1
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Guan C, Hua S, Jiang K. The CEP170B-KIF2A complex destabilizes microtubule minus ends to generate polarized microtubule network. EMBO J 2023; 42:e112953. [PMID: 37014312 PMCID: PMC10233374 DOI: 10.15252/embj.2022112953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Microtubule (MT) minus ends are stabilized by CAMSAP family proteins at noncentrosomal MT-organizing centers. Despite progress in identifying diverse positive regulators, knowledge on the negative regulation of the MT minus-end distribution is lacking. Here, we identify CEP170B as a MT minus-end-binding protein that colocalizes with the microtubule-stabilizing complex at the cortical patches. CEP170B depends on the scaffold protein liprin-α1 for its cortical targeting and requires liprin-α1-bound PP2A phosphatase for its MT localization. CEP170B excludes CAMSAPs-stabilized MT minus ends from the cell periphery in HeLa cells and the basal cortex in human epithelial cells and is required for directional vesicle trafficking and cyst formation in 3D culture. Reconstitution experiments demonstrate that CEP170B autonomously tracks growing MT minus ends and blocks minus-end growth. Furthermore, CEP170B in a complex with the kinesin KIF2A acts as a potent MT minus-end depolymerase capable of antagonizing the stabilizing effect of CAMSAPs. Our study uncovers an antagonistic mechanism for controlling the spatial distribution of MT minus ends, which contributes to the establishment of polarized MT network and cell polarity.
Collapse
Affiliation(s)
- Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
4
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
5
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
6
|
Fukai S, Yoshida T. Roles of type IIa receptor protein tyrosine phosphatases as synaptic organizers. FEBS J 2020; 288:6913-6926. [PMID: 33301645 DOI: 10.1111/febs.15666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Neurons establish circuits for brain functions such as cognition, emotion, learning, and memory. Their connections are mediated by synapses, which are specialized cell-cell adhesions responsible for neuronal signal transmission. During neurodevelopment, synapse formation is triggered by interactions of cell adhesion molecules termed synaptic organizers or synapse organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs; also known as leukocyte common antigen-related receptor tyrosine phosphatases or LAR-RPTPs) play important roles in axon guidance and neurite extension, and also serve as presynaptic organizers. IIa RPTPs transsynaptically interact with multiple sets of postsynaptic organizers, mostly in a splicing-dependent fashion. Here, we review and update research progress on IIa RPTPs, particularly regarding their functional roles in vivo demonstrated using conditional knockout approach and structural insights into their extracellular and intracellular molecular interactions revealed by crystallography and other biophysical techniques. Future directions in the research field of IIa RPTPs are also discussed, including recent findings of the molecular assembly mechanism underlying the formation of synapse-specific nanostructures essential for synaptic functions.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
7
|
Assembly of the presynaptic active zone. Curr Opin Neurobiol 2020; 63:95-103. [PMID: 32403081 DOI: 10.1016/j.conb.2020.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
In a presynaptic nerve terminal, the active zone is composed of sophisticated protein machinery that enables secretion on a submillisecond time scale and precisely targets it toward postsynaptic receptors. The past two decades have provided deep insight into the roles of active zone proteins in exocytosis, but we are only beginning to understand how a neuron assembles active zone protein complexes into effective molecular machines. In this review, we outline the fundamental processes that are necessary for active zone assembly and discuss recent advances in understanding assembly mechanisms that arise from genetic, morphological and biochemical studies. We further outline the challenges ahead for understanding this important problem.
Collapse
|
8
|
Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Nat Commun 2020; 11:649. [PMID: 32005855 PMCID: PMC6994669 DOI: 10.1038/s41467-020-14516-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
Synapse formation is induced by transsynaptic interaction of neuronal cell-adhesion molecules termed synaptic organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs) function as presynaptic organizers. The cytoplasmic domain of IIa RPTPs consists of two phosphatase domains, and the membrane-distal one (D2) is essential for synapse formation. Liprin-α, which is an active zone protein critical for synapse formation, interacts with D2 via its C-terminal domain composed of three tandem sterile alpha motifs (tSAM). Structural mechanisms of this critical interaction for synapse formation remain elusive. Here, we report the crystal structure of the complex between mouse PTPδ D2 and Liprin-α3 tSAM at 1.91 Å resolution. PTPδ D2 interacts with the N-terminal helix and the first and second SAMs (SAM1 and SAM2, respectively) of Liprin-α3. Structure-based mutational analyses in vitro and in cellulo demonstrate that the interactions with Liprin-α SAM1 and SAM2 are essential for the binding and synaptogenic activity.
Collapse
|
9
|
Xu C, Theisen E, Maloney R, Peng J, Santiago I, Yapp C, Werkhoven Z, Rumbaut E, Shum B, Tarnogorska D, Borycz J, Tan L, Courgeon M, Griffin T, Levin R, Meinertzhagen IA, de Bivort B, Drugowitsch J, Pecot MY. Control of Synaptic Specificity by Establishing a Relative Preference for Synaptic Partners. Neuron 2019; 103:865-877.e7. [PMID: 31300277 PMCID: PMC6728174 DOI: 10.1016/j.neuron.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
The ability of neurons to identify correct synaptic partners is fundamental to the proper assembly and function of neural circuits. Relative to other steps in circuit formation such as axon guidance, our knowledge of how synaptic partner selection is regulated is severely limited. Drosophila Dpr and DIP immunoglobulin superfamily (IgSF) cell-surface proteins bind heterophilically and are expressed in a complementary manner between synaptic partners in the visual system. Here, we show that in the lamina, DIP mis-expression is sufficient to promote synapse formation with Dpr-expressing neurons and that disrupting DIP function results in ectopic synapse formation. These findings indicate that DIP proteins promote synapses to form between specific cell types and that in their absence, neurons synapse with alternative partners. We propose that neurons have the capacity to synapse with a broad range of cell types and that synaptic specificity is achieved by establishing a preference for specific partners.
Collapse
Affiliation(s)
- Chundi Xu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| | - Emma Theisen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ryan Maloney
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Jing Peng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ivan Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Clarence Yapp
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Werkhoven
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elijah Rumbaut
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Bryan Shum
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jolanta Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Liming Tan
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maximilien Courgeon
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tessa Griffin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Raina Levin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Benjamin de Bivort
- Center for Brain Science and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Inter-axonal recognition organizes Drosophila olfactory map formation. Sci Rep 2019; 9:11554. [PMID: 31399611 PMCID: PMC6689066 DOI: 10.1038/s41598-019-47924-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Olfactory systems across the animal kingdom show astonishing similarities in their morphological and functional organization. In mouse and Drosophila, olfactory sensory neurons are characterized by the selective expression of a single odorant receptor (OR) type and by the OR class-specific connection in the olfactory brain center. Monospecific OR expression in mouse provides each sensory neuron with a unique recognition identity underlying class-specific axon sorting into synaptic glomeruli. Here we show that in Drosophila, although OR genes are not involved in sensory neuron connectivity, afferent sorting via OR class-specific recognition defines a central mechanism of odortopic map formation. Sensory neurons mutant for the Ig-domain receptor Dscam converge into ectopic glomeruli with single OR class identity independent of their target cells. Mosaic analysis showed that Dscam prevents premature recognition among sensory axons of the same OR class. Single Dscam isoform expression in projecting axons revealed the importance of Dscam diversity for spatially restricted glomerular convergence. These data support a model in which the precise temporal-spatial regulation of Dscam activity controls class-specific axon sorting thereby indicating convergent evolution of olfactory map formation via self-patterning of sensory neurons.
Collapse
|
11
|
Özel MN, Kulkarni A, Hasan A, Brummer J, Moldenhauer M, Daumann IM, Wolfenberg H, Dercksen VJ, Kiral FR, Weiser M, Prohaska S, von Kleist M, Hiesinger PR. Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors. Dev Cell 2019; 50:447-461.e8. [PMID: 31353313 DOI: 10.1016/j.devcel.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 11/15/2022]
Abstract
Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.
Collapse
Affiliation(s)
- M Neset Özel
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Neuroscience Graduate Program, UT Southwestern Medical Center Dallas, Dallas, TX 75390, USA
| | - Abhishek Kulkarni
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Amr Hasan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Josephine Brummer
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Marian Moldenhauer
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany; Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ilsa-Maria Daumann
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heike Wolfenberg
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Vincent J Dercksen
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - F Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Weiser
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Steffen Prohaska
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 2018; 115:2234-2239. [PMID: 29439199 DOI: 10.1073/pnas.1719012115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The presynaptic active zone provides sites for vesicle docking and release at central nervous synapses and is essential for speed and accuracy of synaptic transmission. Liprin-α binds to several active zone proteins, and loss-of-function studies in invertebrates established important roles for Liprin-α in neurodevelopment and active zone assembly. However, Liprin-α localization and functions in vertebrates have remained unclear. We used stimulated emission depletion superresolution microscopy to systematically determine the localization of Liprin-α2 and Liprin-α3, the two predominant Liprin-α proteins in the vertebrate brain, relative to other active-zone proteins. Both proteins were widely distributed in hippocampal nerve terminals, and Liprin-α3, but not Liprin-α2, had a prominent component that colocalized with the active-zone proteins Bassoon, RIM, Munc13, RIM-BP, and ELKS. To assess Liprin-α3 functions, we generated Liprin-α3-KO mice by using CRISPR/Cas9 gene editing. We found reduced synaptic vesicle tethering and docking in hippocampal neurons of Liprin-α3-KO mice, and synaptic vesicle exocytosis was impaired. Liprin-α3 KO also led to mild alterations in active zone structure, accompanied by translocation of Liprin-α2 to active zones. These findings establish important roles for Liprin-α3 in active-zone assembly and function, and suggest that interplay between various Liprin-α proteins controls their active-zone localization.
Collapse
|
13
|
Plazaola-Sasieta H, Fernández-Pineda A, Zhu Q, Morey M. Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies. J Neurogenet 2017; 31:231-249. [DOI: 10.1080/01677063.2017.1391249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haritz Plazaola-Sasieta
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Alejandra Fernández-Pineda
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Qi Zhu
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Bernadzki KM, Gawor M, Pęziński M, Mazurek P, Niewiadomski P, Rędowicz MJ, Prószyński TJ. Liprin-α-1 is a novel component of the murine neuromuscular junction and is involved in the organization of the postsynaptic machinery. Sci Rep 2017; 7:9116. [PMID: 28831123 PMCID: PMC5567263 DOI: 10.1038/s41598-017-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023] Open
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that connect motor neurons to skeletal muscle fibers and orchestrate proper signal transmission from the nervous system to muscles. The efficient formation and maintenance of the postsynaptic machinery that contains acetylcholine receptors (AChR) are indispensable for proper NMJ function. Abnormalities in the organization of synaptic components often cause severe neuromuscular disorders, such as muscular dystrophy. The dystrophin-associated glycoprotein complex (DGC) was shown to play an important role in NMJ development. We recently identified liprin-α-1 as a novel binding partner for one of the cytoplasmic DGC components, α-dystrobrevin-1. In the present study, we performed a detailed analysis of localization and function of liprin-α-1 at the murine NMJ. We showed that liprin-α-1 localizes to both pre- and postsynaptic compartments at the NMJ, and its synaptic enrichment depends on the presence of the nerve. Using cultured muscle cells, we found that liprin-α-1 plays an important role in AChR clustering and the organization of cortical microtubules. Our studies provide novel insights into the function of liprin-α-1 at vertebrate neuromuscular synapses.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paula Mazurek
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Maria J Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland.
| |
Collapse
|
15
|
Hong JH, Park M. Understanding Synaptogenesis and Functional Connectome in C. elegans by Imaging Technology. Front Synaptic Neurosci 2016; 8:18. [PMID: 27445787 PMCID: PMC4925697 DOI: 10.3389/fnsyn.2016.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/17/2016] [Indexed: 11/13/2022] Open
Abstract
Formation of functional synapses is a fundamental process for establishing neural circuits and ultimately for expressing complex behavior. Extensive research has interrogated how such functional synapses are formed and how synapse formation contributes to the generation of neural circuitry and behavior. The nervous system of Caenorhabditis elegans, due to its relatively simple structure, the transparent body, and tractable genetic system, has been adapted as an excellent model to investigate synapses and the functional connectome. Advances in imaging technology together with the improvement of genetically encoded molecular tools enabled us to visualize synapses and neural circuits of the animal model, which provide insights into our understanding of molecules and their signaling pathways that mediate synapse formation and neuronal network modulation. Here, we review synaptogenesis in active zones and the mapping of local connectome in C. elegans nervous system whose understandings have been extended by the advances in imaging technology along with the genetic molecular tools.
Collapse
Affiliation(s)
- Jung-Hwa Hong
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeoul, South Korea; Department of Life Sciences, Korea UniversitySeoul, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeoul, South Korea; Department of Neuroscience, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
16
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Urwyler O, Izadifar A, Dascenco D, Petrovic M, He H, Ayaz D, Kremer A, Lippens S, Baatsen P, Guérin CJ, Schmucker D. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy. Development 2014; 142:394-405. [PMID: 25503410 DOI: 10.1242/dev.115071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.
Collapse
Affiliation(s)
- Olivier Urwyler
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Azadeh Izadifar
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Dan Dascenco
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Milan Petrovic
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Haihuai He
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Derya Ayaz
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Anna Kremer
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Saskia Lippens
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Pieter Baatsen
- VIB, Center for the Biology of Disease, Herestraat 49 box 602, Leuven 3000, Belgium
| | - Christopher J Guérin
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium VIB, Inflammation Research Center Microscopy and Cytometry Core, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| |
Collapse
|
18
|
Enright JM, Lawrence KA, Hadzic T, Corbo JC. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification. J Comp Neurol 2014; 523:649-68. [PMID: 25349106 DOI: 10.1002/cne.23702] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes.
Collapse
Affiliation(s)
- Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110-1024
| | | | | | | |
Collapse
|
19
|
Sakamoto S, Narumiya S, Ishizaki T. A new role of multi scaffold protein Liprin-α: Liprin-α suppresses Rho-mDia mediated stress fiber formation. BIOARCHITECTURE 2014; 2:43-49. [PMID: 22754629 PMCID: PMC3383721 DOI: 10.4161/bioa.20442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulation of the actin cytoskeleton is crucial for cell morphology and migration. One of the key molecules that regulates actin remodeling is the small GTPase Rho. Rho shuttles between the inactive GDP-bound form and the active GTP-bound form, and works as a molecular switch in actin remodeling in response to both extra- and intra-cellular stimuli. Mammalian homolog of Diaphanous (mDia) is one of the Rho effectors and produces unbranched actin filaments. While Rho GTPases activate mDia, the mechanisms of how the activity of mDia is downregulated in cells remains largely unknown. In our recent paper, we identified Liprin-α as an mDia interacting protein and found that Liprin-α negatively regulates the activity of mDia in the cell by displacing it from the plasma membrane through binding to the DID-DD region of mDia. Here, we review these findings and discuss how Liprin-α regulates the Rho-mDia pathway and how the mDia-Liprin-α complex functions in vivo.
Collapse
Affiliation(s)
- Satoko Sakamoto
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto, Japan
| | | | | |
Collapse
|
20
|
Schwabe T, Neuert H, Clandinin TR. A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell 2013; 154:351-64. [PMID: 23870124 DOI: 10.1016/j.cell.2013.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/02/2013] [Accepted: 06/07/2013] [Indexed: 01/17/2023]
Abstract
Neuronal growth cones select synaptic partners through interactions with multiple cell surfaces in their environment. Many of these interactions are adhesive, yet it is unclear how growth cones integrate adhesive cues to direct their movements. Here, we examine the mechanisms that enable photoreceptors in the Drosophila visual system to choose synaptic partners. We demonstrate that the classical cadherin, N-cadherin, and an atypical cadherin, Flamingo, act redundantly to instruct the targeting choices made by every photoreceptor axon. These molecules gradually bias the spatial distribution of growth cone filopodia, polarizing each growth cone toward its future synaptic target before direct contact with the target occurs. We demonstrate that these molecules are localized to distinct subcellular domains and create a network of adhesive interactions distributed across many growth cones. Because this network comprises multiple redundant interactions, a complex wiring diagram can be constructed with extraordinary fidelity, suggesting a general principle.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
21
|
Spangler SA, Schmitz SK, Kevenaar JT, de Graaff E, de Wit H, Demmers J, Toonen RF, Hoogenraad CC. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. ACTA ACUST UNITED AC 2013; 201:915-28. [PMID: 23751498 PMCID: PMC3678157 DOI: 10.1083/jcb.201301011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liprin-α2 is required for the presynaptic recruitment and turnover of RIM1 and CASK, components of the release machinery, and facilitates synaptic output by regulating synaptic vesicle pool size. The presynaptic active zone mediates synaptic vesicle exocytosis, and modulation of its molecular composition is important for many types of synaptic plasticity. Here, we identify synaptic scaffold protein liprin-α2 as a key organizer in this process. We show that liprin-α2 levels were regulated by synaptic activity and the ubiquitin–proteasome system. Furthermore, liprin-α2 organized presynaptic ultrastructure and controlled synaptic output by regulating synaptic vesicle pool size. The presence of liprin-α2 at presynaptic sites did not depend on other active zone scaffolding proteins but was critical for recruitment of several components of the release machinery, including RIM1 and CASK. Fluorescence recovery after photobleaching showed that depletion of liprin-α2 resulted in reduced turnover of RIM1 and CASK at presynaptic terminals, suggesting that liprin-α2 promotes dynamic scaffolding for molecular complexes that facilitate synaptic vesicle release. Therefore, liprin-α2 plays an important role in maintaining active zone dynamics to modulate synaptic efficacy in response to changes in network activity.
Collapse
Affiliation(s)
- Samantha A Spangler
- Department of Neuroscience, Erasmus Medical Center, 3015GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hein I, Suzuki T, Grunwald Kadow IC. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling. PLoS One 2013; 8:e66868. [PMID: 23826162 PMCID: PMC3691217 DOI: 10.1371/journal.pone.0066868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/13/2013] [Indexed: 12/04/2022] Open
Abstract
Background Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1–R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. Results Here, we show that the receptor Golden goal (Gogo) is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1–R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. Conclusion Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1–R6 axon fascicles. In a later developmental step, the regular position of R1–R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1–R6 axons to extend centrally in the lamina cartridge.
Collapse
Affiliation(s)
- Irina Hein
- Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Takashi Suzuki
- Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama, Japan
- * E-mail: (IG-K); (TS)
| | | |
Collapse
|
23
|
R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-β/activin signaling. J Neurosci 2013; 33:1509-20. [PMID: 23345225 DOI: 10.1523/jneurosci.2023-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism.
Collapse
|
24
|
Abstract
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity.
Collapse
|
25
|
Brain-specific-homeobox is required for the specification of neuronal types in the Drosophila optic lobe. Dev Biol 2013; 377:90-9. [PMID: 23454478 DOI: 10.1016/j.ydbio.2013.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 12/17/2022]
Abstract
The Drosophila optic lobe comprises a wide variety of neurons forming laminar and columnar structures similar to the mammalian brain. The Drosophila optic lobe may provide an excellent model to investigate various processes of brain development. However, it is poorly understood how neuronal specification is regulated in the optic lobe to form a complicated structure. Here we show that the Brain-specific-homeobox (Bsh) protein, which is expressed in the lamina and medulla ganglia, is involved in specifying neuronal identity. Bsh is expressed in L4 and L5 lamina neurons and in Mi1 medulla neurons. Analyses of loss-of-function and gain-of-function clones suggest that Bsh is required and largely sufficient for Mi1 specification in the medulla and L4 specification in the lamina. Additionally, Bsh is at least required for L5 specification. In the absence of Bsh, L5 is transformed into glial cells.
Collapse
|
26
|
Abstract
Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductive events and complex cellular interactions coordinates the assembly of visual circuits. Photoreceptor-derived ligands, such as hedgehog and Jelly-Belly, induce target development and expression of specific adhesion molecules, which in turn serve as guidance cues for photoreceptor axons. Afferents are directed to specific layers by adhesive afferent-target interactions mediated by leucine-rich repeat proteins and cadherins, which are restricted spatially and/or modulated dynamically. Afferents are restricted to their topographically appropriate columns by repulsive interactions between afferents and by autocrine activin signaling. Finally, Dscam-mediated repulsive interactions between target neuron dendrites ensure appropriate combinations of postsynaptic elements at synapses. Essentially, all these Drosophila molecules have vertebrate homologs, some of which are known to carry out analogous functions. Thus, the studies of Drosophila visual circuit development would shed light on neural circuit assembly in general.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Baek SH, Cho HW, Kwon YC, Lee JH, Kim MJ, Lee H, Choe KM. Requirement for Pak3 in Rac1-induced organization of actin and myosin during Drosophila larval wound healing. FEBS Lett 2012; 586:772-7. [PMID: 22449966 DOI: 10.1016/j.febslet.2012.01.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/16/2012] [Accepted: 01/29/2012] [Indexed: 01/02/2023]
Abstract
Rho-family small GTPases regulate epithelial cell sheet migration by organizing actin and myosin during wound healing. Here, we report that Pak3, but not Pak1, is a downstream target protein for Rac1 in wound closure of the Drosophila larval epidermis. Pak3-deficient larvae failed to close a wound hole and this defect was not rescued by Pak1 expression, indicating differential functions of the two proteins. Pak3 localized to the wound margin, which selectively required Rac1. Pak3-deficient larvae showed severe defects in actin-myosin organization at the wound margin and in submarginal cells, which was reminiscent of the phenotypes of Rac1-deficient larvae. These results suggest that Pak3 specifically mediates Rac1 signaling in organizing actin and myosin during Drosophila epidermal wound healing.
Collapse
Affiliation(s)
- Seung Hee Baek
- Department of Biology, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Wei Z, Zheng S, Spangler SA, Yu C, Hoogenraad CC, Zhang M. Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol Cell 2011; 43:586-98. [PMID: 21855798 DOI: 10.1016/j.molcel.2011.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/03/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
Abstract
Liprins are highly conserved scaffold proteins that regulate cell adhesion, cell migration, and synapse development by binding to diverse target proteins. The molecular basis governing liprin/target interactions is poorly understood. The liprin-α2/CASK complex structure solved here reveals that the three SAM domains of liprin-α form an integrated supramodule that binds to the CASK kinase-like domain. As supported by biochemical and cellular studies, the interaction between liprin-α and CASK is unique to vertebrates, implying that the liprin-α/CASK interaction is likely to regulate higher-order brain functions in mammals. Consistently, we demonstrate that three recently identified X-linked mental retardation mutants of CASK are defective in binding to liprin-α. We also solved the liprin-α/liprin-β SAM domain complex structure, which uncovers the mechanism underlying liprin heterodimerizaion. Finally, formation of the CASK/liprin-α/liprin-β ternary complex suggests that liprins can mediate assembly of target proteins into large protein complexes capable of regulating numerous cellular activities.
Collapse
Affiliation(s)
- Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
29
|
Tong C, Ohyama T, Tien AC, Rajan A, Haueter CM, Bellen HJ. Rich regulates target specificity of photoreceptor cells and N-cadherin trafficking in the Drosophila visual system via Rab6. Neuron 2011; 71:447-59. [PMID: 21835342 DOI: 10.1016/j.neuron.2011.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 12/25/2022]
Abstract
Neurons establish specific synaptic connections with their targets, a process that is highly regulated. Numerous cell adhesion molecules have been implicated in target recognition, but how these proteins are precisely trafficked and targeted is poorly understood. To identify components that affect synaptic specificity, we carried out a forward genetic screen in the Drosophila eye. We identified a gene, named ric1 homologue (rich), whose loss leads to synaptic specificity defects. Loss of rich leads to reduction of N-Cadherin in the photoreceptor cell synapses but not of other proteins implicated in target recognition, including Sec15, DLAR, Jelly belly, and PTP69D. The Rich protein binds to Rab6, and Rab6 mutants display very similar phenotypes as the rich mutants. The active form of Rab6 strongly suppresses the rich synaptic specificity defect, indicating that Rab6 is regulated by Rich. We propose that Rich activates Rab6 to regulate N-Cadherin trafficking and affects synaptic specificity.
Collapse
Affiliation(s)
- Chao Tong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gontang AC, Hwa JJ, Mast JD, Schwabe T, Clandinin TR. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system. Development 2011; 138:4899-909. [PMID: 22007130 DOI: 10.1242/dev.069930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.
Collapse
Affiliation(s)
- Allison C Gontang
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
31
|
Zürner M, Mittelstaedt T, tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins. J Comp Neurol 2011; 519:3019-39. [DOI: 10.1002/cne.22664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Spangler SA, Jaarsma D, De Graaff E, Wulf PS, Akhmanova A, Hoogenraad CC. Differential expression of liprin-α family proteins in the brain suggests functional diversification. J Comp Neurol 2011; 519:3040-60. [DOI: 10.1002/cne.22665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Stafford RL, Tang MY, Sawaya MR, Phillips ML, Bowie JU. Crystal structure of the central coiled-coil domain from human liprin-β2. Biochemistry 2011; 50:3807-15. [PMID: 21462929 DOI: 10.1021/bi200141e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-αs and two liprin-βs which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-β2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-β1 and liprin-β2 coiled-coils were also identified. A 2.0 Å crystal structure of the central, protease-resistant core of the liprin-β2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.
Collapse
Affiliation(s)
- Ryan L Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall 611 Charles E. Young Dr. E., Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
34
|
Hadjieconomou D, Timofeev K, Salecker I. A step-by-step guide to visual circuit assembly in Drosophila. Curr Opin Neurobiol 2011; 21:76-84. [PMID: 20800474 DOI: 10.1016/j.conb.2010.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Dafni Hadjieconomou
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, NW7 1AA London, United Kingdom
| | | | | |
Collapse
|
35
|
Abstract
Liprin-α proteins are adaptors that interact with the receptor protein tyrosine phosphatase leukocyte common antigen-related (LAR) and other synaptic proteins to promote synaptic partner selection and active zone assembly. Liprin-β proteins bind to and share homology with Liprin-α proteins, but their functions at the synapse are unknown. The Drosophila genome encodes single Liprin-α and Liprin-β homologs, as well as a third related protein that we named Liprin-γ. We show that both Liprin-β and Liprin-γ physically interact with Liprin-α and that Liprin-γ also binds to LAR. Liprin-α mutations have been shown to disrupt synaptic target layer selection by R7 photoreceptors and to reduce the size of larval neuromuscular synapses. We have generated null mutations in Liprin-β and Liprin-γ to investigate their role in these processes. We find that, although Liprin-α mutant R7 axons terminate before reaching the correct target layer, Liprin-β mutant R7 axons grow beyond their target layer. Larval neuromuscular junction size is reduced in both Liprin-α and Liprin-β mutants, and further reduced in double mutants, suggesting independent functions for these Liprins. Genetic interactions demonstrate that both Liprin proteins act through the exchange factor Trio to promote stable target selection by R7 photoreceptor axons and growth of neuromuscular synapses. Photoreceptor and neuromuscular synapses develop normally in Liprin-γ mutants; however, removing Liprin-γ improves R7 targeting in Liprin-α mutants, and restores normal neuromuscular junction size to Liprin-β mutants, suggesting that Liprin-γ counteracts the functions of the other two Liprins. We propose that context-dependent interactions between the three Liprins modulate their functions in synapse formation.
Collapse
|
36
|
Giagtzoglou N, Ly CV, Bellen HJ. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 2010; 1:a003079. [PMID: 20066100 DOI: 10.1101/cshperspect.a003079] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
37
|
Sethi J, Zhao B, Cuvillier-Hot V, Boidin-Wichlacz C, Salzet M, Macagno ER, Baker MW. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration. Mol Cell Neurosci 2010; 45:430-8. [PMID: 20708686 DOI: 10.1016/j.mcn.2010.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/16/2010] [Accepted: 08/01/2010] [Indexed: 01/19/2023] Open
Abstract
LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.
Collapse
Affiliation(s)
- Jasmine Sethi
- Division of Biology, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Astigarraga S, Hofmeyer K, Treisman JE. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr Opin Genet Dev 2010; 20:400-7. [PMID: 20434326 DOI: 10.1016/j.gde.2010.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Abstract
Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
39
|
Margeta MA, Shen K. Molecular mechanisms of synaptic specificity. Mol Cell Neurosci 2009; 43:261-7. [PMID: 19969086 DOI: 10.1016/j.mcn.2009.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/30/2009] [Indexed: 11/27/2022] Open
Abstract
Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity.
Collapse
Affiliation(s)
- Milica A Margeta
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
40
|
Prakash S, Maclendon H, Dubreuil CI, Ghose A, Hwa J, Dennehy KA, Tomalty KM, Clark K, Van Vactor D, Clandinin TR. Complex interactions amongst N-cadherin, DLAR, and Liprin-alpha regulate Drosophila photoreceptor axon targeting. Dev Biol 2009; 336:10-9. [PMID: 19766621 PMCID: PMC2783772 DOI: 10.1016/j.ydbio.2009.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022]
Abstract
The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-alpha play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone and are themselves regulated remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-alpha function in a complex to regulate adhesive interactions between pre- and post-synaptic cells and provide a novel mechanism for controlling the activity of Liprin-alpha in the developing growth cone.
Collapse
Affiliation(s)
- Saurabh Prakash
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Helen Maclendon
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Catherine I. Dubreuil
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Aurnab Ghose
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Jennifer Hwa
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelly A. Dennehy
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Katharine M.H. Tomalty
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelsey Clark
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - David Van Vactor
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Thomas R. Clandinin
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| |
Collapse
|
41
|
The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism. Proc Natl Acad Sci U S A 2009; 106:19399-404. [PMID: 19889974 DOI: 10.1073/pnas.0903961106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors.
Collapse
|
42
|
Photoreceptor neurons find new synaptic targets when misdirected by overexpressing runt in Drosophila. J Neurosci 2009; 29:828-41. [PMID: 19158307 DOI: 10.1523/jneurosci.1022-08.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a neuron differentiates, it adopts a suite of features specific to its particular type. Fly photoreceptors are of two types: R1-R6, which innervate the first optic neuropile, the lamina; and R7-R8, which innervate the second, the medulla. Photoreceptors R1-R6 normally have large light-absorbing rhabdomeres, express Rhodopsin1, and have synaptic terminals that innervate the lamina. In Drosophila melanogaster, we used the yeast GAL4/UAS system to drive exogenous expression of the transcription factor Runt in subsets of photoreceptors, resulting in aberrant axonal pathfinding and, ultimately, incorrect targeting of R1-R6 synaptic terminals to the medulla, normally occupied by terminals from R7 and R8. Even when subsets of their normal R1-R6 photoreceptor inputs penetrate the lamina, to terminate in the medulla, normal target cells within the lamina persist and maintain expression of cell-specific markers. Some R1-R6 photoreceptors form reciprocal synaptic inputs with their normal lamina targets, whereas supernumerary terminals targeted to the medulla also form synapses. At both sites, tetrad synapses form, with four postsynaptic elements at each release site, the usual number in the lamina. In addition, the terminals at both sites are invaginated by profiles of glia, at organelles called capitate projections, which in the lamina are photoreceptor sites of vesicle endocytosis. The size and shape of the capitate projection heads are identical at both lamina and medulla sites, although those in the medulla are ectopic and receive invaginations from foreign glia. This uniformity indicates the cell-autonomous determination of the architecture of its synaptic organelles by the presynaptic photoreceptor terminal.
Collapse
|
43
|
Abstract
The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.
Collapse
|
44
|
Schwabe T, Gontang AC, Clandinin TR. More than just glue: the diverse roles of cell adhesion molecules in the Drosophila nervous system. Cell Adh Migr 2009; 3:36-42. [PMID: 19372748 DOI: 10.4161/cam.3.1.6918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell adhesion is the fundamental driving force that establishes complex cellular architectures, with the nervous system offering a striking, sophisticated case study. Developing neurons adhere to neighboring neurons, their synaptic partners, and to glial cells. These adhesive interactions are required in a diverse array of contexts, including cell migration, axon guidance and targeting, as well as synapse formation and physiology. Forward and reverse genetic screens in the fruit fly Drosophila have uncovered several adhesion molecules that are required for neural development, and detailed cell biological analyses are beginning to unravel how these factors shape nervous system connectivity. Here we review our current understanding of the most prominent of these adhesion factors and their modes of action.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
45
|
Zürner M, Schoch S. The mouse and human Liprin-alpha family of scaffolding proteins: genomic organization, expression profiling and regulation by alternative splicing. Genomics 2008; 93:243-53. [PMID: 19013515 DOI: 10.1016/j.ygeno.2008.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/15/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
Abstract
In the nervous system the Liprin-alpha protein family plays an important role in the regulation of dendrite development, the targeting of photoreceptor axons, and the formation and structure of synapses. To gain a better understanding of Liprin-alpha regulation we have comparatively analyzed the genomic organization of the human and mouse Liprin-alpha genes, characterized the alternative exon use in human and mouse, and studied their expression in adult rodent tissues and brain regions. Our results show that Liprins-alpha1-4 share multiple properties in their genomic structure, exhibit an identical modular organization, and are highly conserved within certain structural domains, indicating strong evolutionary cohesion. We demonstrate that all Liprin-alpha genes are subject to alternative splicing, which is regulated in a developmental manner. Interestingly, regulation via alternative splicing is not conserved between isoforms and across species and represents a post-transcriptional mechanism to independently diversify the properties of the individual isoforms.
Collapse
Affiliation(s)
- Magdalena Zürner
- Department of Neuropathology, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
46
|
Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron 2008; 58:34-41. [PMID: 18400161 PMCID: PMC2692379 DOI: 10.1016/j.neuron.2008.03.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/21/2022]
Abstract
The organization of neuronal processes into a series of layers is a hallmark of many brain regions. Homophilic cell adhesion molecules of the cadherin family have been implicated in layer choice. How they contribute to the targeting of neurons to distinct layers remains unclear. Here we systematically explore the role of a classical cadherin, Drosophila N-cadherin (CadN), in the targeting of five classes of related neurons to a series of consecutive layers in the fly visual system. We show that CadN is required in lamina neurons at discrete developmental steps but not used in a layer-specific fashion. Local CadN expression patterns correlate with specific growth cone movements, and CadN expression on one growth cone in a specific layer is essential for the targeting of processes of another neuron to this layer. We propose that dynamic regulation of CadN enables this widely expressed protein to mediate specific local interactions during neural circuit assembly.
Collapse
|
47
|
Ting CY, Herman T, Yonekura S, Gao S, Wang J, Serpe M, O'Connor MB, Zipursky SL, Lee CH. Tiling of r7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron 2008; 56:793-806. [PMID: 18054857 DOI: 10.1016/j.neuron.2007.09.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 08/29/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022]
Abstract
The organization of neuronal wiring into layers and columns is a common feature of both vertebrate and invertebrate brains. In the Drosophila visual system, each R7 photoreceptor axon projects within a single column to a specific layer of the optic lobe. We refer to the restriction of terminals to single columns as tiling. In a genetic screen based on an R7-dependent behavior, we identified the Activin receptor Baboon and the nuclear import adaptor Importin-alpha3 as being required to prevent R7 axon terminals from overlapping with the terminals of R7s in neighboring columns. This tiling function requires the Baboon ligand, dActivin, the transcription factor, dSmad2, and retrograde transport from the growth cone to the R7 nucleus. We propose that dActivin is an autocrine signal that restricts R7 growth cone motility, and we demonstrate that it acts in parallel with a paracrine signal that mediates repulsion between R7 terminals.
Collapse
Affiliation(s)
- Chun-Yuan Ting
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Synapses are specialized communication junctions between neurons whose plasticity provides the structural and functional basis for information processing and storage in the brain. Recent biochemical, genetic and imaging studies in diverse model systems are beginning to reveal the molecular mechanisms by which synaptic vesicles, ion channels, receptors and other synaptic components assemble to make a functional synapse. Recent evidence has shown that the formation and function of synapses are critically regulated by the liprin-alpha family of scaffolding proteins. The liprin-alphas have been implicated in pre- and post-synaptic development by recruiting synaptic proteins and regulating synaptic cargo transport. Here, we will summarize the diversity of liprin binding partners, highlight the factors that control the function of liprin-alphas at the synapse and discuss how liprin-alpha family proteins regulate synapse formation and synaptic transmission.
Collapse
|
49
|
Hoogenraad CC, Feliu-Mojer MI, Spangler SA, Milstein AD, Dunah AW, Hung AY, Sheng M. Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development. Dev Cell 2007; 12:587-602. [PMID: 17419996 DOI: 10.1016/j.devcel.2007.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 01/09/2007] [Accepted: 02/08/2007] [Indexed: 11/26/2022]
Abstract
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.
Collapse
Affiliation(s)
- Casper C Hoogenraad
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Yonekura S, Xu L, Ting CY, Lee CH. Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents. Dev Biol 2007; 304:759-70. [PMID: 17320070 PMCID: PMC1959568 DOI: 10.1016/j.ydbio.2007.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 12/28/2022]
Abstract
Drosophila N-cadherin (CadN) is an evolutionarily conserved, atypical classical cadherin, which has a large complex extracellular domain and a catenin-binding cytoplasmic domain. We have previously shown that CadN regulates target selection of R7 photoreceptor axons. To determine the functional domains of CadN, we conducted a structure-function analysis focusing on its in vitro adhesive activity and in vivo function in R7 growth cones. We found that the cytoplasmic domain of CadN is largely dispensable for the targeting of R7 growth cones, and it is not essential for mediating homophilic interaction in cultured cells. Instead, the cytoplasmic domain of CadN is required for maintaining proper growth cone morphology. Domain swapping with the extracellular domain of CadN2, a related but non-adhesive cadherin, revealed that the CadN extracellular domain is required for both adhesive activity and R7 targeting. Using a target-mosaic system, we generated CadN mutant clones in the optic lobe and examined the target-selection of genetically wild-type R7 growth cones to CadN mutant target neurons. We found that CadN, but neither LAR nor Liprin-alpha, is required in the medulla neurons for R7 growth cones to select the correct medulla layer. Together, these data suggest that CadN mediates homophilic adhesive interactions between R7 growth cones and medulla neurons to regulate layer-specific target selection.
Collapse
Affiliation(s)
| | | | | | - Chi-Hon Lee
- * To whom correspondence should be addressed: Chi-Hon Lee, M.D., Ph.D., Unit of Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Building 18T, Room 106, MSC 5431, Bethesda, MD 20892, Tel: 301-435-1940, Fax: 301-496-4491, e-mail:
| |
Collapse
|