1
|
Soubeyrand S, Lau P, McPherson R. Distinct roles of Constitutive Photomorphogenesis Protein 1 homolog (COP1) in human hepatocyte models. Front Mol Biosci 2025; 12:1548582. [PMID: 39990870 PMCID: PMC11842253 DOI: 10.3389/fmolb.2025.1548582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Constitutive Photomorphogenesis Protein 1 homolog (COP1) is a conserved E3 ligase with key roles in several biological systems. Prior work in hepatocyte-derived tumors categorized COP1 as an oncogene, but its role in untransformed hepatocytes remains largely unexplored. Here, we have investigated the role of COP1 in primary human hepatocytes and two transformed hepatocyte models, HepG2 and HuH-7 cells. Methods The role of COP1 was tested by silencing and transduction experiments in HepG2, HuH-7, and primary human hepatocytes. Transcription array data of COP1-suppressed cells were generated and analyzed using clustering analyses. Cellular impacts were examined by proliferation assays, qRT-PCR, western blotting, reporter assays, and APOB enzyme-linked immunosorbent assays. Results and Discussion COP1 suppression had no noticeable impact on HepG2 and HuH-7 proliferation and was associated with contrasting rather than congruent transcriptome changes. Transcriptomic changes were consistent with perturbed metabolism in primary hepatocytes and HepG2 cells and impaired cell cycle regulation in HuH-7 cells. In HepG2 and primary hepatocytes but not in HuH-7 cells, COP1 suppression reduced the expression of important hepatic regulators and markers. COP1 downregulation reduced hepatic nuclear factor-4 alpha (HNF4A) abundance and function, as assessed by a lower abundance of key HNF4A targets, reduced APOB secretion, and reporter assays. HNF4A function could be restored by introducing a siRNA-resistant COP1 transgene, whereas HNF4A restoration partially rescued COP1 silencing in HepG2 cells. Our results identify and detail a pivotal regulatory role of COP1 in hepatocytes, in part through HNF4A.
Collapse
Affiliation(s)
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
2
|
Song W, Ovcharenko I. Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation. iScience 2025; 28:111658. [PMID: 39868043 PMCID: PMC11761325 DOI: 10.1016/j.isci.2024.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025] Open
Abstract
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively. Approximately 22% of HepG2 enhancers, termed "repressive impact enhancers" (RIEs), are predominantly populated by NARs and transcriptional repression motifs. Genes flanking RIEs exhibit a stage-specific decline in expression during late development, suggesting RIEs' role in trimming enhancer activities. About 16.7% of human NARs emerge from neutral rhesus macaque DNA. This gain of repressor binding sites in RIEs is associated with a 30% decrease in the average expression of flanking genes in humans compared to rhesus macaque. Our work reveals modulated enhancer activity and adaptable gene regulation through the evolutionary dynamics of TF binding sites.
Collapse
Affiliation(s)
- Wei Song
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
4
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Ueda K, Chin SS, Sato N, NIshikawa M, Yasuda K, Miyasaka N, Bera BS, Chorro L, Dona-Termine R, Koba WR, Reynolds D, Steidl UG, Lauvau G, Greally JM, Suzuki M. Prenatal vitamin D deficiency alters immune cell proportions of young adult offspring through alteration of long-term stem cell fates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557255. [PMID: 37745570 PMCID: PMC10515841 DOI: 10.1101/2023.09.11.557255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, exactly how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We found that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Our results suggest the role of cellular differentiation properties of the hematopoiesis as the long-term memories of prenatal exposure at the adult stage. Moreover, further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term babies also confirm that maternal vitamin D levels in the second trimester significantly affect immune cell proportions in the babies. This highlights the importance of providing vitamin D supplementation at specific stages of pregnancy.
Collapse
|
6
|
Liu F, Peng Y, Qian H, Xiao MC, Ding CH, Zhang X, Xie WF. Abrogating K458 acetylation enhances hepatocyte nuclear factor 4α (HNF4α)-induced differentiation therapy for hepatocellular carcinoma. J Dig Dis 2024; 25:255-265. [PMID: 38837552 DOI: 10.1111/1751-2980.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated β-galactosidase (SA-β-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Peng X, Li H, Wang D, Wu L, Hu J, Ye F, Syed BM, Liu D, Zhang J, Liu Q. Intrauterine arsenic exposure induces glucose metabolism disorders in adult offspring by targeting TET2-mediated DNA hydroxymethylation reprogramming of HNF4α in developing livers, an effect alleviated by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133405. [PMID: 38185084 DOI: 10.1016/j.jhazmat.2023.133405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.
Collapse
Affiliation(s)
- Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China
| | - Jiacai Hu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro 76090, Sindh, Pakistan
| | - Deye Liu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Deans JR, Deol P, Titova N, Radi SH, Vuong LM, Evans JR, Pan S, Fahrmann J, Yang J, Hammock BD, Fiehn O, Fekry B, Eckel-Mahan K, Sladek FM. HNF4α isoforms regulate the circadian balance between carbohydrate and lipid metabolism in the liver. Front Endocrinol (Lausanne) 2023; 14:1266527. [PMID: 38111711 PMCID: PMC10726135 DOI: 10.3389/fendo.2023.1266527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.
Collapse
Affiliation(s)
- Jonathan R. Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Nina Titova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Linh M. Vuong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Jane R. Evans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Songqin Pan
- Proteomics Core, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Johannes Fahrmann
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Baharan Fekry
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Kristin Eckel-Mahan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
11
|
Yoshimura Y, Muto Y, Omachi K, Miner JH, Humphreys BD. Elucidating the Proximal Tubule HNF4A Gene Regulatory Network in Human Kidney Organoids. J Am Soc Nephrol 2023; 34:1672-1686. [PMID: 37488681 PMCID: PMC10561821 DOI: 10.1681/asn.0000000000000197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
SIGNIFICANCE STATEMENT HNF4 genes promote proximal tubule differentiation in mice, but their function in human nephrogenesis is not fully defined. This study uses human pluripotent stem cell (PSC)-derived kidney organoids as a model to investigate HNF4A and HNF4G functions. The loss of HNF4A , but not HNF4G , impaired reabsorption-related molecule expression and microvilli formation in human proximal tubules. Cleavage under targets and release using nuclease (CUT&RUN) sequencing and CRISPR-mediated transcriptional activation (CRISPRa) further confirm that HNF4A directly regulates its target genes. Human kidney organoids provide a good model for studying transcriptional regulation in human kidney development. BACKGROUND The proximal tubule plays a major role in electrolyte homeostasis. Previous studies have shown that HNF4A regulates reabsorption-related genes and promotes proximal tubule differentiation during murine kidney development. However, the functions and gene regulatory mechanisms of HNF4 family genes in human nephrogenesis have not yet been investigated. METHODS We generated HNF4A -knock out (KO), HNF4G -KO, and HNF4A/4G -double KO human pluripotent stem cell lines, differentiated each into kidney organoids, and used immunofluorescence analysis, electron microscopy, and RNA-seq to analyze them. We probed HNF4A-binding sites genome-wide by cleavage under targets and release using nuclease sequencing in both human adult kidneys and kidney organoid-derived proximal tubular cells. Clustered Regularly Interspaced Short Palindromic Repeats-mediated transcriptional activation validated HNF4A and HNF4G function in proximal tubules during kidney organoid differentiation. RESULTS Organoids lacking HNF4A , but not HNF4G , showed reduced expression of transport-related, endocytosis-related, and brush border-related genes, as well as disorganized brush border structure in the apical lumen of the organoid proximal tubule. Cleavage under targets and release using nuclease revealed that HNF4A primarily bound promoters and enhancers of genes that were downregulated in HNF4A -KO, suggesting direct regulation. Induced expression of HNF4A or HNF4G by CRISPR-mediated transcriptional activation drove increased expression of selected target genes during kidney organoid differentiation. CONCLUSIONS This study reveals regulatory mechanisms of HNF4A and HNF4G during human proximal tubule differentiation. The experimental strategy can be applied more broadly to investigate transcriptional regulation in human kidney development.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kohei Omachi
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Amicone L, Marchetti A, Cicchini C. The lncRNA HOTAIR: a pleiotropic regulator of epithelial cell plasticity. J Exp Clin Cancer Res 2023; 42:147. [PMID: 37308974 DOI: 10.1186/s13046-023-02725-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a trans-differentiation process that endows epithelial cells with mesenchymal properties, including motility and invasion capacity; therefore, its aberrant reactivation in cancerous cells represents a critical step to gain a metastatic phenotype. The EMT is a dynamic program of cell plasticity; many partial EMT states can be, indeed, encountered and the full inverse mesenchymal-to-epithelial transition (MET) appears fundamental to colonize distant secondary sites. The EMT/MET dynamics is granted by a fine modulation of gene expression in response to intrinsic and extrinsic signals. In this complex scenario, long non-coding RNAs (lncRNAs) emerged as critical players. This review specifically focuses on the lncRNA HOTAIR, as a master regulator of epithelial cell plasticity and EMT in tumors. Molecular mechanisms controlling its expression in differentiated as well as trans-differentiated epithelial cells are highlighted here. Moreover, current knowledge about HOTAIR pleiotropic functions in regulation of both gene expression and protein activities are described. Furthermore, the relevance of the specific HOTAIR targeting and the current challenges of exploiting this lncRNA for therapeutic approaches to counteract the EMT are discussed.
Collapse
Affiliation(s)
- Laura Amicone
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Alessandra Marchetti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Carla Cicchini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| |
Collapse
|
14
|
Asri N, Fallah S, Rostami-Nejad M, Fallah Z, Khanlari-Kochaksaraei M, Jafari-Marandi S, Forouzesh F, Shahrokh S, Jahani-Sherafat S, Zali MR. The role of mir-197-3p in regulating the tight junction permeability of celiac disease patients under gluten free diet. Mol Biol Rep 2023; 50:2007-2014. [PMID: 36536183 DOI: 10.1007/s11033-022-08147-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Celiac disease (CD) is a hereditary immune-mediated disorder, which is along with the enormous production of pro-inflammatory cytokines and the reduced level of tight junction proteins. The aim of this study was to determine the expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p genes in duodenal biopsies of treated CD patients in comparison to the controls. METHODS AND RESULTS Biopsy specimens were taken from the duodenum of 50 treated CD patients (36 (72%) females and 14 (28%) males with mean age of 37.06 ± 7.02 years) and 50 healthy controls (17 (34%) females and 33 (66%) males with mean age of 34.12 ± 4.9). Total RNA was isolated, cDNA was synthesized and mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, miR-122-5p and miR-197-3p were quantified by relative qPCR using B2M and U6 as internal control genes. All data were evaluated using SPSS (V.21) and GraphPad Prism (V.5). Our results showed that there was no significant difference between patients and controls for intestinal mRNA expression of TNF-α, IFN-γ, IL-18, Occludin, and miR-122-5p (p > 0.05) and the expression of miR-197-3p was significantly increased in CD patients relative to control subjects (p = 0.049). CONCLUSION This study suggests that adherence to GFD may have a positive effect on the tight junction (TJ) permeability and in this process, miR-197-3p plays an important role. Increased expression of miR-197-3p with a final protective effect on Occludin expression can be further studied as a complement therapeutic target for Celiac disease.
Collapse
Affiliation(s)
- Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 1985717411, Tehran, Iran
| | - Shayan Fallah
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 1985717411, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 1985717411, Tehran, Iran.
| | - Zahra Fallah
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Khanlari-Kochaksaraei
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sayeh Jafari-Marandi
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 1985717411, Tehran, Iran
| |
Collapse
|
15
|
Yook JS, Taxin ZH, Yuan B, Oikawa S, Auger C, Mutlu B, Puigserver P, Hui S, Kajimura S. The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proc Natl Acad Sci U S A 2023; 120:e2216810120. [PMID: 36812201 PMCID: PMC9992842 DOI: 10.1073/pnas.2216810120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Zachary H. Taxin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Beste Mutlu
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
16
|
Leung DH, Devaraj S, Goodrich NP, Chen X, Rajapakshe D, Ye W, Andreev V, Minard CG, Guffey D, Molleston JP, Bass LM, Karpen SJ, Kamath BM, Wang KS, Sundaram SS, Rosenthal P, McKiernan P, Loomes KM, Jensen MK, Horslen S, Bezerra JA, Magee JC, Merion RM, Sokol RJ, Shneider BL. Serum biomarkers correlated with liver stiffness assessed in a multicenter study of pediatric cholestatic liver disease. Hepatology 2023; 77:530-545. [PMID: 36069569 PMCID: PMC10151059 DOI: 10.1002/hep.32777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Detailed investigation of the biological pathways leading to hepatic fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for pediatric cholestasis. APPROACH AND RESULTS A targeted enzyme-linked immunosorbent assay-based panel of nine biomarkers (lysyl oxidase, tissue inhibitor matrix metalloproteinase (MMP) 1, connective tissue growth factor [CTGF], IL-8, endoglin, periostin, Mac-2-binding protein, MMP-3, and MMP-7) was examined in children with biliary atresia (BA; n = 187), alpha-1 antitrypsin deficiency (A1AT; n = 78), and Alagille syndrome (ALGS; n = 65) and correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations among LSM and endoglin ( p = 0.04) and IL-8 ( p < 0.001) and MMP-7 ( p < 0.001) in participants with BA. The best prediction model for LSM in BA using clinical and lab measurements had an R2 = 0.437; adding IL-8 and MMP-7 improved R2 to 0.523 and 0.526 (both p < 0.0001). In participants with A1AT, CTGF and LSM were negatively correlated ( p = 0.004); adding CTGF to an LSM prediction model improved R2 from 0.524 to 0.577 ( p = 0.0033). Biomarkers did not correlate with LSM in ALGS. A significant number of biomarker/lab correlations were found in participants with BA but not those with A1AT or ALGS. CONCLUSIONS Endoglin, IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, whereas CTGF inversely correlates with LSM in participants with A1AT; these biomarkers appear to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of change in these biomarkers over time and as predictors of clinical outcomes will be important.
Collapse
Affiliation(s)
- Daniel H. Leung
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, USA
| | | | - Xinpu Chen
- Department of Pathology and Immunology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Deepthi Rajapakshe
- Department of Pathology and Immunology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Wen Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Victor Andreev
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine
| | - Danielle Guffey
- Institute for Clinical and Translational Research, Baylor College of Medicine
| | - Jean P. Molleston
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Riley Hospital for Children, Indiana University, Indianapolis, IN, USA
| | - Lee M. Bass
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Saul J. Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children and the University of Toronto, Ont, CA
| | - Kasper S. Wang
- Department of Pediatric Surgery, Children’s Hospital Los Angeles, CA, USA
| | - Shikha S. Sundaram
- Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Philip Rosenthal
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick McKiernan
- Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Pittsburgh, Pittsburg, PA, USA
| | - Kathleen M. Loomes
- Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Kyle Jensen
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Simon Horslen
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Washington School of Medicine and Seattle Children’s Hospital, Seattle, WA, USA
| | - Jorge A. Bezerra
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Cincinnati School of Medicine and Cincinnati Children’s Medical Center, Cincinnati, OH, USA
| | - John C. Magee
- University of Michigan Hospitals and Health Centers, Ann Arbor, MI, USA
| | | | - Ronald J. Sokol
- Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Benjamin L. Shneider
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | | |
Collapse
|
17
|
Zhang J, Yang Z, Yan X, Duan J, Ruan B, Zhang X, Wen T, Zhang P, Liang L, Han H. RNA-binding protein SPEN controls hepatocyte maturation via regulating Hnf4α expression during liver development. Biochem Biophys Res Commun 2023; 642:128-136. [PMID: 36577249 DOI: 10.1016/j.bbrc.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Liver organogenesis is a complex process. Although many signaling pathways and key factors have been identified during liver development, little is known about the regulation of late liver development, especially liver maturation. As a transcriptional repressor, SPEN has been demonstrated to interact with lncRNAs and transcription factors to participate in X chromosome inactivation, neural development, and lymphocyte differentiation. General disruption of SPEN results in embryonic lethality accompanied by hampered liver development in mice. However, the function of SPEN in embryonic liver development has not been reported. In this study, we demonstrate that SPEN is required for hepatocyte maturation using hepatocyte-specific disruption of SPEN with albumin-Cre-mediated knockout. SPEN expression was upregulated in hepatocytes along with liver development in mice. The deletion of the SPEN gene repressed hepatic maturation, mainly by a decrease in hepatic metabolic function and disruption of hepatocyte zonation. Additional experiments revealed that transcription factors which control hepatocyte maturation were strongly downregulated in SPEN-deficient hepatocytes, especially Hnf4α. Furthermore, restoration of Hnf4α levels partially rescued the immature state of hepatocytes caused by SPEN gene deletion. Taken together, these results reveal an unexpected role of SPEN in liver maturation.
Collapse
Affiliation(s)
- Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bai Ruan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Wen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
18
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
19
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew C Tillman
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Briana R Davis
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Chen
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
20
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
21
|
Chen Y, Capello M, Rios Perez MV, Vykoukal JV, Roife D, Kang Y, Prakash LR, Katayama H, Irajizad E, Fleury A, Ferri-Borgogno S, Baluya DL, Dennison JB, Do KA, Fiehn O, Maitra A, Wang H, Chiao PJ, Katz MHG, Fleming JB, Hanash SM, Fahrmann JF. CES2 sustains HNF4α expression to promote pancreatic adenocarcinoma progression through an epoxide hydrolase-dependent regulatory loop. Mol Metab 2022; 56:101426. [PMID: 34971802 PMCID: PMC8841288 DOI: 10.1016/j.molmet.2021.101426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.
Collapse
Affiliation(s)
- Yihui Chen
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michela Capello
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayrim V Rios Perez
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Roife
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura R Prakash
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan Irajizad
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alia Fleury
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sammy Ferri-Borgogno
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Departments of Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Fiehn
- UC Davis Genome Center - Metabolomics, University of California, Davis, 95616, CA, USA
| | - Anirban Maitra
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA; Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir M Hanash
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Wu HT, Lin YT, Chew SH, Wu KJ. Organ defects of the Usp7 mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation. Biomed J 2022; 46:122-133. [PMID: 35183794 PMCID: PMC10104958 DOI: 10.1016/j.bj.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. METHODS Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. RESULTS We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above. CONCLUSIONS K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shan Hwu Chew
- Cancer Research Malaysia, Outpatient Centre, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Lazebnik LB, Golovanova EV, Volel BA, Korochanskaya NV, Lyalyukova EA, Mokshina MV, Mekhtiev SN, Mekhtieva OA, Metsaeva ZV, Petelin DS, Simanenkov VI, Sitkin SI, Cheremushkin SV, Chernogorova MV, Khavkin АI. Functional gastrointestinal disorders. Overlap syndrome Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine and Gastroenterological Scientific Society of Russia. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:5-117. [DOI: 10.31146/1682-8658-ecg-192-8-5-117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - B. A. Volel
- I. M. Sechenov First Moscow Medical State University
| | - N. V. Korochanskaya
- Federal State Budgetary Educational Institution of Higher Education “Kuban State Medical University” Health Ministry of Russian Federation; State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - E. A. Lyalyukova
- FSBEI VO “Omsk State Medical University” of the Ministry of Health
| | - M. V. Mokshina
- Institute of therapy a. instrumental diagnostics of FSBEI VO “Pacifi c State Medical Unuversity”
| | | | | | - Z. V. Metsaeva
- Republican clinical hospital of Health Care Ministry of Northen Ossetia- Alania Republic
| | - D. S. Petelin
- I. M. Sechenov First Moscow Medical State University
| | - V. I. Simanenkov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. V. Cheremushkin
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - M. V. Chernogorova
- Moscow regional research and clinical Institute of M. F. Vladimirsky; GBUZ MO “Podolsk City Clinical Hospital No. 3”
| | - А. I. Khavkin
- FSBAI HPE “N. I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
| |
Collapse
|
24
|
Patel ZM, Hughes TR. Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biol 2021; 22:285. [PMID: 34620190 PMCID: PMC8496038 DOI: 10.1186/s13059-021-02503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mammalian genomes contain millions of putative regulatory sequences, which are delineated by binding of multiple transcription factors. The degree to which spacing and orientation constraints among transcription factor binding sites contribute to the recognition and identity of regulatory sequence is an unresolved but important question that impacts our understanding of genome function and evolution. Global mechanisms that underlie phenomena including the size of regulatory sequences, their uniqueness, and their evolutionary turnover remain poorly described. Results Here, we ask whether models incorporating different degrees of spacing and orientation constraints among transcription factor binding sites are broadly consistent with several global properties of regulatory sequence. These properties include length, sequence diversity, turnover rate, and dominance of specific TFs in regulatory site identity and cell type specification. Models with and without spacing and orientation constraints are generally consistent with all observed properties of regulatory sequence, and with regulatory sequences being fundamentally small (~ 1 nucleosome). Uniqueness of regulatory regions and their rapid evolutionary turnover are expected under all models examined. An intriguing issue we identify is that the complexity of eukaryotic regulatory sites must scale with the number of active transcription factors, in order to accomplish observed specificity. Conclusions Models of transcription factor binding with or without spacing and orientation constraints predict that regulatory sequences should be fundamentally short, unique, and turn over rapidly. We posit that the existence of master regulators may be, in part, a consequence of evolutionary pressure to limit the complexity and increase evolvability of regulatory sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02503-y.
Collapse
Affiliation(s)
- Zain M Patel
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
25
|
Diaz-Aragon R, Coard MC, Amirneni S, Faccioli L, Haep N, Malizio MR, Motomura T, Kocas-Kilicarslan ZN, Ostrowska A, Florentino RM, Frau C. Therapeutic Potential of HNF4α in End-stage Liver Disease. Organogenesis 2021; 17:126-135. [PMID: 35114889 DOI: 10.1080/15476278.2021.1994273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The prevalence of end-stage liver disease (ESLD) in the US is increasing at an alarming rate. It can be caused by several factors; however, one of the most common routes begins with nonalcoholic fatty liver disease (NAFLD). ESLD is diagnosed by the presence of irreversible damage to the liver. Currently, the only definitive treatment for ESLD is orthotopic liver transplantation (OLT). Nevertheless, OLT is limited due to a shortage of donor livers. Several promising alternative treatment options are under investigation. Researchers have focused on the effect of liver-enriched transcription factors (LETFs) on disease progression. Specifically, hepatocyte nuclear factor 4-alpha (HNF4α) has been reported to reset the liver transcription network and possibly play a role in the regression of fibrosis and cirrhosis. In this review, we describe the function of HNF4α, along with its regulation at various levels. In addition, we summarize the role of HNF4α in ESLD and its potential as a therapeutic target in the treatment of ESLD.
Collapse
Affiliation(s)
- Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael C Coard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lanuza Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle R Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Controversial roles of hepatocyte nuclear receptor 4 α on tumorigenesis. Oncol Lett 2021; 21:356. [PMID: 33747213 PMCID: PMC7968000 DOI: 10.3892/ol.2021.12617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear receptor 4 α (HNF4α) is known to be a master transcription regulator of gene expression in multiple biological processes, particularly in liver development and liver function. To date, the function of HNF4α in human cancers has been widely investigated; however, the critical roles of HNF4α in tumorigenesis remain unclear. Numerous controversies exist, even in studies from different research groups but on the same type of cancer. In the present review, the critical roles of HNF4α in tumorigenesis will be summarized and discussed. Furthermore, HNF4α expression profile and alterations will be examined by pan-cancer analysis through bioinformatics, in order to provide a better understanding of the functional roles of this gene in human cancers.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
27
|
Pradhan-Sundd T, Liu S, Singh S, Poddar M, Ko S, Bell A, Franks J, Huck I, Stolz D, Apte U, Ranganathan S, Nejak-Bowen K, Monga SP. Dual β-Catenin and γ-Catenin Loss in Hepatocytes Impacts Their Polarity through Altered Transforming Growth Factor-β and Hepatocyte Nuclear Factor 4α Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:885-901. [PMID: 33662348 DOI: 10.1016/j.ajpath.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood. Loss of β-catenin at adherens junctions is compensated by γ-catenin and dual loss of both catenins in double knockouts (DKOs) in mice liver leads to progressive intrahepatic cholestasis. However, the clinical relevance of this observation, and further phenotypic characterization of the phenotype, is important. Herein, simultaneous loss of β-catenin and γ-catenin was identified in a subset of liver samples from patients of progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. Hepatocytes in DKO mice exhibited defects in apical-basolateral localization of polarity proteins, impaired bile canaliculi formation, and loss of microvilli. Loss of polarity in DKO livers manifested as epithelial-mesenchymal transition, increased hepatocyte proliferation, and suppression of hepatocyte differentiation, which was associated with up-regulation of transforming growth factor-β signaling and repression of hepatocyte nuclear factor 4α expression and activity. In conclusion, concomitant loss of the two catenins in the liver may play a pathogenic role in subsets of cholangiopathies. The findings also support a previously unknown role of β-catenin and γ-catenin in the maintenance of hepatocyte polarity. Improved understanding of the regulation of hepatocyte polarization processes by β-catenin and γ-catenin may potentially benefit development of new therapies for cholestasis.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sungjin Ko
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian Huck
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Donna Stolz
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
28
|
Lv DD, Zhou LY, Tang H. Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: a promising insight into cancer treatment. Exp Mol Med 2021; 53:8-18. [PMID: 33462379 PMCID: PMC8080681 DOI: 10.1038/s12276-020-00551-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α), a member of the nuclear receptor superfamily, is described as a protein that binds to the promoters of specific genes. It controls the expression of functional genes and is also involved in the regulation of numerous cellular processes. A large number of studies have demonstrated that HNF4α is involved in many human malignancies. Abnormal expression of HNF4α is emerging as a critical factor in cancer cell proliferation, apoptosis, invasion, dedifferentiation, and metastasis. In this review, we present emerging insights into the roles of HNF4α in the occurrence, progression, and treatment of cancer; reveal various mechanisms of HNF4α in cancer (e.g., the Wnt/β-catenin, nuclear factor-κB, signal transducer and activator of transcription 3, and transforming growth factor β signaling pathways); and highlight potential clinical uses of HNF4α as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Duo-Duo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ling-Yun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
30
|
Martínez C, Lasitschka F, Thöni C, Wohlfarth C, Braun A, Granzow M, Röth R, Dizdar V, Rappold GA, Hausken T, Langeland N, Hanevik K, Niesler B. Comparative expression profiling in the intestine of patients with Giardia-induced postinfectious functional gastrointestinal disorders. Neurogastroenterol Motil 2020; 32:e13868. [PMID: 32391639 DOI: 10.1111/nmo.13868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND A Giardia outbreak in Bergen, Norway, caused postinfectious functional gastrointestinal disorders (PI-FGIDs). Despite the devastating effects of this outbreak, it presented a unique chance to investigate the implication on the dysregulation of genetic pathways in PI-FGID. METHODS We performed the first comparative expression profiling of miRNAs and their potential target genes in microdissected rectal biopsies from 20 Giardia-induced PI-FGID patients vs 18 healthy controls by nCounter analysis. Subsequently, candidates were validated on protein level by immunostaining. KEY RESULTS miRNA profiling on rectal biopsy samples from 5 diarrhea-predominant PI-IBS cases compared to 10 healthy controls revealed differential expression in the epithelial layer. The top five regulated miRNAs were implicated in GI disease, inflammatory response, and immunological disease. Subsequently, these miRNAs and 100 potential mRNA targets were examined in 20 PI-FGID cases and 18 healthy controls in both the mucosal epithelium and the lamina propria. Although deregulation of the selected miRNAs could not be verified in the larger sample set, mRNAs involved in barrier function were downregulated in the epithelium. Pro-inflammatory genes and genes implicated in epigenetic modifications were upregulated in the lamina propria. Immunostaining for selected candidates on 17 PI-FGID cases and 16 healthy controls revealed increased tryptase levels as well as a decreased and aberrant subcellular expression of occludin. CONCLUSIONS AND INFERENCES Genes relevant to immune and barrier function as well as stress response and epigenetic modulation are differentially expressed in PI-FGIDs and may contribute to disease manifestation.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Carolin Wohlfarth
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Alexander Braun
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ralph Röth
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Vernesa Dizdar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Trygve Hausken
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, National Advisory Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Genes in Irritable Bowel Syndrome (GENIEUR) Research Network Europe, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| |
Collapse
|
31
|
Xu Q, Li Y, Gao X, Kang K, Williams JG, Tong L, Liu J, Ji M, Deterding LJ, Tong X, Locasale JW, Li L, Shats I, Li X. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun 2020; 11:3978. [PMID: 32770044 PMCID: PMC7414133 DOI: 10.1038/s41467-020-17818-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/22/2020] [Indexed: 01/11/2023] Open
Abstract
Methionine restriction, a dietary regimen that protects against metabolic diseases and aging, represses cancer growth and improves cancer therapy. However, the response of different cancer cells to this nutritional manipulation is highly variable, and the molecular determinants of this heterogeneity remain poorly understood. Here we report that hepatocyte nuclear factor 4α (HNF4α) dictates the sensitivity of liver cancer to methionine restriction. We show that hepatic sulfur amino acid (SAA) metabolism is under transcriptional control of HNF4α. Knocking down HNF4α or SAA enzymes in HNF4α-positive epithelial liver cancer lines impairs SAA metabolism, increases resistance to methionine restriction or sorafenib, promotes epithelial-mesenchymal transition, and induces cell migration. Conversely, genetic or metabolic restoration of the transsulfuration pathway in SAA metabolism significantly alleviates the outcomes induced by HNF4α deficiency in liver cancer cells. Our study identifies HNF4α as a regulator of hepatic SAA metabolism that regulates the sensitivity of liver cancer to methionine restriction. The molecular determinants of differential responses of different cancer cells to methionine restriction are poorly understood. Here the authors show that hepatocyte nuclear factor 4α regulates sulfur amino acid metabolism and dictates the sensitivity of liver cancer to this dietary manipulation.
Collapse
Affiliation(s)
- Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kai Kang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Jason G Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
32
|
A negative reciprocal regulatory axis between cyclin D1 and HNF4α modulates cell cycle progression and metabolism in the liver. Proc Natl Acad Sci U S A 2020; 117:17177-17186. [PMID: 32631996 DOI: 10.1073/pnas.2002898117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.
Collapse
|
33
|
Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep 2020; 47:3053-3063. [PMID: 32086718 DOI: 10.1007/s11033-020-05318-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease that can involve any part of the gastrointestinal tract. It includes two main disorders: Crohn's disease (CD) and Ulcerative colitis (UC). CD and UC often share a similar clinical presentation; however, they affect distinct parts of the GI Tract with a different gut wall inflammatory extent. Ultimately, IBD seems to emanate from an uncontrollably continuous inflammatory process arising against the intestinal microbiome in a genetically susceptible individual. It is a multifactorial disease stemming from the impact of both environmental and genetic components on the intestinal microbiome. Furthermore, IBD genetics has gained a lot of attention. Around 200 loci were identified as imparting an increased risk for IBD. Few of them were heavily investigated and determined as highly linked to IBD. These genes, as discussed below, include NOD2, ATG16L1, IRGM, LRRK2, PTPN2, IL23R, Il10, Il10RA, Il10RB, CDH1 and HNF4α among others. Consequently, the incorporation of a genetic panel covering these key genes would markedly enhance the diagnosis and evaluation of IBD.
Collapse
Affiliation(s)
- Nour Younis
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rana Zarif
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon.
| |
Collapse
|
34
|
Cebola I. Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1480. [PMID: 32020788 DOI: 10.1002/wsbm.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) result from complex interactions between intrinsic and extrinsic factors, including genetics and exposure to obesogenic environments. These risk factors converge in aberrant gene expression patterns in the liver, which are underlined by altered cis-regulatory networks. In homeostasis and in disease states, liver cis-regulatory networks are established by coordinated action of liver-enriched transcription factors (TFs), which define enhancer landscapes, activating broad gene programs with spatiotemporal resolution. Recent advances in DNA sequencing have dramatically expanded our ability to map active transcripts, enhancers and TF cistromes, and to define the 3D chromatin topology that contains these elements. Deployment of these technologies has allowed investigation of the molecular processes that regulate liver development and metabolic homeostasis. Moreover, genomic studies of NAFLD patients and NAFLD models have demonstrated that the liver undergoes pervasive regulatory rewiring in NAFLD, which is reflected by aberrant gene expression profiles. We have therefore achieved an unprecedented level of detail in the understanding of liver cis-regulatory networks, particularly in physiological conditions. Future studies should aim to map active regulatory elements with added levels of resolution, addressing how the chromatin landscapes of different cell lineages contribute to and are altered in NAFLD and NAFLD-associated metabolic states. Such efforts would provide additional clues into the molecular factors that trigger this disease. This article is categorized under: Biological Mechanisms > Metabolism Biological Mechanisms > Regulatory Biology Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| |
Collapse
|
35
|
Park S, Ha YN, Dezhbord M, Lee AR, Park ES, Park YK, Won J, Kim NY, Choo SY, Shin JJ, Ahn CH, Kim KH. Suppression of Hepatocyte Nuclear Factor 4 α by Long-term Infection of Hepatitis B Virus Contributes to Tumor Cell Proliferation. Int J Mol Sci 2020; 21:ijms21030948. [PMID: 32023898 PMCID: PMC7037729 DOI: 10.3390/ijms21030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major factor in the development of various liver diseases such as hepatocellular carcinoma (HCC). Among HBV encoded proteins, HBV X protein (HBx) is known to play a key role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor which is critical for hepatocyte differentiation. However, the expression level as well as its regulatory mechanism in HBV infection have yet to be clarified. Here, we observed the suppression of HNF4α in cells which stably express HBV whole genome or HBx protein alone, while transient transfection of HBV replicon or HBx plasmid had no effect on the HNF4α level. Importantly, in the stable HBV- or HBx-expressing hepatocytes, the downregulated level of HNF4α was restored by inhibiting the ERK signaling pathway. Our data show that HNF4α was suppressed during long-term HBV infection in cultured HepG2-NTCP cells as well as in a mouse model following hydrodynamic injection of pAAV-HBV or in mice intravenously infected with rAAV-HBV. Importantly, HNF4α downregulation increased cell proliferation, which contributed to the formation and development of tumor in xenograft nude mice. The data presented here provide proof of the effect of HBV infection in manipulating the HNF4α regulatory pathway in HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kyun-Hwan Kim
- Correspondence: ; Tel.: +82-2-2030-7833; Fax: +82-2-2049-6192
| |
Collapse
|
36
|
Igarashi H, Uemura M, Hiramatsu R, Hiramatsu R, Segami S, Pattarapanawan M, Hirate Y, Yoshimura Y, Hashimoto H, Higashiyama H, Sumitomo H, Kurohmaru M, Saijoh Y, Suemizu H, Kanai-Azuma M, Kanai Y. Sox17 is essential for proper formation of the marginal zone of extraembryonic endoderm adjacent to a developing mouse placental disk. Biol Reprod 2019; 99:578-589. [PMID: 29635272 DOI: 10.1093/biolre/ioy079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 02/01/2023] Open
Abstract
In mouse conceptus, two yolk-sac membranes, the parietal endoderm (PE) and visceral endoderm (VE), are involved in protecting and nourishing early-somite-stage embryos prior to the establishment of placental circulation. Both PE and VE membranes are tightly anchored to the marginal edge of the developing placental disk, in which the extraembryonic endoderm (marginal zone endoderm: ME) shows the typical flat epithelial morphology intermediate between those of PE and VE in vivo. However, the molecular characteristics and functions of the ME in mouse placentation remain unclear. Here, we show that SOX17, not SOX7, is continuously expressed in the ME cells, whereas both SOX17 and SOX7 are coexpressed in PE cells, by at least 10.5 days postconception. The Sox17-null conceptus, but not the Sox7-null one, showed the ectopic appearance of squamous VE-like epithelial cells in the presumptive ME region, together with reduced cell density and aberrant morphology of PE cells. Such aberrant ME formation in the Sox17-null extraembryonic endoderm was not rescued by the chimeric embryo replaced with the wild-type gut endoderm by the injection of wild-type ES cells into the Sox17-null blastocyst, suggesting the cell autonomous defects in the extraembryonic endoderm of Sox17-null concepti. These findings provide direct evidence of the crucial roles of SOX17 in proper formation and maintenance of the ME region, highlighting a novel entry point to understand the in vivo VE-to-PE transition in the marginal edge of developing placenta.
Collapse
Affiliation(s)
- Hitomi Igarashi
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuto Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saki Segami
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Yoshikazu Hirate
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yuki Yoshimura
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Haruo Hashimoto
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Hiroki Higashiyama
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Sumitomo
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, The University of Utah, Salt Lake City, Utah, USA
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Al-Aama J, Mahdi HBA, Salama MA, Bakur K, Alhozali A, Mosli H, Bahijri SM, Bahieldin A, Elango R, Willmitzer L, Edris S. Rapid detection of type II diabetes mellitus in Saudi patients via simultaneous screening of multiple SNPs. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1664321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jumana Al-Aama
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadiah B. Al Mahdi
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Salama
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadija Bakur
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amani Alhozali
- Department of Endocrinology and Metabolism, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Mosli
- Department of Endocrinology and Metabolism, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suhad M. Bahijri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ramu Elango
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lothar Willmitzer
- Molecular Physiology, Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Sherif Edris
- Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Gao Y, Yan Y, Guo J, Zhang Q, Bi D, Wang F, Chang Z, Lu L, Yao X, Wei Q. HNF‑4α downregulation promotes tumor migration and invasion by regulating E‑cadherin in renal cell carcinoma. Oncol Rep 2019; 42:1066-1074. [PMID: 31322246 PMCID: PMC6667891 DOI: 10.3892/or.2019.7214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant disease of the kidneys in adults. Patients with metastatic RCC have an unusually poor prognosis and exhibit resistance to all current therapies. Therefore, it is necessary to explore novel molecules involved in the progression of RCC and to identify effective therapeutic targets. Hepatocyte nuclear factor‑4α (HNF‑4α) serves an important role in hepatocyte differentiation and is involved in the progression of liver cancer; however, the functional role of HNF‑4α has not been well established in RCC. The present study reported that HNF‑4α expression was markedly downregulated in RCC tissue samples compared with in normal controls by immunohistochemistry and RNA‑sequencing analysis. Statistical analysis demonstrated that HNF‑4α downregulation was significantly associated with tumor stage, recurrence, metastasis and poor prognosis in patients with RCC. Furthermore, wound‑healing and Transwell assays revealed that downregulation of HNF‑4α promoted cell migration and invasion by transcriptionally regulating E‑cadherin in RCC. Finally, a positive correlation was revealed between HNF‑4α expression and E‑cadherin expression, and patients with low E‑cadherin expression also had a poor prognosis. These findings may provide novel insights into the biological effects of HNF‑4α and lay the foundation for the discovery of molecular therapeutic targets in RCC.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/secondary
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jing Guo
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qian Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Fen Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
39
|
Wang Y, Tatham MH, Schmidt-Heck W, Swann C, Singh-Dolt K, Meseguer-Ripolles J, Lucendo-Villarin B, Kunath T, Rudd TR, Smith AJH, Hengstler JG, Godoy P, Hay RT, Hay DC. Multiomics Analyses of HNF4α Protein Domain Function during Human Pluripotent Stem Cell Differentiation. iScience 2019; 16:206-217. [PMID: 31185456 PMCID: PMC6556878 DOI: 10.1016/j.isci.2019.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
During mammalian development, liver differentiation is driven by signals that converge on multiple transcription factor networks. The hepatocyte nuclear factor signaling network is known to be essential for hepatocyte specification and maintenance. In this study, we have generated deletion and point mutants of hepatocyte nuclear factor-4alpha (HNF4α) to precisely evaluate the function of protein domains during hepatocyte specification from human pluripotent stem cells. We demonstrate that nuclear HNF4α is essential for hepatic progenitor specification, and the introduction of point mutations in HNF4α's Small Ubiquitin-like Modifier (SUMO) consensus motif leads to disrupted hepatocyte differentiation. Taking a multiomics approach, we identified key deficiencies in cell biology, which included dysfunctional metabolism, substrate adhesion, tricarboxylic acid cycle flux, microRNA transport, and mRNA processing. In summary, the combination of genome editing and multiomics analyses has provided valuable insight into the diverse functions of HNF4α during pluripotent stem cell entry into the hepatic lineage and during hepatocellular differentiation.
Collapse
Affiliation(s)
- Yu Wang
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knoll Institute, Jena, Germany
| | - Carolyn Swann
- National Institute for Biological Standards and Control (MHRA), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Karamjit Singh-Dolt
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Jose Meseguer-Ripolles
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Tilo Kunath
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Timothy R Rudd
- National Institute for Biological Standards and Control (MHRA), Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Andrew J H Smith
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, Scotland EH16 4UU, UK.
| |
Collapse
|
40
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
41
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Chang WH, Forde D, Lai AG. Dual prognostic role of 2-oxoglutarate-dependent oxygenases in ten cancer types: implications for cell cycle regulation and cell adhesion maintenance. Cancer Commun (Lond) 2019; 39:23. [PMID: 31036064 PMCID: PMC6489267 DOI: 10.1186/s40880-019-0369-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tumor hypoxia is associated with metastasis and resistance to chemotherapy and radiotherapy. Genes involved in oxygen-sensing are clinically relevant and have significant implications for prognosis. In this study, we examined the pan-cancer prognostic significance of oxygen-sensing genes from the 2-oxoglutarate-dependent oxygenase family. Methods A multi-cohort, retrospective study of transcriptional profiles of 20,752 samples of 25 types of cancer was performed to identify pan-cancer prognostic signatures of 2-oxoglutarate-dependent oxygenase gene family (a family of oxygen-dependent enzymes consisting of 61 genes). We defined minimal prognostic gene sets using three independent pancreatic cancer cohorts (n = 681). We identified two signatures, each consisting of 5 genes. The ability of the signatures in predicting survival was tested using Cox regression and receiver operating characteristic (ROC) curve analyses. Results Signature 1 (KDM8, KDM6B, P4HTM, ALKBH4, ALKBH7) and signature 2 (KDM3A, P4HA1, ASPH, PLOD1, PLOD2) were associated with good and poor prognosis. Signature 1 was prognostic in 8 cohorts representing 6 cancer types (n = 2627): bladder urothelial carcinoma (P = 0.039), renal papillary cell carcinoma (P = 0.013), liver cancer (P = 0.033 and P = 0.025), lung adenocarcinoma (P = 0.014), pancreatic adenocarcinoma (P < 0.001 and P = 0.040), and uterine corpus endometrial carcinoma (P < 0.001). Signature 2 was prognostic in 12 cohorts representing 9 cancer types (n = 4134): bladder urothelial carcinoma (P = 0.039), cervical squamous cell carcinoma and endocervical adenocarcinoma (P = 0.035), head and neck squamous cell carcinoma (P = 0.038), renal clear cell carcinoma (P = 0.012), renal papillary cell carcinoma (P = 0.002), liver cancer (P < 0.001, P < 0.001), lung adenocarcinoma (P = 0.011), pancreatic adenocarcinoma (P = 0.002, P = 0.018, P < 0.001), and gastric adenocarcinoma (P = 0.004). Multivariate Cox regression confirmed independent clinical relevance of the signatures in these cancers. ROC curve analyses confirmed superior performance of the signatures to current tumor staging benchmarks. KDM8 was a potential tumor suppressor down-regulated in liver and pancreatic cancers and an independent prognostic factor. KDM8 expression was negatively correlated with that of cell cycle regulators. Low KDM8 expression in tumors was associated with loss of cell adhesion phenotype through HNF4A signaling. Conclusion Two pan-cancer prognostic signatures of oxygen-sensing genes were identified. These genes can be used for risk stratification in ten diverse cancer types to reveal aggressive tumor subtypes. Electronic supplementary material The online version of this article (10.1186/s40880-019-0369-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX37FZ, UK
| | - Donall Forde
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX37FZ, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX37FZ, UK.
| |
Collapse
|
43
|
Fine Tuning of Hepatocyte Differentiation from Human Embryonic Stem Cells: Growth Factor vs. Small Molecule-Based Approaches. Stem Cells Int 2019; 2019:5968236. [PMID: 30805010 PMCID: PMC6362496 DOI: 10.1155/2019/5968236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) are being utilized in diverse areas of studies such as development and disease modeling, cell replacement therapy, or drug toxicity testing because of their potential to be differentiated into any cell type in the body. The directed differentiation of hESCs into hepatocytes could provide an invaluable source of liver cells for various liver-based applications. Therefore, several protocols have been established in the past for hESC-hepatocyte differentiation based on the knowledge of signaling pathways and growth factors involved in different stages of embryonic hepatogenesis. Although successful derivation of hepatocytes has been achieved through these protocols, the efficiency is not always ideal. Herein, we have tested several combinations of published protocols, for example, growth factor vs. small molecule and different time durations of treatment for definitive endoderm (DE) induction and further hepatocyte differentiation to develop an efficient DE induction and hepatocyte differentiation in a highly reproducible manner based on the stage-specific marker expression and functional analysis.
Collapse
|
44
|
HNF4A Regulates the Formation of Hepatic Progenitor Cells from Human iPSC-Derived Endoderm by Facilitating Efficient Recruitment of RNA Pol II. Genes (Basel) 2018; 10:genes10010021. [PMID: 30597922 PMCID: PMC6356828 DOI: 10.3390/genes10010021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Elucidating the molecular basis of cell differentiation will advance our understanding of organ development and disease. We have previously established a protocol that efficiently produces cells with hepatocyte characteristics from human induced pluripotent stem cells. We previously used this cell differentiation model to identify the transcription factor hepatocyte nuclear factor 4 α (HNF4A) as being essential during the transition of the endoderm to a hepatic fate. Here, we sought to define the molecular mechanisms through which HNF4A controls this process. By combining HNF4A chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) analyses at the onset of hepatic progenitor cell formation with transcriptome data collected during early stages of differentiation, we identified genes whose expression is directly dependent upon HNF4A. By examining the dynamic changes that occur at the promoters of these HNF4A targets we reveal that HNF4A is essential for recruitment of RNA polymerase (RNA pol) II to genes that are characteristically expressed as the hepatic progenitors differentiate from the endoderm.
Collapse
|
45
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
46
|
Fekry B, Ribas-Latre A, Baumgartner C, Deans JR, Kwok C, Patel P, Fu L, Berdeaux R, Sun K, Kolonin MG, Wang SH, Yoo SH, Sladek FM, Eckel-Mahan K. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat Commun 2018; 9:4349. [PMID: 30341289 PMCID: PMC6195513 DOI: 10.1038/s41467-018-06648-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of liver-specific gene expression with potent tumor suppressor activity, yet many liver tumors express HNF4α. This study reveals that P1-HNF4α, the predominant isoform expressed in the adult liver, inhibits expression of tumor promoting genes in a circadian manner. In contrast, an additional isoform of HNF4α, driven by an alternative promoter (P2-HNF4α), is induced in HNF4α-positive human hepatocellular carcinoma (HCC). P2-HNF4α represses the circadian clock gene ARNTL (BMAL1), which is robustly expressed in healthy hepatocytes, and causes nuclear to cytoplasmic re-localization of P1-HNF4α. We reveal mechanisms underlying the incompatibility of BMAL1 and P2-HNF4α in HCC, and demonstrate that forced expression of BMAL1 in HNF4α-positive HCC prevents the growth of tumors in vivo. These data suggest that manipulation of the circadian clock in HNF4α-positive HCC could be a tractable strategy to inhibit tumor growth and progression in the liver.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Corrine Baumgartner
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Jonathan R Deans
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Christopher Kwok
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Pooja Patel
- Department of Pediatrics, Molecular and Cellular Biology, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Loning Fu
- Department of Pediatrics, Molecular and Cellular Biology, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rebecca Berdeaux
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Sidney H Wang
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA.
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center (UT Health), Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
48
|
Godini R, Fallahi H. Dynamics changes in the transcription factors during early human embryonic development. J Cell Physiol 2018; 234:6489-6502. [PMID: 30246428 DOI: 10.1002/jcp.27386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
Development of an embryo from a single cell, zygote, to multicellular morulae requires activation of hundreds of genes that were mostly inactivated before fertilization. Inevitably, transcription factors (TFs) would be involved in modulating the drastic changes in gene expression pattern observed at all preimplantation stages. Despite many ongoing efforts to uncover the role of TFs at the early stages of embryogenesis, still many unanswered questions remained that need to be explored. This could be done by studying the expression pattern of multiple genes obtained by high-throughput techniques. In the current study, we have identified a set of TFs that are involved in the progression of the zygote to blastocyst. Global gene expression patterns of consecutive stages were compared and differences documented. Expectedly, at the early stages of development, only a few sets of TFs differentially expressed while at the later stages hundreds of TFs appear to be upregulated. Interestingly, the expression levels of many TFs show an oscillation pattern during development indicating a need for their precise expression. A significant shift in gene expression was observed during the transition from four- to eight-cell stages, an indication of zygote genome activation. Additionally, we have found 11 TFs that were common in all stages including ATF3, EN1, IFI16, IKZF3, KLF3, NPAS3, NR2F2, RUNX1, SOX2, ZBTB20, and ZSCAN4. However, their expression patterns did not follow similar trends in the steps studied. Besides, our findings showed that both upregulation and active downregulation of the TFs expression is required for successful embryogenesis. Furthermore, our detailed network analysis identified the hub TFs for each transition. We found that HNF4A, FOXA2, and EP300 are the three most important elements for the first division of zygote.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
49
|
The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death Differ 2018; 26:890-901. [PMID: 30154449 PMCID: PMC6461983 DOI: 10.1038/s41418-018-0170-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity.
Collapse
|
50
|
The fate of hepatocyte cell line derived from a liver injury model with long-term in vitro passage. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|