and certain mammalian cells, glucose activates the cAMP-dependent protein kinase A (PKA), but the mechanisms of PKA activation remain unknown. Here, we identify cytosolic pH as a second messenger for glucose that mediates activation of the PKA pathway in yeast. We find that cytosolic pH is rapidly and reversibly regulated by glucose metabolism and identify the vacuolar ATPase (V-ATPase), a proton pump required for the acidification of vacuoles, as a sensor of cytosolic pH. V-ATPase assembly is regulated by cytosolic pH and is required for full activation of the PKA pathway in response to glucose, suggesting that it mediates, at least in part, the pH signal to PKA. Finally, V-ATPase is also regulated by glucose in the Min6 beta-cell line and contributes to PKA activation and insulin secretion. Thus, these data suggest a novel and potentially conserved glucose-sensing pathway and identify a mechanism how cytosolic pH can act as a signal to promote cell growth.
Collapse
|
39
|
Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 2010; 285:24676-85. [PMID: 20525692 DOI: 10.1074/jbc.m110.106278] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO(3)(-)-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H(+) secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO(3)(-)-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Renal-Electrolyte Division, Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Flecke C, Nolte A, Stengl M. Perfusion with cAMP analogue affects pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta in a time-dependent manner. ACTA ACUST UNITED AC 2010; 213:842-52. [PMID: 20154200 DOI: 10.1242/jeb.032839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Octopamine causes time-dependent disadaptation of pheromone-sensitive olfactory receptor neurons (ORNs) of Manduca sexta. Because the majority of insect octopamine receptors are positively coupled to adenylyl cyclases we examined whether cyclic adenosine monophosphate (cAMP) mimics octopamine-dependent modulation of pheromone transduction in a time-dependent manner. Long-term tip recordings of single trichoid sensilla of Manduca sexta were performed during three zeitgeber times (ZTs, ZT 0=lights on), while stimulating the sensilla with two doses of the main pheromone component bombykal in a non-adapting protocol. The membrane-permeable cAMP analogue 8bcAMP increased the normalized sensillar potential amplitude in a time- and bombykal dose-dependent way. At the higher bombykal dose only, the applied 8bcAMP antagonized an endogenous decrease in the mean sensillar potential amplitude at ZT 1-4 and ZT 8-11 when ORNs were adapted but not at ZT 22-1, when ORNs were sensitized. In contrast to octopamine, 8bcAMP did not consistently affect the initial pheromone-dependent action potential frequency, the phasic/tonic response pattern, or the time-dependent shift to lower mean action potential frequencies at ZT 8-11. Furthermore, 8bcAMP increased the spontaneous action potential frequency time dependently, but differently from octopamine. In conclusion, our results show that cAMP only partly mimics the octopamine-dependent disadaptation of olfactory receptor neurons during photophase, apparently due to another missing octopamine-dependent synergistic factor such as defined intracellular calcium levels.
Collapse
Affiliation(s)
- Christian Flecke
- Biologie, Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
41
|
Voss M, Fechner L, Walz B, Baumann O. Calcineurin activity augments cAMP/PKA-dependent activation of V-ATPase in blowfly salivary glands. Am J Physiol Cell Physiol 2010; 298:C1047-56. [PMID: 20164380 DOI: 10.1152/ajpcell.00328.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the role of the Ca(2+)-dependent protein phosphatase 2B (calcineurin) in the regulation of the vacuolar H(+)-ATPase (V-ATPase) in blowfly salivary glands. In response to the neurohormone serotonin [5-hydroxytryptamine (5-HT)] and under the mediation of the cAMP/PKA signaling pathway, the secretory cells assemble and activate V-ATPase molecules at the apical membrane. We demonstrate that the inhibition of calcineurin activity by cyclosporin A, by FK-506, or by prevention of the elevation of Ca(2+) diminishes the 5-HT-induced assembly and activation of V-ATPase. The effect of calcineurin on V-ATPase is mediated by the cAMP/PKA signaling pathway, with calcineurin acting upstream of PKA, because 1) cyclosporin A does not influence the 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP)-induced activation of V-ATPase, and 2) the 5-HT-induced rise in cAMP is highly reduced in the presence of cyclosporin A. Moreover, a Ca(2+) rise evoked by the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor cyclopiazonic acid leads to an increase in intracellular cAMP concentration and a calcineurin-mediated PKA-dependent activation of V-ATPase. We propose that calcineurin activity mediates cross talk between the inositol 1,4,5-trisphosphate/Ca(2+) and the cAMP/PKA signaling pathways, thereby augmenting the 5-HT-induced rise in cAMP and thus the cAMP/PKA-mediated activation of V-ATPase.
Collapse
Affiliation(s)
- Martin Voss
- Institut für Biochemie und Biologie, Universität Potsdam, Germany
| | | | | | | |
Collapse
|
42
|
Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, Hallows KR, Pastor-Soler NM. Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; 298:F1162-9. [PMID: 20147366 DOI: 10.1152/ajprenal.00645.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) in type A kidney intercalated cells is a major contributor to acid excretion in the collecting duct. The mechanisms of V-ATPase-trafficking regulation in kidney intercalated cells have not been well-characterized. In developmentally related epididymal clear cells, we showed previously that PKA, acting downstream of soluble adenylyl cyclase (sAC), induces V-ATPase apical membrane accumulation. These PKA-mediated effects were inhibited by activators of the metabolic sensor AMP-activated kinase (AMPK) in clear cells. Here, we examined the regulation of V-ATPase subcellular localization in intercalated cells by PKA and AMPK in rat kidney tissue slices ex vivo. Immunofluorescence labeling of kidney slices revealed that the PKA activator N(6)-monobutyryl cAMP (6-MB-cAMP) induced V-ATPase apical membrane accumulation in collecting duct intercalated cells, whereas the V-ATPase had a more cytosolic distribution when incubated in Ringer buffer alone for 30 min. V-ATPase accumulated at the apical membrane in intercalated cells in kidney slices incubated in Ringer buffer for 75 min, an effect that was prevented by treatment with PKA inhibitor (mPKI). The V-ATPase distribution was cytosolic in intercalated cells treated with the carbonic anhydrase inhibitor acetazolamide or the sAC inhibitor KH7, effects that were overridden by 6-MB-cAMP. Preincubation of kidney slices with an AMPK activator blocked V-ATPase apical membrane accumulation induced by 6-MB-cAMP, suggesting that AMPK antagonizes cAMP/PKA effects on V-ATPase distribution. Taken together, our results suggest that in intercalated cells V-ATPase subcellular localization and therefore its activity may be coupled to acid-base status via PKA, and metabolic status via AMPK.
Collapse
Affiliation(s)
- Fan Gong
- Department of Medicine, Renal Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15263, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar-type proton pumps in insect epithelia. ACTA ACUST UNITED AC 2009; 212:1611-9. [PMID: 19448071 DOI: 10.1242/jeb.030007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of the V-ATPase as the energizer of K(+)/nH(+) antiport in the larval midgut of the tobacco hornworm Manduca sexta we show that research on the tobacco hornworm V-ATPase delivered important findings that emerged to be of general significance for our knowledge of V-ATPases, which are ubiquitous and highly conserved proton pumps. We then discuss the V-ATPase in Malpighian tubules of the fruitfly Drosophila melanogaster where the potential of post-genomic biology has been impressively illustrated. Finally we review an integrated physiological approach in Malpighian tubules of the yellow fever mosquito Aedes aegypti which shows that the V-ATPase delivers the energy for both transcellular and paracellular ion transport.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
44
|
Beyenbach KW, Baumgart S, Lau K, Piermarini PM, Zhang S. Signaling to the apical membrane and to the paracellular pathway: changes in the cytosolic proteome of Aedes Malpighian tubules. ACTA ACUST UNITED AC 2009; 212:329-40. [PMID: 19151207 DOI: 10.1242/jeb.024646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a proteomics approach, we examined the post-translational changes in cytosolic proteins when isolated Malpighian tubules of Aedes aegypti were stimulated for 1 min with the diuretic peptide aedeskinin-III (AK-III, 10(-7) mol l(-1)). The cytosols of control (C) and aedeskinin-treated (T) tubules were extracted from several thousand Malpighian tubules, subjected to 2-D electrophoresis and stained for total proteins and phosphoproteins. The comparison of C and T gels was performed by gel image analysis for the change of normalized spot volumes. Spots with volumes equal to or exceeding C/T ratios of +/-1.5 were robotically picked for in-gel digestion with trypsin and submitted for protein identification by nanoLC/MS/MS analysis. Identified proteins covered a wide range of biological activity. As kinin peptides are known to rapidly stimulate transepithelial secretion of electrolytes and water by Malpighian tubules, we focused on those proteins that might mediate the increase in transepithelial secretion. We found that AK-III reduces the cytosolic presence of subunits A and B of the V-type H(+) ATPase, endoplasmin, calreticulin, annexin, type II regulatory subunit of protein kinase A (PKA) and rab GDP dissociation inhibitor and increases the cytosolic presence of adducin, actin, Ca(2+)-binding protein regucalcin/SMP30 and actin-depolymerizing factor. Supporting the putative role of PKA in the AK-III-induced activation of the V-type H(+) ATPase is the effect of H89, an inhibitor of PKA, on fluid secretion. H89 reverses the stimulatory effect of AK-III on transepithelial fluid secretion in isolated Malpighian tubules. However, AK-III does not raise intracellular levels of cAMP, the usual activator of PKA, suggesting a cAMP-independent activation of PKA that removes subunits A and B from the cytoplasm in the assembly and activation of the V-type H(+) ATPase. Alternatively, protein kinase C could also mediate the activation of the proton pump. Ca(2+) remains the primary intracellular messenger of the aedeskinins that signals the remodeling of the paracellular complex apparently through protein kinase C, thereby increasing transepithelial anion secretion. The effects of AK-III on active transcellular and passive paracellular transport are additive, if not synergistic, to bring about the rapid diuresis.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
45
|
Bond S, Forgac M. The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 2008; 283:36513-21. [PMID: 18936098 PMCID: PMC2605986 DOI: 10.1074/jbc.m805232200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/08/2008] [Indexed: 12/23/2022] Open
Abstract
Vacuolar (H+)-ATPases (V-ATPases) are ubiquitous, ATP-driven proton pumps that acidify organelles or the extracellular space. A rapid and effective mechanism for regulating V-ATPase activity involves reversible dissociation of the two functional domains of the pump, V1 and V0. This process is best characterized in yeast, where V-ATPases are reversibly disassembled in response to glucose depletion. To identify regulators that control this process in vivo, a genetic screen was performed in yeast to search for mutants that cannot disassemble their V-ATPases when grown in the absence of glucose. This screen identified IRA1 (inhibitory regulator of the Ras/cAMP pathway 1) and IRA2 as essential genes for regulating V-ATPase dissociation in vivo. IRA1 and IRA2 encode GTPase-activating proteins that negatively regulate Ras in nutrient-poor conditions. Down-regulation of Ras lowers cAMP levels by reducing adenylate cyclase activity. Decreased cAMP levels in turn lead to reduced activity of protein kinase A (PKA). Our results show that targeted deletion of IRA2 results in defective disassembly of the V-ATPase in response to glucose depletion, and reexpression of the gene rescues this phenotype. Glucose-dependent dissociation is also blocked in strains expressing the dominant active RAS2val19 allele or in strains deficient for the regulatory subunit of PKA, both of which lead to constitutively active PKA. These results reveal a role for PKA in controlling glucose-dependent V-ATPase assembly in yeast.
Collapse
Affiliation(s)
- Sarah Bond
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
46
|
Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands. Cell Tissue Res 2008; 335:657-62. [PMID: 18766382 DOI: 10.1007/s00441-008-0673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca(2+) pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H(+)-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H(+)-ATPase, which is enriched in this membrane domain, is a target protein for PKA.
Collapse
|
47
|
Rotte C, Walz B, Baumann O. Morphological and functional characterization of the thoracic portion of blowfly salivary glands. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:372-382. [PMID: 18406207 DOI: 10.1016/j.asd.2008.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 05/26/2023]
Abstract
The abdominal portion of the salivary glands in the blowfly has been studied intensively. Here, we examine the thoracic part of the salivary glands, emphasizing structural and functional aspects. The initial segment downstream of the abdominal portion is secretory and resembles the latter in most structural and functional aspects: the apical membrane is enfolded, forms a canalicular system and contains V-H(+)-ATPase that assembles upon stimulation with the hormone serotonin (5-HT); Na,K-ATPase is localized in the basolateral membrane; septate junctions are not prominent, as deduced from immunofluorescence staining for the marker proteins discs large and fasciclin III. 5-HT elicits, at low concentrations, cytoplasmic [Ca2+] oscillations, and, at saturating concentrations, a tonic [Ca2+] rise. The following, so-called "re-absorptive" segment loops through the coiled secretory portion of the salivary gland. The apical membrane of the re-absorptive cells is not enfolded, and septate junctions are prominent. V-H(+)-ATPase and Na,K-ATPase reside on the apical and basolateral membranes, respectively. Finally, re-absorptive cells are also sensitive to 5-HT; however, whereas V-ATPase assembly has a 5-HT concentration dependence similar to other segments, the Ca2+ response occurs only at higher 5-HT concentrations, and displays a different kinetic pattern.
Collapse
Affiliation(s)
- Cathleen Rotte
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
48
|
Schmidt R, Baumann O, Walz B. cAMP potentiates InsP3-induced Ca2+ release from the endoplasmic reticulum in blowfly salivary glands. BMC PHYSIOLOGY 2008; 8:10. [PMID: 18492257 PMCID: PMC2408587 DOI: 10.1186/1472-6793-8-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/20/2008] [Indexed: 01/09/2023]
Abstract
Background Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER). Results Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration. Conclusion This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.
Collapse
Affiliation(s)
- Ruth Schmidt
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str, 24-25, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
49
|
Schewe B, Schmälzlin E, Walz B. Intracellular pH homeostasis and serotonin-induced pH changes inCalliphorasalivary glands: the contribution of V-ATPase and carbonic anhydrase. J Exp Biol 2008; 211:805-15. [DOI: 10.1242/jeb.002667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYBlowfly salivary gland cells have a vacuolar-type H+-ATPase(V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pHi) regulation,and we have localized CA activity by histochemistry. We show: (1) mean pHi in salivary gland cells is 7.5±0.3 pH units(N=96), higher than that expected from passive H+distribution; (2) low 5-HT concentrations (0.3–3 nmol l–1) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l–1, causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pHi; (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl–-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na+-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pHi regulation and 5-HT-induced outward H+pumping does not cause an alkalinization of pHi because of cytosolic H+ accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Biochemistry and Biology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- University of Potsdam, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Elmar Schmälzlin
- University of Potsdam, Department of Chemistry, Physical Chemistry, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- University of Potsdam, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
50
|
Pastor-Soler NM, Hallows KR, Smolak C, Gong F, Brown D, Breton S. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 2007; 294:C488-94. [PMID: 18160485 DOI: 10.1152/ajpcell.00537.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H(+)-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N(6)-monobutyryl-3'-5'-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 microM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2-O-methyl-cAMP (8CPT-2-O-Me-cAMP; 10 microM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 microM), 8CPT-2-O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli.
Collapse
Affiliation(s)
- Núria M Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, A915 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15263, USA.
| | | | | | | | | | | |
Collapse
|