1
|
Ananth MR, Gardus JD, Huang C, Palekar N, Slifstein M, Zaborszky L, Parsey RV, Talmage DA, DeLorenzo C, Role LW. A central role for acetylcholine in entorhinal cortex function and dysfunction with age in humans and mice. Cell Rep 2025; 44:115249. [PMID: 39891909 DOI: 10.1016/j.celrep.2025.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Structural and functional changes in the entorhinal cortex (EC) are among the earliest signs of cognitive aging. Here, we ask whether a compromised cholinergic system influences early EC impairments and plays a primary role in EC cognition. We evaluated the relationship between loss of integrity of cholinergic inputs to the EC and cognitive deficits in otherwise healthy humans and mice. Using in vivo imaging (PET/MRI) in older humans and high-resolution imaging in wild-type mice and mice with genetic susceptibility to Alzheimer's disease pathology, we establish that loss of cholinergic input to the EC is, in fact, an early feature in cognitive aging. Through mechanistic studies in mice, we find a central role for EC-projecting cholinergic neurons in the expression of EC-related behaviors. Our data demonstrate that alterations to the cholinergic EC are an early, conserved feature of cognitive aging across species and may serve as an early predictor of cognitive status.
Collapse
Affiliation(s)
- Mala R Ananth
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - John D Gardus
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, New Newark, NJ, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David A Talmage
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Lorna W Role
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Winter S, Mahzarnia A, Anderson RJ, Han ZY, Tremblay J, Stout JA, Moon HS, Marcellino D, Dunson DB, Badea A. Brain network fingerprints of Alzheimer's disease risk factors in mouse models with humanized APOE alleles. Magn Reson Imaging 2024; 114:110251. [PMID: 39362319 PMCID: PMC11514054 DOI: 10.1016/j.mri.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic and modifiable risk factors influence disease susceptibility are under intense investigation, with APOE being the major genetic risk factor for late onset AD. Yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear. To model multiple risk factors, including APOE genotype, age, sex, diet, and immunity we used a cross sectional design, leveraging mice expressing human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. We used network topological and GraphClass analyses of brain connectomes derived from accelerated diffusion-weighted MRI to assess the global and local impact of risk factors, in the absence of AD pathology. Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles. Sparse Canonical Correlation Analysis (CCA) including spatial memory as a risk factor resulted in a network comprising 80 edges, showing significant overlap with risk-associated networks from GraphClass. The largest overlaps were observed with networks impacted by diet (47 edges), immunity (39 edges), APOE3 vs 4 (26 edges), sex (23 edges), and age (19 edges), the resulting networks supporting the use of sensory cues in spatial memory retrieval. These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk.
Collapse
Affiliation(s)
- Steven Winter
- Statistical Science, Trinity School, Duke University, Durham, NC 27710, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zay Yar Han
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica Tremblay
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jacques A Stout
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke UNC Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hae Sol Moon
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Daniel Marcellino
- Department of Medical and Translational Biology, Umeå University, Umeå 901 87, Sweden; Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund 22184, Sweden
| | - David B Dunson
- Statistical Science, Trinity School, Duke University, Durham, NC 27710, USA
| | - Alexandra Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke UNC Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Connell E, Le Gall G, McArthur S, Lang L, Breeze B, Pontifex MG, Sami S, Pourtau L, Gaudout D, Müller M, Vauzour D. (Poly)phenol-rich grape and blueberry extract prevents LPS-induced disruption of the blood-brain barrier through the modulation of the gut microbiota-derived uremic toxins. Neurochem Int 2024; 180:105878. [PMID: 39389472 DOI: 10.1016/j.neuint.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The dynamic protective capacity of (poly)phenols, attributed to their potent antioxidant and anti-inflammatory properties, has been consistently reported. Due to their capacity to alter gut microbiome composition, further actions of (poly)phenols may be exerted through the modulation of the microbiota-gut-brain axis. However, the underlying mechanisms remain poorly defined. Here, we investigated the protective effect of a (poly)phenol-rich grape and blueberry extract (Memophenol™), on the microbiota-gut-brain axis in a model of chronic low-grade inflammation (0.5 mg/kg/wk lipopolysaccharide (LPS) for 8 weeks). Dietary supplementation of male C57BL/6 J mice with Memophenol™ prevented LPS-induced increases in the microbe-derived uremia-associated molecules, indoxyl sulfate (IS) and trimethylamine N-oxide (TMAO). These changes coincided with shifts in gut microbiome composition, notably Romboutsia and Desulfovibrio abundance, respectively. In the brain, LPS exposure disrupted the marginal localisation of the endothelial tight junction ZO-1 and downregulated ZO-1 mRNA expression to an extent closely correlated with TMAO and IS levels; a process prevented by Memophenol™ intake. Hippocampal mRNA sequencing analysis revealed significant downregulation in regulatory pathways of neurodegeneration with Memophenol™ intake. These findings may indicate a novel protective role of the (poly)phenol-rich grape and blueberry extract on the endothelial tight junction component ZO-1, acting through modulation of gut microbial metabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, London, E1 2AT, United Kingdom
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
4
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
5
|
Connell E, Blokker B, Kellingray L, Le Gall G, Philo M, Pontifex MG, Narbad A, Müller M, Vauzour D. Refined diet consumption increases neuroinflammatory signalling through bile acid dysmetabolism. Nutr Neurosci 2024; 27:1088-1101. [PMID: 38170169 DOI: 10.1080/1028415x.2023.2301165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over recent decades, dietary patterns have changed significantly due to the increasing availability of convenient, ultra-processed refined foods. Refined foods are commonly depleted of key bioactive compounds, which have been associated with several deleterious health conditions. As the gut microbiome can influence the brain through a bidirectional communication system known as the 'microbiota-gut-brain axis', the consumption of refined foods has the potential to affect cognitive health. In this study, multi-omics approaches were employed to assess the effect of a refined diet on the microbiota-gut-brain axis, with a particular focus on bile acid metabolism. Mice maintained on a refined low-fat diet (rLFD), consisting of high sucrose, processed carbohydrates and low fibre content, for eight weeks displayed significant gut microbial dysbiosis, as indicated by diminished alpha diversity metrics (p < 0.05) and altered beta diversity (p < 0.05) when compared to mice receiving a chow diet. Changes in gut microbiota composition paralleled modulation of the metabolome, including a significant reduction in short-chain fatty acids (acetate, propionate and n-butyrate; p < 0.001) and alterations in bile acid concentrations. Interestingly, the rLFD led to dysregulated bile acid concentrations across both the colon (p < 0.05) and the brain (p < 0.05) which coincided with altered neuroinflammatory gene expression. In particular, the concentration of TCA, TDCA and T-α-MCA was inversely correlated with the expression of NF-κB1, a key transcription factor in neuroinflammation. Overall, our results suggest a novel link between a refined low-fat diet and detrimental neuronal processes, likely in part through modulation of the microbiota-gut-brain axis and bile acid dysmetabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Britt Blokker
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lee Kellingray
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Mark Philo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Winter S, Mahzarnia A, Anderson RJ, Han ZY, Tremblay J, Stout J, Moon HS, Marcellino D, Dunson DB, Badea A. APOE, Immune Factors, Sex, and Diet Interact to Shape Brain Networks in Mouse Models of Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560954. [PMID: 39005377 PMCID: PMC11244909 DOI: 10.1101/2023.10.04.560954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic, fixed and modifiable risk factors influence susceptibility to AD are under intense investigation, yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear. To model multiple risk factors including APOE genotype, age, sex, diet, and immunity we leveraged mice expressing the human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. Employing graph analyses of brain connectomes derived from accelerated diffusion-weighted MRI, we assessed the global and local impact of risk factors in the absence of AD pathology. Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk. Significance Statement Current interventions for Alzheimer's disease (AD) do not provide a cure, and are delivered years after neuropathological onset. Addressing the impact of risk factors on brain networks holds promises for early detection, prevention, and revealing putative therapeutic targets at preclinical stages. We utilized six mouse models to investigate the impact of factors, including APOE genotype, age, sex, immunity, and diet, on brain networks. Large structural connectomes were derived from high resolution compressed sensing diffusion MRI. A highly parallelized graph classification identified subnetworks associated with unique risk factors, revealing their network fingerprints, and a common network composed of 63 connections with shared vulnerability to all risk factors. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles.
Collapse
Affiliation(s)
- Steven Winter
- Statistical Science, Trinity School, Duke University, Durham, NC, 27710 USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA
| | - Zay Yar Han
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA
| | - Jessica Tremblay
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA
| | - Jacques Stout
- Duke UNC Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hae Sol Moon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Daniel Marcellino
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, 22184, Sweden
| | - David B. Dunson
- Statistical Science, Trinity School, Duke University, Durham, NC, 27710 USA
| | - Alexandra Badea
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA
- Duke UNC Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| |
Collapse
|
7
|
Ananth MR, Gardus JD, Huang C, Palekar N, Slifstein M, Zaborszky L, Parsey RV, Talmage DA, DeLorenzo C, Role LW. Loss of cholinergic input to the entorhinal cortex is an early indicator of cognitive impairment in natural aging of humans and mice. RESEARCH SQUARE 2024:rs.3.rs-3851086. [PMID: 38260541 PMCID: PMC10802688 DOI: 10.21203/rs.3.rs-3851086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In a series of translational experiments using fully quantitative positron emission tomography (PET) imaging with a new tracer specific for the vesicular acetylcholine transporter ([18F]VAT) in vivo in humans, and genetically targeted cholinergic markers in mice, we evaluated whether changes to the cholinergic system were an early feature of age-related cognitive decline. We found that deficits in cholinergic innervation of the entorhinal cortex (EC) and decline in performance on behavioral tasks engaging the EC are, strikingly, early features of the aging process. In human studies, we recruited older adult volunteers that were physically healthy and without prior clinical diagnosis of cognitive impairment. Using [18F]VAT PET imaging, we demonstrate that there is measurable loss of cholinergic inputs to the EC that can serve as an early signature of decline in EC cognitive performance. These deficits are specific to the cholinergic circuit between the medial septum and vertical limb of the diagonal band (MS/vDB; CH1/2) to the EC. Using diffusion imaging, we further demonstrate impaired structural connectivity in the tracts between the MS/vDB and EC in older adults with mild cognitive impairment. Experiments in mouse, designed to parallel and extend upon the human studies, used high resolution imaging to evaluate cholinergic terminal density and immediate early gene (IEG) activity of EC neurons in healthy aging mice and in mice with genetic susceptibility to accelerated accumulation amyloid beta plaques and hyperphosphorylated mouse tau. Across species and aging conditions, we find that the integrity of cholinergic projections to the EC directly correlates with the extent of EC activation and with performance on EC-related object recognition memory tasks. Silencing EC-projecting cholinergic neurons in young, healthy mice during the object-location memory task impairs object recognition performance, mimicking aging. Taken together we identify a role for acetylcholine in normal EC function and establish loss of cholinergic input to the EC as an early, conserved feature of age-related cognitive decline in both humans and rodents.
Collapse
|
8
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
10
|
Investigating the chemical profile of Rheum lhasaense and its main ingredient of piceatannol-3'-O-β-D-glucopyranoside on ameliorating cognitive impairment. Biomed Pharmacother 2023; 160:114394. [PMID: 36774724 DOI: 10.1016/j.biopha.2023.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Rheum lhasaense A. J. Li et P. K. Hsiao, a stout herb plant from the Polygonaceae, is a typical Tibetan folk herb with heat-clearing and detoxifying effects, but does not have the typical laxative effect compared with other rhubarb plants. Nevertheless, its chemical composition and pharmacological activities still lack in-depth research. The present study endeavored to analyze the possible phytochemical constituents in R. lhasaense and explore the main compound piceatannol-3'-O-β-D-glucopyranoside (PG) effect on cognitive impairment and its underlying mechanism. The chemical profile of R. lhasaense discovered 46 compounds, including 27 stilbenoids and 13 gallotannins using UPLC-Q-TOF-MS/MS. The UPLC determined the contents of 6 main stilbenoids, among which the content of PG was the highest, up to 61.06 mg/g. Moreover, behavioral tests showed that PG (40 mg/kg and 160 mg/kg) administration markedly ameliorated memory impairments of scopolamine-induced mice. Biochemical parameters showed that PG treatment alleviated the levels of Ach, AchE, and inflammatory factors while elevating the levels of antioxidants in mice. In addition, network pharmacology was performed to reveal PG exert an mild cognitive impairment effect by participating in neurodegenerative disease pathways, proliferation and apoptosis-, and inflammation-related pathways. Eventually, the results of molecular docking and the qRT-PCR revealed that PG down-regulated the mRNA expressions of MMP3, MMP9 and BACE1 in cognitive impairment mice brain tissue. In conclusion, our results demonstrated that PG mitigated scopolamine-induced cognitive dysfunction in mice by targeting the BACE1-MMP3/9 pathway, and PG might be a promising mild AD drug candidate.
Collapse
|
11
|
Kim J, Han JY, Lee Y, Kim K, Choi YP, Chae S, Hoe HS. Genetic deletion of nitric oxide synthase 2 ameliorates Parkinson's disease pathology and neuroinflammation in a transgenic mouse model of synucleinopathy. Mol Brain 2023; 16:7. [PMID: 36647152 PMCID: PMC9841612 DOI: 10.1186/s13041-023-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023] Open
Abstract
Studies of mouse models of Alzheimer's disease (AD) have demonstrated that nitric oxide synthase 2 (NOS2) is involved in AD pathology. However, the effects of NOS2 on the pathology of Parkinson's disease (PD) are not well studied. To address this gap, we examined the impact of NOS2 on disease-associated phenotypes in a mouse model of PD. Transgenic mice carrying the A53T mutation of α-synuclein (SynA53T) and newly generated double transgenic mice with deletion of NOS2 (SynA53T/NOS2-/-) were used. Compared with SynA53T mice, the loss of nos2 decreased α-synuclein phosphorylation at serine 129 and reduced α-synuclein-induced microglial and astrocyte activation in SynA53T/NOS-/- mice. Additionally, neuroinflammation-related gene clusters in the deep mesencephalic nucleus (DpMe) were altered in SynA53T/NOS-/- mice compared with SynA53T mice. Taken together, our results suggest that deletion of nos2 alleviates α-synuclein pathology and α-synuclein-associated neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- grid.452628.f0000 0004 5905 0571Department of Neurodegenerative Diseases Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Jung-Youn Han
- grid.452628.f0000 0004 5905 0571Laboratory Animal Center, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Yujeong Lee
- grid.452628.f0000 0004 5905 0571Cognitive Science Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Kipom Kim
- grid.452628.f0000 0004 5905 0571Research Strategy Office, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Young Pyo Choi
- grid.452628.f0000 0004 5905 0571Laboratory Animal Center, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Sehyun Chae
- grid.452628.f0000 0004 5905 0571Neurovescular Unit Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea
| | - Hyang-Sook Hoe
- grid.452628.f0000 0004 5905 0571Department of Neurodegenerative Diseases Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-Ro, Dong-Gu, Daegu, 41062 South Korea ,grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988 South Korea
| |
Collapse
|
12
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
13
|
Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022; 10:biomedicines10081772. [PMID: 35892672 PMCID: PMC9331517 DOI: 10.3390/biomedicines10081772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
Collapse
|
14
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Jo YN, Park YJ, Cho JY, Cho YJ, Chae SH, Lee MR, Oh JS. ROCK and PDE-5 Inhibitors for the Treatment of Dementia: Literature Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061348. [PMID: 35740369 PMCID: PMC9219677 DOI: 10.3390/biomedicines10061348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Dementia is a disease in which memory, thought, and behavior-related disorders progress gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to treat as its incidence continues to increase worldwide. Many studies have been performed concerning the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-5) are attracting attention as pharmacological treatments to improve the symptoms. This review discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the results of the animal behavior analysis experiments utilizing the Morris water maze were compared through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive function. According to the selection criteria, 997 publications on ROCK and 1772 publications on PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed good improvement in cognitive function tests, and what is expected of the synergy effect of the two drugs was confirmed in this review.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yu Na Jo
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yu Jin Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Jae Young Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yoo Jin Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Su Hyun Chae
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
15
|
Cucos CA, Milanesi E, Dobre M, Musat IA, Manda G, Cuadrado A. Altered Blood and Brain Expression of Inflammation and Redox Genes in Alzheimer's Disease, Common to APP V717I × TAU P301L Mice and Patients. Int J Mol Sci 2022; 23:ijms23105799. [PMID: 35628609 PMCID: PMC9144576 DOI: 10.3390/ijms23105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Despite intensive research, the pathophysiology of Alzheimer’s disease (AD) is still not fully understood, and currently there are no effective treatments. Therefore, there is an unmet need for reliable biomarkers and animal models of AD to develop innovative therapeutic strategies addressing early pathologic events such as neuroinflammation and redox disturbances. The study aims to identify inflammatory and redox dysregulations in the context of AD-specific neuronal cell death and DNA damage, using the APPV717I× TAUP301L (AT) mouse model of AD. The expression of 84 inflammatory and 84 redox genes in the hippocampus and peripheral blood of double transgenic AT mice was evaluated against age-matched controls. A distinctive gene expression profile in the hippocampus and the blood of AT mice was identified, addressing DNA damage, apoptosis and thrombosis, complemented by inflammatory factors and receptors, along with ROS producers and antioxidants. Gene expression dysregulations that are common to AT mice and AD patients guided the final selection of candidate biomarkers. The identified inflammation and redox genes, common to AD patients and AT mice, might be valuable candidate biomarkers for preclinical drug development that could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Catalina Anca Cucos
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Ioana Andreea Musat
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Gina Manda
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Correspondence: (G.M.); (A.C.)
| | - Antonio Cuadrado
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Correspondence: (G.M.); (A.C.)
| |
Collapse
|
16
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
17
|
Phongpreecha T, Gajera CR, Liu CC, Vijayaragavan K, Chang AL, Becker M, Fallahzadeh R, Fernandez R, Postupna N, Sherfield E, Tebaykin D, Latimer C, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Poston KL, Keene CD, Angelo M, Bendall SC, Aghaeepour N, Montine TJ. Single-synapse analyses of Alzheimer's disease implicate pathologic tau, DJ1, CD47, and ApoE. SCIENCE ADVANCES 2021; 7:eabk0473. [PMID: 34910503 PMCID: PMC8673771 DOI: 10.1126/sciadv.abk0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar. Although not detected in human synapses, Aβ was in PS/APP mice single-synapse events. Clustering and pattern identification of human synapses showed expected disease-specific differences, like increased hippocampal pathologic tau in AD and reduced caudate dopamine transporter in LBD, and revealed previously unidentified findings including increased hippocampal CD47 and lowered DJ1 in AD and higher ApoE in AD with dementia. Our results were independently supported by multiplex ion beam imaging of intact tissue. This highlights the higher depth and breadth of insight on neurodegenerative diseases obtainable through SynTOF.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Candace C. Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Alan L. Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Caitlin Latimer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine–Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Edward J. Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, USA
- Corresponding author.
| |
Collapse
|
18
|
Turner DA. Contrasting Metabolic Insufficiency in Aging and Dementia. Aging Dis 2021; 12:1081-1096. [PMID: 34221551 PMCID: PMC8219502 DOI: 10.14336/ad.2021.0104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic insufficiency and neuronal dysfunction occur in normal aging but is exaggerated in dementia and Alzheimer's disease (AD). Metabolic insufficiency includes factors important for both substrate supply and utilization in the brain. Metabolic insufficiency occurs through a number of serial mechanisms, particularly changes in cerebrovascular supply through blood vessel abnormalities (ie, small and large vessel vasculopathy, stroke), alterations in neurovascular coupling providing dynamic blood flow supply in relation to neuronal demand, abnormalities in blood brain barrier including decreased glucose and amino acid transport, altered glymphatic flow in terms of substrate supply across the extracellular space to cells and drainage into CSF of metabolites, impaired transport into cells, and abnormal intracellular metabolism with more reliance on glycolysis and less on mitochondrial function. Recent studies have confirmed abnormal neurovascular coupling in a mouse model of AD in response to metabolic challenges, but the supply chain from the vascular system into neurons is disrupted much earlier in dementia than in equivalently aged individuals, contributing to the progressive neuronal degeneration and cognitive dysfunction associated with dementia. We discuss several metabolic treatment approaches, but these depend on characterizing patients as to who would benefit the most. Surrogate biomarkers of metabolism are being developed to include dynamic estimates of neuronal demand, sufficiency of neurovascular coupling, and glymphatic flow to supplement traditional static measurements. These surrogate biomarkers could be used to gauge efficacy of metabolic treatments in slowing down or modifying dementia time course.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.
- Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
19
|
Adams KJ, Wilson JG, Millington DS, Moseley MA, Colton CA, Thompson JW, Gottschalk WK. Capillary Electrophoresis-High Resolution Mass Spectrometry for Measuring In Vivo Arginine Isotope Incorporation in Alzheimer's Disease Mouse Models. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1448-1458. [PMID: 34028275 DOI: 10.1021/jasms.1c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immune-based metabolic reprogramming of arginine utilization in the brain contributes to the neuronal pathology associated with Alzheimer's disease (AD). To enable our long-term goals of differentiation of AD mouse model genotypes, ages, and sexes based on activity of this pathway, we describe here the novel dosing (using uniformly labeled (13C615N4) arginine) and analysis methods using capillary electrophoresis high-resolution accurate-mass mass spectrometry for isotope tracing of metabolic products of arginine. We developed a pseudoprimed infusion-dosing regimen, using repeated injections, to achieve a steady state of uniformly labeled arginine in 135-195 min post bolus dose. Incorporation of stable isotope labeled carbon and nitrogen from uniformly labeled arginine into a host of downstream metabolites was measured in vivo in mice using serially sampled dried blood spots from the tail. In addition to the dried blood spot time course samples, total isotope incorporation into arginine-related metabolites was measured in the whole brain and plasma after 285 min. Preliminary demonstration of the technique identified differences isotope incorporation in arginine metabolites between male and female mice in a mouse-model of sporadic Alzheimer's disease (APOE4/huNOS2). The technique described herein will permit arginine pathway activity differentiation between mouse genotypes, ages, sexes, or drug treatments in order to elucidate the contribution of this pathway to Alzheimer's disease.
Collapse
Affiliation(s)
- Kendra J Adams
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27710, United States
| | - Joan G Wilson
- Department of Neurology, Duke University, Durham, North Carolina 27710, United States
| | - David S Millington
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27710, United States
| | - Carol A Colton
- Department of Neurology, Duke University, Durham, North Carolina 27710, United States
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina 27710, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - W Kirby Gottschalk
- Department of Neurology, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
20
|
Tang S, Buchman AS, De Jager PL, Bennett DA, Epstein MP, Yang J. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia. PLoS Genet 2021; 17:e1009482. [PMID: 33798195 PMCID: PMC8046351 DOI: 10.1371/journal.pgen.1009482] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) have been widely used to integrate transcriptomic and genetic data to study complex human diseases. Within a test dataset lacking transcriptomic data, traditional two-stage TWAS methods first impute gene expression by creating a weighted sum that aggregates SNPs with their corresponding cis-eQTL effects on reference transcriptome. Traditional TWAS methods then employ a linear regression model to assess the association between imputed gene expression and test phenotype, thereby assuming the effect of a cis-eQTL SNP on test phenotype is a linear function of the eQTL's estimated effect on reference transcriptome. To increase TWAS robustness to this assumption, we propose a novel Variance-Component TWAS procedure (VC-TWAS) that assumes the effects of cis-eQTL SNPs on phenotype are random (with variance proportional to corresponding reference cis-eQTL effects) rather than fixed. VC-TWAS is applicable to both continuous and dichotomous phenotypes, as well as individual-level and summary-level GWAS data. Using simulated data, we show VC-TWAS is more powerful than traditional TWAS methods based on a two-stage Burden test, especially when eQTL genetic effects on test phenotype are no longer a linear function of their eQTL genetic effects on reference transcriptome. We further applied VC-TWAS to both individual-level (N = ~3.4K) and summary-level (N = ~54K) GWAS data to study Alzheimer's dementia (AD). With the individual-level data, we detected 13 significant risk genes including 6 known GWAS risk genes such as TOMM40 that were missed by traditional TWAS methods. With the summary-level data, we detected 57 significant risk genes considering only cis-SNPs and 71 significant genes considering both cis- and trans- SNPs, which also validated our findings with the individual-level GWAS data. Our VC-TWAS method is implemented in the TIGAR tool for public use.
Collapse
Affiliation(s)
- Shizhen Tang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michael P. Epstein
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
21
|
Nwafor DC, Chakraborty S, Jun S, Brichacek AL, Dransfeld M, Gemoets DE, Dakhlallah D, Brown CM. Disruption of metabolic, sleep, and sensorimotor functional outcomes in a female transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 398:112983. [PMID: 33137399 DOI: 10.1016/j.bbr.2020.112983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia globally, and the number of individuals with AD diagnosis is expected to double by 2050. Numerous preclinical AD studies have shown that AD neuropathology accompanies alteration in learning and memory. However, less attention has been given to alterations in metabolism, sleep, and sensorimotor functional outcomes during AD pathogenesis. The objective of this study was to elucidate the extent to which metabolic activity, sleep-wake cycle, and sensorimotor function is impaired in APPSwDI/Nos2-/- (CVN-AD) transgenic mice. Female mice were used in this study because AD is more prevalent in women compared to men. We hypothesized that the presence of AD neuropathology in CVN-AD mice would accompany alterations in metabolic activity, sleep, and sensorimotor function. Our results showed that CVN-AD mice had significantly decreased energy expenditure compared to wild-type (WT) mice. An examination of associated functional outcome parameters showed that sleep activity was elevated during the awake (dark) cycle and as well as an overall decrease in spontaneous locomotor activity. An additional functional parameter, the nociceptive response to thermal stimuli, was also impaired in CVN-AD mice. Collectively, our results demonstrate CVN-AD mice exhibit alterations in functional parameters that resemble human-AD clinical progression.
Collapse
Affiliation(s)
- Divine C Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret Dransfeld
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Darren E Gemoets
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV 26506 USA
| | - Duaa Dakhlallah
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
22
|
Antifungal drug miconazole ameliorated memory deficits in a mouse model of LPS-induced memory loss through targeting iNOS. Cell Death Dis 2020; 11:623. [PMID: 32796824 PMCID: PMC7429861 DOI: 10.1038/s41419-020-2619-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease (AD) is closely related to neuroinflammation, and the increase in inflammatory cytokine generation and inducible nitric oxide synthase (iNOS) expression in the brain of a patient with AD is well known. Excessive cytokines can stimulate iNOS in microglia and astroglia and overproduce nitric oxide, which can be toxic to neurons. The disease–gene–drug network analysis based on the GWAS/OMIM/DEG records showed that miconazole (MCZ) affected AD through interactions with NOS. Inhibiting iNOS can reduce neuroinflammation, thus preventing AD progression. To investigate the prophylactic role of antifungal agent in the AD development, a lipopolysaccharide-induced memory disorder mouse model was used, and cognitive function was assessed by Morris water maze test and passive avoidance test. MCZ treatment significantly attenuated cognitive impairment, suppressed iNOS and cyclooxygenase-2 expression, and activation of astrocyte and microglial BV2 cells, as well as reduced cytokine levels in the brains and lipopolysaccharide-treated astrocytes and microglia BV2 cells. In further mechanism studies, Pull-down assay and iNOS luciferase activity data showed that MCZ binds to iNOS and inhibited transcriptional activity. Our results suggest that MCZ is useful for ameliorating the neuroinflammation-mediated AD progression by blocking iNOS expression.
Collapse
|
23
|
Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062071. [PMID: 32197305 PMCID: PMC7139528 DOI: 10.3390/ijms21062071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Alpinia oxyphylla Miq. (i.e., A. oxyphylla), a traditional Chinese medicine, can exert neuroprotective effects in ameliorating mild cognitive impairment and improving the pathological hallmarks of Alzheimer's disease (AD). Here, 50 active compounds and 164 putative targets were collected and identified with 251 clinically tested AD-associated target proteins using network pharmacology approaches. Based on the Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway enrichments, the compound-target-pathway-disease/protein-protein interaction network constructions, and the network topological analysis, we concluded that A. oxyphylla may have neuroprotective effects by regulating neurotransmitter function, as well as brain plasticity in neuronal networks. Moreover, closely-related AD proteins, including the amyloid-beta precursor protein, the estrogen receptor 1, acetylcholinesterase, and nitric oxide synthase 2, were selected as the bottleneck nodes of network for further verification by molecular docking. Our analytical results demonstrated that terpene, as the main compound of A. oxyphylla extract, exerts neuroprotective effects, providing new insights into the development of a natural therapy for the prevention and treatment of AD.
Collapse
|
24
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
25
|
Yin S, Ran Q, Yang J, Zhao Y, Li C. Nootropic effect of neferine on aluminium chloride-induced Alzheimer's disease in experimental models. J Biochem Mol Toxicol 2019; 34:e22429. [PMID: 31860774 DOI: 10.1002/jbt.22429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease, which is developed by oxidative stress and acetylcholine contraction in the synaptic cleft of the neurons. This leads to dementia, memory loss, and decrease in learning ability and orientation. In this research work, we aimed to explore the neuroprotective effect of neferine on AlCl3 -induced AD in rats. The results of our study revealed that the increased reactive oxygen species (ROS) and nitric oxide in the hippocampus leads to the development of AD in the rats. The oral treatment of neferine done the following occurrences such as; it potentially inhibited the ROS formation and acts as a scavenging molecule by preventing the neurodegeneration. It also improved the memory and learning ability to complete the maze activity in the AD rats and significantly increased the antioxidants superoxide dismutase, catalase, and reduced glutathione in neferine treated AD rats. It aggressively declined the activity of acetylcholine esterase and Na+ K+ ATPase in the neurodegenerative rat models. The gene expression pattern of neuroinflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were decreased in the neferine-treated rats. The neuroinflammatory proteins such as inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa β (Nf-κβ) were decreased and Nf-κβ inhibitor IKBα was increased in the neferine-treated AD rats. Finally, the histology study proved that the neferine treatment possibly prevents neurodegeneration in the hippocampus tissue of the AD models. Hence, these all findings concluded that the neferine could be a potential neuropreventive as well as neurodegenerative therapeutic compound in neurological and cognitive dysfunction.
Collapse
Affiliation(s)
- Shuaizeng Yin
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qin Ran
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jin Yang
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yuhua Zhao
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Chenyu Li
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
26
|
Badea A, Wu W, Shuff J, Wang M, Anderson RJ, Qi Y, Johnson GA, Wilson JG, Koudoro S, Garyfallidis E, Colton CA, Dunson DB. Identifying Vulnerable Brain Networks in Mouse Models of Genetic Risk Factors for Late Onset Alzheimer's Disease. Front Neuroinform 2019; 13:72. [PMID: 31920610 PMCID: PMC6914731 DOI: 10.3389/fninf.2019.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
The major genetic risk for late onset Alzheimer’s disease has been associated with the presence of APOE4 alleles. However, the impact of different APOE alleles on the brain aging trajectory, and how they interact with the brain local environment in a sex specific manner is not entirely clear. We sought to identify vulnerable brain circuits in novel mouse models with homozygous targeted replacement of the mouse ApoE gene with either human APOE3 or APOE4 gene alleles. These genes are expressed in mice that also model the human immune response to age and disease-associated challenges by expressing the human NOS2 gene in place of the mouse mNos2 gene. These mice had impaired learning and memory when assessed with the Morris water maze (MWM) and novel object recognition (NOR) tests. Ex vivo MRI-DTI analyses revealed global and local atrophy, and areas of reduced fractional anisotropy (FA). Using tensor network principal component analyses for structural connectomes, we inferred the pairwise connections which best separate APOE4 from APOE3 carriers. These involved primarily interhemispheric connections among regions of olfactory areas, the hippocampus, and the cerebellum. Our results also suggest that pairwise connections may be subdivided and clustered spatially to reveal local changes on a finer scale. These analyses revealed not just genotype, but also sex specific differences. Identifying vulnerable networks may provide targets for interventions, and a means to stratify patients.
Collapse
Affiliation(s)
- Alexandra Badea
- Department of Radiology, Duke University, Durham, NC, United States.,Department of Neurology, Duke University School of Medicine, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Wenlin Wu
- Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, Newark, NJ, United States
| | - Michele Wang
- Department of Psychology and Neuroscience, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| | | | - Yi Qi
- Department of Radiology, Duke University, Durham, NC, United States
| | - G Allan Johnson
- Department of Radiology, Duke University, Durham, NC, United States
| | - Joan G Wilson
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Serge Koudoro
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Eleftherios Garyfallidis
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Carol A Colton
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - David B Dunson
- Department of Statistical Science, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
27
|
Polis B, Gurevich V, Assa M, Samson AO. Norvaline Restores the BBB Integrity in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2019; 20:E4616. [PMID: 31540372 PMCID: PMC6770953 DOI: 10.3390/ijms20184616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia. The disease progression is associated with the build-up of amyloid plaques and neurofibrillary tangles in the brain. However, besides the well-defined lesions, the AD-related pathology includes neuroinflammation, compromised energy metabolism, and chronic oxidative stress. Likewise, the blood-brain barrier (BBB) dysfunction is suggested to be a cause and AD consequence. Accordingly, therapeutic targeting of the compromised BBB is a promising disease-modifying approach. We utilized a homozygous triple-transgenic mouse model of AD (3×Tg-AD) to assess the effects of L-norvaline on BBB integrity. We scrutinized the perivascular astrocytes and macrophages by measuring the immunopositive profiles in relation to the presence of β-amyloid and compare the results with those found in wild-type animals. Typically, 3×Tg-AD mice display astroglia cytoskeletal atrophy, associated with the deposition of β-amyloid in the endothelia, and declining nitric oxide synthase (NOS) levels. L-norvaline escalated NOS levels, then reduced rates of BBB permeability, amyloid angiopathy, microgliosis, and astrodegeneration, which suggests AD treatment agent efficacy. Moreover, results undergird the roles of astrodegeneration and microgliosis in AD-associated BBB dysfunction and progressive cognitive impairment. L-norvaline self-evidently interferes with AD pathogenesis and presents a potent remedy for angiopathies and neurodegenerative disorders intervention.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Vyacheslav Gurevich
- Laboratory of Cancer Personalized Medicine and Diagnostic Genomics, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Michael Assa
- Inter-laboratory Equipment Center, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
28
|
Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, Fà M, Staniszewski A, Calcagno E, Zuccarello E, D’Adamio L, Deng SX, Puzzo D, Arancio O, Fiorito J. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14:26. [PMID: 31248451 PMCID: PMC6598340 DOI: 10.1186/s13024-019-0326-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- DiMi Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Manon van den Berg
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard P.O. Box 8000, Theobald Science Center, room 425, Old Westbury, NY 11568 USA
| |
Collapse
|
29
|
Badea A, Delpratt NA, Anderson RJ, Dibb R, Qi Y, Wei H, Liu C, Wetsel WC, Avants BB, Colton C. Multivariate MR biomarkers better predict cognitive dysfunction in mouse models of Alzheimer's disease. Magn Reson Imaging 2019; 60:52-67. [PMID: 30940494 DOI: 10.1016/j.mri.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
To understand multifactorial conditions such as Alzheimer's disease (AD) we need brain signatures that predict the impact of multiple pathologies and their interactions. To help uncover the relationships between pathology affected brain circuits and cognitive markers we have used mouse models that represent, at least in part, the complex interactions altered in AD, while being raised in uniform environments and with known genotype alterations. In particular, we aimed to understand the relationship between vulnerable brain circuits and memory deficits measured in the Morris water maze, and we tested several predictive modeling approaches. We used in vivo manganese enhanced MRI traditional voxel based analyses to reveal regional differences in volume (morphometry), signal intensity (activity), and magnetic susceptibility (iron deposition, demyelination). These regions included hippocampus, olfactory areas, entorhinal cortex and cerebellum, as well as the frontal association area. The properties of these regions, extracted from each of the imaging markers, were used to predict spatial memory. We next used eigenanatomy, which reduces dimensionality to produce sets of regions that explain the variance in the data. For each imaging marker, eigenanatomy revealed networks underpinning a range of cognitive functions including memory, motor function, and associative learning, allowing the detection of associations between context, location, and responses. Finally, the integration of multivariate markers in a supervised sparse canonical correlation approach outperformed single predictor models and had significant correlates to spatial memory. Among a priori selected regions, expected to play a role in memory dysfunction, the fornix also provided good predictors, raising the possibility of investigating how disease propagation within brain networks leads to cognitive deterioration. Our cross-sectional results support that modeling approaches integrating multivariate imaging markers provide sensitive predictors of AD-like behaviors. Such strategies for mapping brain circuits responsible for behaviors may help in the future predict disease progression, or response to interventions.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA; Department of Neurology, Duke University Medical Center, Durham, NC, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
| | - Natalie A Delpratt
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - R J Anderson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology, Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Carol Colton
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Shi Y, Wang Y, Wei H. Dantrolene : From Malignant Hyperthermia to Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:668-676. [PMID: 29921212 PMCID: PMC7754833 DOI: 10.2174/1871527317666180619162649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Zhao J, Gao W, Yang Z, Li H, Gao Z. Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity. J Inorg Biochem 2019; 190:15-23. [DOI: 10.1016/j.jinorgbio.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
|
32
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
33
|
Sheng M, Lu H, Liu P, Li Y, Ravi H, Peng SL, Diaz-Arrastia R, Devous MD, Womack KB. Sildenafil Improves Vascular and Metabolic Function in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 60:1351-1364. [PMID: 29036811 DOI: 10.3233/jad-161006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of degenerative dementia in the aging population. Patients with AD have alterations in cerebral hemodynamic function including reduced cerebral blood flow (CBF) and cerebral metabolic rate. Therefore, improved cerebrovascular function may be an attractive goal for pharmaceutical intervention in AD. OBJECTIVE We wished to observe the acute effects of sildenafil on cerebrovascular function and brain metabolism in patients with AD. METHODS We used several novel non-invasive MRI techniques to investigate the alterations of CBF, cerebral metabolic rate of oxygen (CMRO2), and cerebrovascular reactivity (CVR) after a single dose of sildenafil administration in order to assess its physiological effects in patients with AD. CBF, CMRO2, and CVR measurements using MRI were performed before and one hour after the oral administration of 50 mg sildenafil. Baseline Montreal Cognitive Assessment score was also obtained. RESULTS Complete CBF and CMRO2 data were obtained in twelve patients. Complete CVR data were obtained in eight patients. Global CBF and CMRO2 significantly increased (p = 0.03, p = 0.05, respectively) following sildenafil administration. Voxel-wise analyses of CBF maps showed that increased CBF was most pronounced in the bilateral medial temporal lobes. CVR significantly decreased after administration of sildenafil. CONCLUSION Our data suggest that a single dose of sildenafil improves cerebral hemodynamic function and increases cerebral oxygen metabolism in patients with AD.
Collapse
Affiliation(s)
- Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Beijing Eden Hospital, Beijing, China
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harshan Ravi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-Lei Peng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Penn Presbyterian Medical Center, Philadelphia, PA, USA
| | - Michael D Devous
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Novak P, Cente M, Kosikova N, Augustin T, Kvetnansky R, Novak M, Filipcik P. Stress-Induced Alterations of Immune Profile in Animals Suffering by Tau Protein-Driven Neurodegeneration. Cell Mol Neurobiol 2018; 38:243-259. [PMID: 28405903 PMCID: PMC11481851 DOI: 10.1007/s10571-017-0491-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder; neurofibrillary pathology composed of tau protein is found side by side with amyloid-β deposits and extensive neuroinflammation. The immune system of the brain is considered as one of the factors that could influence the speed of the progression of AD neuropathology as a potential mediator of the damage induced by AD protein deposits. Alzheimer's disease pathology can be impacted by psychological stress; however, signalling pathways in background are not well known. We have explored possible avenues of how stress could influence the brain's immune system in a rat model of AD. Animals were subjected either to a single or multiple instances of immobilization stress. The analysis of a panel of immunity-related genes was used to evaluate the impact of stress on the immune response in the brain. We have identified 19 stress-responsive genes that are involved in neuroinflammation accompanying tau pathology: Nos2, Ptgs2, IL-8rb, C5, Mmp9, Cx3cr1, CD40lg, Adrb2, IL-6, IL-6r, IL-1r2, Ccl2, Ccl3, Ccl4, Ccl12, TNF-α, IL-1α, IL-1β, IL-10. Most of them are deregulated under the stress conditions also in control animals; however, the magnitude of the response to either acute or chronic stress differs. This can lead to serious influence, most probably to acceleration of neurodegenerative phenotype in diseased animals. Several of the genes (IL-1β, Casp1, Cx3cr1 and C5) are deregulated solely in tauopathic animals. The stress-induced changes in the inflammatory picture of the brain highlight the fact that the brain's immune response is highly responsive to environmental stimuli. The pattern of changes is indicative of an attempt to protect the brain in the short term, while being potentially detrimental to the response against a long-term pathological process such as neurofibrillary degeneration.
Collapse
Affiliation(s)
- Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Nina Kosikova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Augustin
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Richard Kvetnansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia.
| |
Collapse
|
35
|
Cowburn AS, Macias D, Summers C, Chilvers ER, Johnson RS. Cardiovascular adaptation to hypoxia and the role of peripheral resistance. eLife 2017; 6. [PMID: 29049022 PMCID: PMC5648530 DOI: 10.7554/elife.28755] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Systemic vascular pressure in vertebrates is regulated by a range of factors: one key element of control is peripheral resistance in tissue capillary beds. Many aspects of the relationship between central control of vascular flow and peripheral resistance are unclear. An important example of this is the relationship between hypoxic response in individual tissues, and the effect that response has on systemic cardiovascular adaptation to oxygen deprivation. We show here how hypoxic response via the HIF transcription factors in one large vascular bed, that underlying the skin, influences cardiovascular response to hypoxia in mice. We show that the response of the skin to hypoxia feeds back on a wide range of cardiovascular parameters, including heart rate, arterial pressures, and body temperature. These data represent the first demonstration of a dynamic role for oxygen sensing in a peripheral tissue directly modifying cardiovascular response to the challenge of hypoxia.
Collapse
Affiliation(s)
- Andrew S Cowburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David Macias
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Management of Alzheimer’s disease—An insight of the enzymatic and other novel potential targets. Int J Biol Macromol 2017; 97:700-709. [DOI: 10.1016/j.ijbiomac.2017.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
|
37
|
Nitric Oxide: Exploring the Contextual Link with Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7205747. [PMID: 28096943 PMCID: PMC5209623 DOI: 10.1155/2016/7205747] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
Neuronal inflammation is a systematically organized physiological step often triggered to counteract an invading pathogen or to rid the body of damaged and/or dead cellular debris. At the crux of this inflammatory response is the deployment of nonneuronal cells: microglia, astrocytes, and blood-derived macrophages. Glial cells secrete a host of bioactive molecules, which include proinflammatory factors and nitric oxide (NO). From immunomodulation to neuromodulation, NO is a renowned modulator of vast physiological systems. It essentially mediates these physiological effects by interacting with cyclic GMP (cGMP) leading to the regulation of intracellular calcium ions. NO regulates the release of proinflammatory molecules, interacts with ROS leading to the formation of reactive nitrogen species (RNS), and targets vital organelles such as mitochondria, ultimately causing cellular death, a hallmark of many neurodegenerative diseases. AD is an enervating neurodegenerative disorder with an obscure etiology. Because of accumulating experimental data continually highlighting the role of NO in neuroinflammation and AD progression, we explore the most recent data to highlight in detail newly investigated molecular mechanisms in which NO becomes relevant in neuronal inflammation and oxidative stress-associated neurodegeneration in the CNS as well as lay down up-to-date knowledge regarding therapeutic approaches targeting NO.
Collapse
|
38
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
39
|
Yoshitake J, Soeda Y, Ida T, Sumioka A, Yoshikawa M, Matsushita K, Akaike T, Takashima A. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION. J Biol Chem 2016; 291:22714-22720. [PMID: 27601475 DOI: 10.1074/jbc.m116.734350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/31/2016] [Indexed: 11/06/2022] Open
Abstract
Neurofibrillar tangles caused by intracellular hyperphosphorylated tau inclusion and extracellular amyloid β peptide deposition are hallmarks of Alzheimer's disease. Tau contains one or two cysteine residues in three or four repeats of the microtubule binding region following alternative splicing of exon 10, and formation of intermolecular cysteine disulfide bonds accelerates tau aggregation. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) acts as a novel second messenger of nitric oxide (NO) by covalently binding cGMP to cysteine residues by electrophilic properties, a process termed protein S-guanylation. Here we studied S-guanylation of tau and its effects on tau aggregation. 8-Nitro-cGMP exposure induced S-guanylation of tau both in vitro and in tau-overexpressed HEK293T cells. S-guanylated tau inhibited heparin-induced tau aggregation in a thioflavin T assay. Atomic force microscopy observations indicated that S-guanylated tau could not form tau granules and fibrils. Further biochemical analyses showed that S-guanylated tau was inhibited at the step of tau oligomer formation. In P301L tau-expressing Neuro2A cells, 8-nitro-cGMP treatment significantly reduced the amount of sarcosyl-insoluble tau. NO-linked chemical modification on cysteine residues of tau could block tau aggregation, and therefore, increasing 8-nitro-cGMP levels in the brain could become a potential therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jun Yoshitake
- From the Departments of Aging Neurobiology and.,Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan
| | | | - Tomoaki Ida
- the Department of Environmental Health Science and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and
| | - Akio Sumioka
- the Department of Life Science, Gakushuin University Graduate School of Science, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | | - Kenji Matsushita
- Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan
| | - Takaaki Akaike
- the Department of Environmental Health Science and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and
| | - Akihiko Takashima
- the Department of Life Science, Gakushuin University Graduate School of Science, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
40
|
Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 2016; 142:498-511. [PMID: 27521741 DOI: 10.1016/j.neuroimage.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA.
| | - Lauren Kane
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Mark Foster
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Neil Medvitz
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas K Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
41
|
Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R. Expression Pattern of Scavenger Receptors and Amyloid-β Phagocytosis of Astrocytes and Microglia in Culture are Modified by Acidosis: Implications for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:857-73. [DOI: 10.3233/jad-160083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaime Eugenín
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrea Vecchiola
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paola Murgas
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Arroyo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Shin JS, Choi HE, Seo S, Choi JH, Baek NI, Lee KT. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages. J Pharmacol Exp Ther 2016; 358:3-13. [PMID: 27189969 DOI: 10.1124/jpet.115.231043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022] Open
Abstract
Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR.
Collapse
Affiliation(s)
- Ji-Sun Shin
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Hye-Eun Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - SeungHwan Seo
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Jung-Hye Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Nam-In Baek
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| |
Collapse
|
43
|
Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice. Neurochem Res 2015; 41:722-30. [PMID: 26493872 DOI: 10.1007/s11064-015-1741-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.
Collapse
|
44
|
Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer's disease mice. J Neurosci 2015; 35:6893-902. [PMID: 25926464 DOI: 10.1523/jneurosci.4002-14.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synaptic plasticity deficits are increasingly recognized as causing the memory impairments which define Alzheimer's disease (AD). In AD mouse models, evidence of abnormal synaptic function is present before the onset of cognitive deficits, and presents as increased synaptic depression revealed only when synaptic homeostasis is challenged, such as with suppression of ryanodine receptor (RyR)-evoked calcium signaling. Otherwise, at early disease stages, the synaptic physiology phenotype appears normal. This suggests compensatory mechanisms are recruited to maintain a functionally normal net output of the hippocampal circuit. A candidate calcium-regulated synaptic modulator is nitric oxide (NO), which acts presynaptically to boost vesicle release and glutamatergic transmission. Here we tested whether there is a feedforward cycle between the increased RyR calcium release seen in presymptomatic AD mice and aberrant NO signaling which augments synaptic plasticity. Using a combination of electrophysiological approaches, two-photon calcium imaging, and protein biochemistry in hippocampal tissue from presymptomatic 3xTg-AD and NonTg mice, we show that blocking NO synthesis results in markedly augmented synaptic depression mediated through presynaptic mechanisms in 3xTg-AD mice. Additionally, blocking NO reduces the augmented synaptically evoked dendritic calcium release mediated by enhanced RyR calcium release. This is accompanied by increased nNOS levels in the AD mice and is reversed upon normalization of RyR-evoked calcium release with chronic dantrolene treatment. Thus, recruitment of NO is serving a compensatory role to boost synaptic transmission and plasticity during early AD stages. However, NO's dual role in neuroprotection and neurodegeneration may convert to maladaptive functions as the disease progresses.
Collapse
|
45
|
Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto SI, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 2015; 84:99-108. [PMID: 25796565 DOI: 10.1016/j.nbd.2015.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olga A Prikhodko
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elaine Pirie
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Saumya Nagar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mohd Waseem Akhtar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chang-Ki Oh
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Scott R McKercher
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rajesh Ambasudhan
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shu-ichi Okamoto
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
46
|
Li X, Ye Y, Zhou X, Huang C, Wu M. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. THE JOURNAL OF IMMUNOLOGY 2014; 194:1112-21. [PMID: 25535282 DOI: 10.4049/jimmunol.1401958] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that can cause serious infection in immunocompromised individuals. Although autophagy may augment immune responses against P. aeruginosa infection in macrophages, the critical components and their role of autophagy in host defense are largely unknown. In this study, we show that P. aeruginosa infection-induced autophagy activates JAK2/STAT1α and increases NO production. Knocking down Atg7 resulted in increased IFN-γ release, excessive reactive oxygen species, and increased Src homology-2 domain-containing phosphatase 2 activity, which led to lowered phosphorylation of JAK2/STAT1α and subdued expression of NO synthase 2 (NOS2). In addition, we demonstrated the physiological relevance of dysregulated NO under Atg7 deficiency as atg7(-/-) mice were more susceptible to P. aeruginosa infection with increased mortality and severe lung injury than wild-type mice. Furthermore, P. aeruginosa-infected atg7(-/-) mice exhibited increased oxidation but decreased bacterial clearance in the lung and other organs compared with wild-type mice. Mechanistically, atg7 deficiency suppressed NOS2 activity by downmodulating JAK2/STAT1α, leading to decreased NO both in vitro and in vivo. Taken together, these findings revealed that the JAK2/STAT1α/NOS2 dysfunction leads to dysregulated immune responses and worsened disease phenotypes.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and
| |
Collapse
|
47
|
Wang XB, Cui NH, Yang J, Qiu XP, Gao JJ, Yang N, Zheng F. Angiotensin-converting enzyme insertion/deletion polymorphism is not a major determining factor in the development of sporadic Alzheimer disease: evidence from an updated meta-analysis. PLoS One 2014; 9:e111406. [PMID: 25360660 PMCID: PMC4216072 DOI: 10.1371/journal.pone.0111406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
Angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism have long been linked to sporadic Alzheimer disease (SAD), but the established data remained controversial. To clarify this inconsistency, a comprehensive meta-analysis was conducted. Through searching of Pubmed, Embase, Alzgene, China National Knowledge Infrastructure (CNKI) and manually searching relevant references, 53 independent studies from 48 articles were included, involving a total of 8153 cases and 14932 controls. The strength of association was assessed by using odds ratios (ORs) with 95% confidence intervals (CIs). Further stratified analyses and heterogeneity analyses were tested, as was publication bias. Overall, significant associations were revealed between I/D polymorphism and SAD risk using allelic comparison (OR = 1.09, 95%CI = 1.01–1.17, p = 0.030), homozygote comparison (OR = 1.17, 95%CI = 1.01–1.34, p = 0.030) and the dominant model (OR = 1.16, 95%CI = 1.04–1.29, p = 0.008), but they were not sufficiently robust to withstand the false-positive report probability (FPRP) analyses. Otherwise, in subgroup analyses restricted to the high quality studies, the large sample size studies and studies with population-based controls, no significant association was observed in any genetic models. In summary, the current meta-analysis suggested that the ACE I/D polymorphism is unlikely to be a major determining factor in the development of SAD.
Collapse
Affiliation(s)
- Xue-bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning-hua Cui
- Department of Clinical Laboratory, Children's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jie Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-ping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-jia Gao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Na Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
48
|
Jeong KH, Jeon MT, Kim HD, Jung UJ, Jang MC, Chu JW, Yang SJ, Choi IY, Choi MS, Kim SR. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson's disease. J Med Food 2014; 18:409-14. [PMID: 25325362 DOI: 10.1089/jmf.2014.3241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Supplemental digital content is available in the text. Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease–like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI+/+/mNos2−/− (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI+/−/HuNOS2tg+/+/mNos2−/−) mimicked the pathologic phenotypes found in the CVN-AD strain.
Collapse
|
50
|
Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol 2014; 17:871-81. [PMID: 24513083 DOI: 10.1017/s1461145713001533] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aβ1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms.
Collapse
|