1
|
Mori S, Zhou H, Omura T, Tsumoto H, Miura Y, Shigemoto K. Muscle-specific kinase levels in blood are an early diagnostic biomarker for SOD1-93A mouse model of ALS. Front Neurol 2025; 16:1556120. [PMID: 40356623 PMCID: PMC12066615 DOI: 10.3389/fneur.2025.1556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Neuromuscular junction (NMJ) denervation is an early event preceding motor neuron loss in amyotrophic lateral sclerosis (ALS). Progressive loss of the NMJ leads to irreversible muscle weakness and atrophy. Muscle-specific kinase (MuSK), locally expressed at the postsynaptic membrane of the NMJ, is activated by agrin released from motor nerve terminals and is essential for NMJ maintenance and regeneration. Here, we found that the progression of NMJ denervation prior to the onset of muscle weakness in SOD1-93A mouse model of ALS correlated with increased serum MuSK immunoreactivity and elevated MuSK expression throughout the skeletal muscle. Our results suggest that neuromuscular failure associated with the onset of muscle weakness increases MuSK expression throughout the muscle, which is subsequently cleaved by proteolytic enzymes to increase MuSK immunoreactivity in the blood. These results demonstrate that the level of serum MuSK immunoreactivity may indicate the early phase of NMJ denervation and serve as a biomarker for assessing the progression of other types of ALS and therapeutic benefits in preclinical studies.
Collapse
Affiliation(s)
- Shuuichi Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Heying Zhou
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Takuya Omura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazuhiro Shigemoto
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
2
|
Alves PKN, Cruz A, Silva WJ, Melazzo AM, Labeit S, Adams V, Moriscot AS. Leucine Supplementation Counteracts the Atrophic Effects of HDAC4 in Rat Skeletal Muscle Submitted to Hindlimb Immobilization. Muscle Nerve 2025. [PMID: 40183248 DOI: 10.1002/mus.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION/AIMS We previously demonstrated that leucine supplementation significantly reduces histone deacetylase 4 (HDAC4) expression induced by hindlimb immobilization, thereby attenuating the increase in HDAC4 protein levels and nuclear accumulation. In this study, we investigated the impact of supraphysiological HDAC4 levels on skeletal muscle and the inhibitory potential of leucine in this scenario. METHODS A total of 64 male Wistar rats were used in this study and subjected to electroporation of the soleus muscle with or without a plasmid overexpressing HDAC4 mRNA, followed by hindlimb immobilization and leucine supplementation (1.35 g/kg) for 7 days. RESULTS Our findings revealed that HDAC4 overexpression alone led to soleus atrophy, resulting in a 23% decrease in mass, a 31% reduction in whole muscle cross-sectional area (CSA), and a 17% decrease in fiber CSA. These reductions were further exacerbated by hindlimb immobilization, with decreases of 50%, 46%, and 34%, respectively. Moreover, leucine supplementation protected against soleus atrophy and preserved soleus fiber CSA by 17%. This protective effect was accompanied by a 57% reduction in HDAC4-positive nuclear localization in immobilized rats overexpressing HDAC4. DISCUSSION Our results indicate that HDAC4 forced expression can alone induce skeletal muscle atrophy. In addition, our results indicate that leucine is dominant in blocking HDAC4 signaling and highlight the use of this amino acid as a therapeutic tool in conditions involving skeletal muscle atrophy.
Collapse
Affiliation(s)
- Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William J Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Afonso M Melazzo
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Siegfried Labeit
- Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Institute for Integrative Pathophysiology, Mannheim, Germany
- Myomedix GmbH, Neckargemund, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Ham AS, Lin S, Tse A, Thürkauf M, McGowan TJ, Jörin L, Oliveri F, Rüegg MA. Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. Nat Commun 2025; 16:2220. [PMID: 40044687 PMCID: PMC11882927 DOI: 10.1038/s41467-025-57487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
The neuromuscular junction (NMJ) is the synapse formed between motor neurons and skeletal muscle fibers. Its stability relies on the continued expression of genes in a subset of myonuclei, called NMJ myonuclei. Here, we use single-nuclei RNA-sequencing (snRNA-seq) to identify numerous NMJ-specific transcripts. To elucidate how the NMJ transcriptome is regulated, we also performed snRNA-seq on sciatic nerve transected, botulinum toxin injected, and Musk knockout muscles. The data show that NMJ gene expression is not only driven by agrin-Lrp4/MuSK signaling but is also affected by electrical activity and trophic factors other than agrin. By selecting the three NMJ genes Etv4, Lrtm1, and Pdzrn4, we further characterize novel contributors to NMJ stability and function. AAV-mediated overexpression shows that Etv4 is sufficient to upregulate the expression of -50% of the NMJ genes in non-synaptic myonuclei, while AAV-CRISPR/Cas9-mediated muscle-specific knockout of Pdzrn4 induces NMJ fragmentation. Further investigation of Pdzrn4 revealed that it localizes to the Golgi apparatus and interacts with MuSK protein. Collectively, our data provide a rich resource of NMJ transcripts, highlight the importance of ETS transcription factors at the NMJ, and suggest a novel pathway for NMJ post-translational modifications.
Collapse
Affiliation(s)
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alice Tse
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Lena Jörin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
4
|
Zhao X, Wang H, Xu D, Fu J, Wang H. Trichostatin A reverses rocuronium resistance in burn-injured rats. Burns 2025; 51:107351. [PMID: 39729668 DOI: 10.1016/j.burns.2024.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
AIMS This study aimed to investigate whether the histone deacetylase HDAC4 inhibitor, trichostatin A (TSA), could reverse resistance to non-depolarizing muscle relaxants (NDMRs) caused by burn injuries. MATERIALS AND METHODS A rat burn injury model was established, in which TSA was administered to inhibit HDAC4 expression. The potency of rocuronium was assessed through tension tests, and the levels of HDAC4 and myogenin proteins were determined using Western blot. Additionally, siRNA was utilized to explore the effects of HDAC4 knockdown on rocuronium potency and protein expression. RESULTS The burn injuries increased the IC50 of rocuronium, which was reversed by TSA treatment. Furthermore, HDAC4 and myogenin protein expression levels were increased significantly in burned legs, a phenomenon that TSA effectively counteracted. HDAC4 knockdown decreased rocuronium IC50 and lowered HDAC4 and myogenin protein expression in the subsequent burn injuries. CONCLUSION The HDAC4 inhibitor TSA has the ability to mitigate NDMR resistance in skeletal muscle via the HDAC4-myogenin pathway after burn injuries.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Huijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Dian Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Junzuo Fu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Falcetta D, Quirim S, Cocchiararo I, Chabry F, Théodore M, Stiefvater A, Lin S, Tintignac L, Ivanek R, Kinter J, Rüegg MA, Sinnreich M, Castets P. CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I. Skelet Muscle 2024; 14:11. [PMID: 38769542 PMCID: PMC11106974 DOI: 10.1186/s13395-024-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.
Collapse
Affiliation(s)
- Denis Falcetta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Sandrine Quirim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Florent Chabry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Marine Théodore
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Adeline Stiefvater
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Lionel Tintignac
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, Basel, CH-4053, Switzerland
- Swiss Institute of Bioinformatics, Hebelstrasse 20, Basel, CH-4053, Switzerland
| | - Jochen Kinter
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland.
| |
Collapse
|
7
|
Yagound B, Sarma RR, Edwards RJ, Richardson MF, Rodriguez Lopez CM, Crossland MR, Brown GP, DeVore JL, Shine R, Rollins LA. Is developmental plasticity triggered by DNA methylation changes in the invasive cane toad ( Rhinella marina)? Ecol Evol 2024; 14:e11127. [PMID: 38450317 PMCID: PMC10917582 DOI: 10.1002/ece3.11127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Many organisms can adjust their development according to environmental conditions, including the presence of conspecifics. Although this developmental plasticity is common in amphibians, its underlying molecular mechanisms remain largely unknown. Exposure during development to either 'cannibal cues' from older conspecifics, or 'alarm cues' from injured conspecifics, causes reduced growth and survival in cane toad (Rhinella marina) tadpoles. Epigenetic modifications, such as changes in DNA methylation patterns, are a plausible mechanism underlying these developmental plastic responses. Here we tested this hypothesis, and asked whether cannibal cues and alarm cues trigger the same DNA methylation changes in developing cane toads. We found that exposure to both cannibal cues and alarm cues was associated with local changes in DNA methylation patterns. These DNA methylation changes affected genes putatively involved in developmental processes, but in different genomic regions for different conspecific-derived cues. Genetic background explains most of the epigenetic variation among individuals. Overall, the molecular mechanisms triggered by exposure to cannibal cues seem to differ from those triggered by alarm cues. Studies linking epigenetic modifications to transcriptional activity are needed to clarify the proximate mechanisms that regulate developmental plasticity in cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Roshmi R. Sarma
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Richard J. Edwards
- Evolution & Ecology Research Centre, School of Biotechnology and Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
| | - Carlos M. Rodriguez Lopez
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- Environmental Epigenetics and Genetics Group, Department of HorticultureCollege of Agriculture, Food and Environment, University of KentuckyLexingtonKentuckyUSA
| | - Michael R. Crossland
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Gregory P. Brown
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- UMR 241 EIOUniversity of French Polynesia, IFREMER, ILM, IRDFaa’aTahitiFrench Polynesia
| | - Richard Shine
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
8
|
Liu Y, Lin W. Morphological and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy. Hum Mol Genet 2024; 33:233-244. [PMID: 37883471 PMCID: PMC10800017 DOI: 10.1093/hmg/ddad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| |
Collapse
|
9
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
10
|
Mori S, Suzuki S, Konishi T, Kawaguchi N, Kishi M, Kuwabara S, Ishizuchi K, Zhou H, Shibasaki F, Tsumoto H, Omura T, Miura Y, Mori S, Higashihara M, Murayama S, Shigemoto K. Proteolytic ectodomain shedding of muscle-specific tyrosine kinase in myasthenia gravis. Exp Neurol 2023; 361:114300. [PMID: 36525997 DOI: 10.1016/j.expneurol.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autoantibodies to muscle-specific tyrosine kinase (MuSK) proteins at the neuromuscular junction (NMJ) cause refractory generalized myasthenia gravis (MG) with dyspnea more frequently than other MG subtypes. However, the mechanisms via which MuSK, a membrane protein locally expressed on the NMJ of skeletal muscle, is supplied to the immune system as an autoantigen remains unknown. Here, we identified MuSK in both mouse and human serum, with the amount of MuSK dramatically increasing in mice with motor nerve denervation and in MG model mice. Peptide analysis by liquid chromatography-tandem-mass spectrometry (LC-MS/MS) confirmed the presence of MuSK in both human and mouse serum. Furthermore, some patients with MG have significantly higher amounts of MuSK in serum than healthy controls. Our results indicated that the secretion of MuSK proteins from muscles into the bloodstream was induced by ectodomain shedding triggered by neuromuscular junction failure. The results may explain why MuSK-MG is refractory to treatments and causes rapid muscle atrophy in some patients due to the denervation associated with Ab-induced disruption of neuromuscular transmission at the NMJ. Such discoveries pave the way for new MG treatments, and MuSK may be used as a biomarker for other neuromuscular diseases in preclinical studies, clinical diagnostics, therapeutics, and drug discovery.
Collapse
Affiliation(s)
- Shuuichi Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | | | - Naoki Kawaguchi
- Dowa Institute of Clinical Neuroscience, Neurology Clinic Chiba, Chiba, Japan
| | - Masahiko Kishi
- Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Heying Zhou
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Takuya Omura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Seijiro Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo (TMGHIG), Japan
| | | | - Kazuhiro Shigemoto
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan.
| |
Collapse
|
11
|
Kaplan MM, Flucher BE. Counteractive and cooperative actions of muscle β-catenin and CaV1.1 during early neuromuscular synapse formation. iScience 2022; 25:104025. [PMID: 35340430 PMCID: PMC8941212 DOI: 10.1016/j.isci.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Activity-dependent calcium signals in developing muscle play a crucial role in neuromuscular junction (NMJ) formation. However, its downstream effectors and interactions with other regulators of pre- and postsynaptic differentiation are poorly understood. Here, we demonstrate that the skeletal muscle calcium channel CaV1.1 and β-catenin interact in various ways to control NMJ development. They differentially regulate nerve branching and presynaptic innervation patterns during the initial phase of NMJ formation. Conversely, they cooperate in regulating postsynaptic AChR clustering, synapse formation, and the proper organization of muscle fibers in mouse diaphragm. CaV1.1 does not directly regulate β-catenin expression but differentially controls the activity of its transcriptional co-regulators TCF/Lef and YAP. These findings suggest a crosstalk between CaV1.1 and β-catenin in the activity-dependent transcriptional regulation of genes involved in specific pre- and postsynaptic aspects of NMJ formation. Neuromuscular junction formation requires either muscle calcium or β-catenin signaling Complementary actions of CaV1.1 and β-catenin control presynaptic innervation patterns Parallel actions of CaV1.1 and β-catenin are crucial for postsynaptic AChR clustering Loss of CaV1.1 differentially regulates activity of β-catenin targets TCF/Lef and YAP
Collapse
Affiliation(s)
- Mehmet Mahsum Kaplan
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
- Corresponding author
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021; 11:13560. [PMID: 34193880 PMCID: PMC8245453 DOI: 10.1038/s41598-021-92489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism of muscle atrophy has been studied a lot, but there is no comprehensive analysis focusing on the denervated muscle atrophy. The gene network that controls the development of denervated muscle atrophy needs further elucidation. We examined differentially expressed genes (DEGs) from five denervated muscle atrophy microarray datasets and predicted microRNAs that target these DEGs. We also included the differentially expressed microRNAs datasets of denervated muscle atrophy in previous studies as background information to identify potential key microRNAs. Finally, we compared denervated muscle atrophy with disuse muscle atrophy caused by other reasons, and obtained the Den-genes which only differentially expressed in denervated muscle atrophy. In this meta-analysis, we obtained 429 up-regulated genes, 525 down-regulated genes and a batch of key microRNAs in denervated muscle atrophy. We found eight important microRNA-mRNA interactions (miR-1/Jun, miR-1/Vegfa, miR-497/Vegfa, miR-23a/Vegfa, miR-206/Vegfa, miR-497/Suclg1, miR-27a/Suclg1, miR-27a/Mapk14). The top five KEGG pathways enriched by Den-genes are Insulin signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and B cell receptor signaling pathway. Our research has delineated the RNA regulatory network of denervated muscle atrophy, and uncovered the specific genes and terms in denervated muscle atrophy.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China. .,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China.
| |
Collapse
|
14
|
Ma W, Cai Y, Shen Y, Chen X, Zhang L, Ji Y, Chen Z, Zhu J, Yang X, Sun H. HDAC4 Knockdown Alleviates Denervation-Induced Muscle Atrophy by Inhibiting Myogenin-Dependent Atrogene Activation. Front Cell Neurosci 2021; 15:663384. [PMID: 34276308 PMCID: PMC8278478 DOI: 10.3389/fncel.2021.663384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Denervation can activate the catabolic pathway in skeletal muscle and lead to progressive skeletal muscle atrophy. At present, there is no effective treatment for muscle atrophy. Histone deacetylase 4 (HDAC4) has recently been found to be closely related to muscle atrophy, but the underlying mechanism of HDAC4 in denervation-induced muscle atrophy have not been described clearly yet. In this study, we found that the expression of HDAC4 increased significantly in denervated skeletal muscle. HDAC4 inhibition can effectively diminish denervation-induced muscle atrophy, reduce the expression of muscle specific E3 ubiquitin ligase (MuRF1 and MAFbx) and autophagy related proteins (Atg7, LC3B, PINK1 and BNIP3), inhibit the transformation of type I fibers to type II fibers, and enhance the expression of SIRT1 and PGC-1 α. Transcriptome sequencing and bioinformatics analysis was performed and suggested that HDAC4 may be involved in denervation-induced muscle atrophy by regulating the response to denervation involved in the regulation of muscle adaptation, cell division, cell cycle, apoptotic process, skeletal muscle atrophy, and cell differentiation. STRING analysis showed that HDAC4 may be involved in the process of muscle atrophy by directly regulating myogenin (MYOG), cell cycle inhibitor p21 (CDKN1A) and salt induced kinase 1 (SIK1). MYOG was significantly increased in denervated skeletal muscle, and MYOG inhibition could significantly alleviate denervation-induced muscle atrophy, accompanied by the decreased MuRF1 and MAFbx. MYOG overexpression could reduce the protective effect of HDAC4 inhibition on denervation-induced muscle atrophy, as evidenced by the decreased muscle mass and cross-sectional area of muscle fibers, and the increased mitophagy. Taken together, HDAC4 inhibition can alleviate denervation-induced muscle atrophy by reducing MYOG expression, and HDAC4 is also directly related to CDKN1A and SIK1 in skeletal muscle, which suggests that HDAC4 inhibitors may be a potential drug for the treatment of neurogenic muscle atrophy. These results not only enrich the molecular regulation mechanism of denervation-induced muscle atrophy, but also provide the experimental basis for HDAC4-MYOG axis as a new target for the prevention and treatment of muscular atrophy.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Cai
- Department of Neurology, People's Hospital of Binhai County, Yancheng, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lilei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
15
|
The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 2021; 67:101305. [PMID: 33610815 DOI: 10.1016/j.arr.2021.101305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?
Collapse
|
16
|
Zhang YJ, Yao Y, Zhang PD, Li ZH, Zhang P, Li FR, Wang ZH, Liu D, Lv YB, Kang L, Shi XM, Mao C. Association of regular aerobic exercises and neuromuscular junction variants with incidence of frailty: an analysis of the Chinese Longitudinal Health and Longevity Survey. J Cachexia Sarcopenia Muscle 2021; 12:350-357. [PMID: 33527771 PMCID: PMC8061381 DOI: 10.1002/jcsm.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Candidate genes of neuromuscular junction (NMJ) pathway increased risk of frailty, but the extent and whether can be offset by exercises was unclear. The aim of this study was to investigate the association between aerobic exercises and incident frailty regardless of NMJ pathway-related genetic risk. METHODS A cohort study on participants from Chinese Longitudinal Healthy Longevity Survey was conducted from 2008 to 2011. A total of 7006 participants (mean age of 80.6 ± 10.3 years) without frailty at baseline were interviewed to record aerobic exercise status, and 4053 individuals among them submitted saliva samples. NMJ pathway-related genes were genotyped and weighted genetic risk scores were constructed. RESULTS During a median follow-up of 3.1 years (19 634 person-years), there were 1345 cases (19.2%) of incident frailty. Persistent aerobic exercises were associated with a 26% lesser frailty risk [adjusted hazard ratio (HR) = 0.74, 95% confidence interval (CI) = 0.64-0.85]. This association was stronger in a subgroup of 1552 longevous participants (age between 90 and 111 years, adjusted HR = 0.72, 95% CI = 0.60-0.87). High genetic risk was associated with a 35% increased risk of frailty (adjusted HR = 1.35, 95% CI = 1.16-1.58). Of the participants with high genetic risk and no persistent aerobic exercises, there was a 59% increased risk of frailty (adjusted HR = 1.59, 95% CI = 1.20-2.09). HRs for the risk of frailty increased from the low genetic risk with persistent aerobic exercise to high genetic risk without persistent aerobic exercise (P trend <0.001). CONCLUSIONS Both aerobic exercises and NMJ pathway-related genetic risk were significantly associated with frailty. Persistent aerobic exercises can partly offset NMJ pathway-related genetic risk to frailty in elderly people.
Collapse
Affiliation(s)
- Yu-Jie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yao Yao
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Pei-Dong Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Fu-Rong Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zheng-He Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yue-Bin Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Kang
- Department of Geriatrics, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Ming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
18
|
Alves PKN, Cruz A, Silva WJ, Labeit S, Moriscot AS. Leucine Supplementation Decreases HDAC4 Expression and Nuclear Localization in Skeletal Muscle Fiber of Rats Submitted to Hindlimb Immobilization. Cells 2020; 9:cells9122582. [PMID: 33276563 PMCID: PMC7761616 DOI: 10.3390/cells9122582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we surveyed a rat skeletal muscle RNA-Seq for genes that are induced by hindlimb immobilization and, in turn, become attenuated by leucine supplementation. This approach, in search of leucine-atrophy protection mediating genes, identified histone deacetylase 4 (HDAC4) as highly responsive to both hindlimb immobilization and leucine supplementation. We then examined the impact of leucine on HDAC4 expression, tissue localization, and target genes. A total of 76 male Wistar rats (~280 g) were submitted to hindlimb immobilization and/or leucine supplementation for 3, 7 and 12 days. These animals were euthanized, and soleus muscle was removed for further analysis. RNA-Seq analysis of hindlimb immobilized rats indicated a sharp induction (log2 = 3.4) of HDAC4 expression which was attenuated by leucine supplementation (~50%). Real-time PCR and protein expression analysis by Western blot confirmed increased HDAC4 mRNA after 7 days of hindlimb immobilization and mitigation of induction by leucine supplementation. Regarding the HDAC4 localization, the proportion of positive nuclei was higher in the immobilized group and decreased after leucine supplementation. Also, we found a marked decrease of myogenin and MAFbx-atrogin-1 mRNA levels upon leucine supplementation, while CAMKII and DACH2 mRNA levels were increased by leucine supplementation. Our data suggest that HDAC4 inhibition might be involved in the anti-atrophic effects of leucine.
Collapse
Affiliation(s)
- Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - William J. Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
| | - Siegfried Labeit
- Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Institute for Integrative Pathophysiology, Universitätsmedizin Mannheim, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemund, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508000, Brazil; (P.K.N.A.); (A.C.); (W.J.S.)
- Correspondence:
| |
Collapse
|
19
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
20
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
21
|
Lagosz KB, Bysiek A, Macina JM, Bereta GP, Kantorowicz M, Lipska W, Sochalska M, Gawron K, Kaczmarzyk T, Chomyszyn-Gajewska M, Fossati G, Potempa J, Grabiec AM. HDAC3 Regulates Gingival Fibroblast Inflammatory Responses in Periodontitis. J Dent Res 2019; 99:98-106. [PMID: 31693860 PMCID: PMC6927072 DOI: 10.1177/0022034519885088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression that are aberrantly regulated in several inflammatory and infectious diseases. HDAC inhibitors (HDACi) suppress inflammatory activation of various cell types through epigenetic and non-epigenetic mechanisms, and ameliorate pathology in a mouse model of periodontitis. Activation of gingival fibroblasts (GFs) significantly contributes to the development of periodontitis and the anaerobic bacterium Porphyromonas gingivalis plays a key role in driving chronic inflammation. Here, we analyzed the role of HDACs in inflammatory responses of GFs. Pan-HDACi suberoylanilide hydroxamic acid (SAHA) and/or ITF2357 (givinostat) significantly reduced TNFα- and P. gingivalis–inducible expression and/or production of a cluster of inflammatory mediators in healthy donor GFs (IL1B, CCL2, CCL5, CXCL10, COX2, and MMP3) without affecting cell viability. Selective inhibition of HDAC3/6, but not specific HDAC1, HDAC6, or HDAC8 inhibition, reproduced the suppressive effects of pan-HDACi on the inflammatory gene expression profile induced by TNFα and P. gingivalis, suggesting a critical role for HDAC3 in GF inflammatory activation. Consistently, silencing of HDAC3 expression with siRNA largely recapitulated the effects of HDAC3/6i on mRNA levels of inflammatory mediators in P. gingivalis–infected GFs. In contrast, P. gingivalis internalization and intracellular survival in GFs remained unaffected by HDACi. Activation of mitogen-activated protein kinases and NFκB signaling was unaffected by global or HDAC3/6-selective HDACi, and new protein synthesis was not required for gene suppression by HDACi. Finally, pan-HDACi and HDAC3/6i suppressed P. gingivalis–induced expression of IL1B, CCL2, CCL5, CXCL10, MMP1, and MMP3 in GFs from patients with periodontitis. Our results identify HDAC3 as an important regulator of inflammatory gene expression in GFs and suggest that therapeutic targeting of HDAC activity, in particular HDAC3, may be clinically beneficial in suppressing inflammation in periodontal disease.
Collapse
Affiliation(s)
- K B Lagosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - A Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J M Macina
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - G P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - M Kantorowicz
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - W Lipska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - M Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - T Kaczmarzyk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - M Chomyszyn-Gajewska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - G Fossati
- Italfarmaco, Cinisello Balsamo, Milan, Italy
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
22
|
Traoré M, Gentil C, Benedetto C, Hogrel JY, De la Grange P, Cadot B, Benkhelifa-Ziyyat S, Julien L, Lemaitre M, Ferry A, Piétri-Rouxel F, Falcone S. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci Transl Med 2019; 11:11/517/eaaw1131. [DOI: 10.1126/scitranslmed.aaw1131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 β subunit (CaVβ1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVβ1E. CaVβ1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVβ1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVβ1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVβ1E analogous and show a correlation between CaVβ1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVβ1E or GDF5 might be effective in reducing muscle mass loss in aging.
Collapse
Affiliation(s)
| | - Christel Gentil
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Chiara Benedetto
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Bruno Cadot
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Laura Julien
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | | | - Arnaud Ferry
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - France Piétri-Rouxel
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Sestina Falcone
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
23
|
mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4. Nat Commun 2019; 10:3187. [PMID: 31320633 PMCID: PMC6639401 DOI: 10.1038/s41467-019-11227-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions. Denervation leads to muscle atrophy and neuromuscular endplate remodeling. Here, the authors show that a balanced activation of mTORC1 contributes to the dynamic regulation of autophagic flux in denervated muscle and that activation of PKB/Akt promotes the nuclear import of HDAC4, which is essential for endplate maintenance upon nerve injury
Collapse
|
24
|
Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of GALGT2 Expression and GALGT2-Dependent Muscle and Neuromuscular Phenotypes. Mol Cell Biol 2019; 39:MCB.00140-19. [PMID: 31036568 DOI: 10.1128/mcb.00140-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.
Collapse
|
25
|
Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle. Noncoding RNA 2019; 5:ncrna5020033. [PMID: 30965639 PMCID: PMC6631233 DOI: 10.3390/ncrna5020033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a highly plastic tissue and decreased skeletal muscle mass (muscle atrophy) results in deteriorated motor function and perturbed body homeostasis. Myogenin promoter-associated long non-coding RNA (lncRNA) Myoparr promotes skeletal muscle atrophy caused by surgical denervation; however, the precise molecular mechanism remains unclear. Here, we examined the downstream genes of Myoparr during muscle atrophy following denervation of tibialis anterior (TA) muscles in C57BL/6J mice. Myoparr knockdown affected the expression of 848 genes. Sixty-five of the genes differentially regulated by Myoparr knockdown coded secretory proteins. Among these 65 genes identified in Myoparr-depleted skeletal muscles after denervation, we focused on the increased expression of growth/differentiation factor 5 (GDF5), an inhibitor of muscle atrophy. Myoparr knockdown led to activated bone morphogenetic protein (BMP) signaling in denervated muscles, as indicated by the increased levels of phosphorylated Smad1/5/8. Our detailed evaluation of downstream genes of Myoparr also revealed that Myoparr regulated differential gene expression between myogenic differentiation and muscle atrophy. This is the first report demonstrating the in vivo role of Myoparr in regulating BMP signaling in denervated muscles. Therefore, lncRNAs that have inhibitory activity on BMP signaling may be putative therapeutic targets for skeletal muscle atrophy.
Collapse
|
26
|
Rezapour S, Shiravand M, Mardani M. Epigenetic changes due to physical activity. Biotechnol Appl Biochem 2018; 65:761-767. [PMID: 30144174 DOI: 10.1002/bab.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023]
Abstract
One of the epigenetic-modifying factors is regular and continuous physical activity. This article attempts to investigate the effects of physical activity and exercise on changes in histone proteins and gene expression, as well as the effect of these exercises on the prevention of certain cancers and the ejection of age-related illnesses and cellular oxidation interactions. All of this is due to epigenetic changes and gene expression. Most studies have reported the positive effects of regular exercises on the expression of histone proteins. DNA methylation and the prevention of certain diseases such as cancer and respiratory diseases, caused by antioxidative interactions that occur more often in the elderly, have been studied.
Collapse
Affiliation(s)
- Sadegh Rezapour
- Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mustafa Shiravand
- Faculty of Physical Education and Sports Sciences, Gilan University, Gilan, Iran
| | - Mahnaz Mardani
- Nutritional Health Research Center, Health and Nutrition Department, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
27
|
Wei D, Raza SHA, Zhang J, Gui L, Rahman SU, Khan R, Hosseini SM, Kaleri HA, Zan L. Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene 2018; 656:9-16. [DOI: 10.1016/j.gene.2018.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
|
28
|
Shin K, Ko YG, Jeong J, Kwon H. Fbxw7β is an inducing mediator of dexamethasone-induced skeletal muscle atrophy in vivo with the axis of Fbxw7β-myogenin-atrogenes. Mol Biol Rep 2018; 45:625-631. [PMID: 29671242 DOI: 10.1007/s11033-018-4185-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Muscle atrophy is induced by several pathways, e.g., it can be attributed to inherited cachectic symptoms, genetic disorders, sarcopenia, or chronic side effects of treatments. However, the underlying regulatory mechanisms that contribute to muscle atrophy have not been fully elucidated. In this study, we evaluated the role of Fbxw7β, an ubiquitin E3 ligase, in a dexamethasone-induced muscle atrophy model. In this model, endogenous Fbxw7β was up-regulated; furthermore, the Fbxw7β-myogenin-atrogene axis was upregulated, supporting our previous results linking Fbxw7β to muscle atrophy in vitro. Also, muscle atrophy was associated with the Fbxw7β-myogenin-atrogene axis and the down-regulation of Dach2, a repressor of myogenin. Taken together, these results suggest that the ubiquitin E3 ligase Fbxw7β and the Fbxw7β-myogenin-atrogene axis have important roles in a dexamethasone-induced muscle atrophy model in vivo and in vitro. Additionally, the Fbxw7β-Dach2-myogenin-atrogene axis is a potential mechanism underlying muscle atrophy in cases of abnormal Fbxw7β expression-induced muscle atrophy or myogenic degenerative disease.
Collapse
Affiliation(s)
- Kyungshin Shin
- Radiation Molecular Diagnosis Research Team, Korea Institute of Radiological and Medical Science, Seoul, 01812, Republic of Korea.,Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang Unviersity College of Medicine, 222 Wangsimni-ro, Seoungdong-gu, Seoul, 04763, Republic of Korea.
| | - Heechung Kwon
- Radiation Molecular Diagnosis Research Team, Korea Institute of Radiological and Medical Science, Seoul, 01812, Republic of Korea. .,Division of Radiation Cancer Center, KIRAMS, 75 Nowon-Gil, Nowon-Gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
29
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
30
|
Cid‐Díaz T, Santos‐Zas I, González‐Sánchez J, Gurriarán‐Rodríguez U, Mosteiro CS, Casabiell X, García‐Caballero T, Mouly V, Pazos Y, Camiña JP. Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. J Cachexia Sarcopenia Muscle 2017; 8:974-990. [PMID: 28675664 PMCID: PMC5700440 DOI: 10.1002/jcsm.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/09/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Many pathological states characterized by muscle atrophy are associated with an increase in circulating glucocorticoids and poor patient prognosis, making it an important target for treatment. The development of treatments for glucocorticoid-induced and wasting disorder-related skeletal muscle atrophy should be designed based on how the particular transcriptional program is orchestrated and how the balance of muscle protein synthesis and degradation is deregulated. Here, we investigated whether the obestatin/GPR39 system, an autocrine/paracrine signaling system acting on myogenesis and with anabolic effects on the skeletal muscle, could protect against glucocorticoid-induced muscle cell atrophy. METHODS In the present study, we have utilized mouse C2C12 myotube cultures to examine whether the obestatin/GPR39 signaling pathways can affect the atrophy induced by the synthetic glucocorticoid dexamethasone. We have extended these findings to in vitro effects on human atrophy using human KM155C25 myotubes. RESULTS The activation of the obestatin/GPR39 system protects from glucocorticoid-induced atrophy by regulation of Akt, PKD/PKCμ, CAMKII and AMPK signaling and its downstream targets in the control of protein synthesis, ubiquitin-proteasome system and autophagy-lysosome system in mouse cells. We compared mouse and human myotube cells in their response to glucocorticoid and identified differences in both the triggering of the atrophic program and the response to obestatin stimulation. Notably, we demonstrate that specific patterns of post-translational modifications of FoxO4 and FoxO1 play a key role in directing FoxO activity in response to obestatin in human myotubes. CONCLUSIONS Our findings emphasize the function of the obestatin/GPR39 system in coordinating a variety of pathways involved in the regulation of protein degradation during catabolic conditions.
Collapse
Affiliation(s)
- Tania Cid‐Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Icía Santos‐Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jessica González‐Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Uxía Gurriarán‐Rodríguez
- Sprott Center for Stem Cell ResearchOttawa Hospital Research Institute501 Smyth RoadOttawaOntarioK1H 8L6Canada
| | - Carlos S. Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Xesús Casabiell
- Departamento de FisiologíaFacultad de Veterinaria, Universidad de Santiago de Compostela (USC)Carballo Calero s/n27002LugoSpain
| | - Tomás García‐Caballero
- Departamento de Ciencias MorfológicasFacultad de Medicina, USCSan Francisco s/n15704Santiago de CompostelaSpain
| | - Vincent Mouly
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology47 Boulevard de l'hôpital75013ParisFrance
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jesús P. Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| |
Collapse
|
31
|
Fisher AG, Seaborne RA, Hughes TM, Gutteridge A, Stewart C, Coulson JM, Sharples AP, Jarvis JC. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB J 2017; 31:5268-5282. [DOI: 10.1096/fj.201700089rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew G. Fisher
- Institute for Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kingdom
| | - Robert A. Seaborne
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Thomas M. Hughes
- Instituto de Física y AstronomíaUniversidad de Valparaíso Valparaíso Chile
| | | | - Claire Stewart
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
| | - Judy M. Coulson
- Department of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Adam P. Sharples
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Jonathan C. Jarvis
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| |
Collapse
|
32
|
Micheli L, D'Andrea G, Leonardi L, Tirone F. HDAC1, HDAC4, and HDAC9 Bind to PC3/Tis21/Btg2 and Are Required for Its Inhibition of Cell Cycle Progression and Cyclin D1 Expression. J Cell Physiol 2017; 232:1696-1707. [PMID: 27333946 DOI: 10.1002/jcp.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
PC3/Tis21 is a transcriptional cofactor that inhibits proliferation in several cell types, including neural progenitors. Here, we report that PC3/Tis21 associates with HDAC1, HDAC4, and HDAC9 in vivo, in fibroblast cells. Furthermore, when HDAC1, HDAC4, or HDAC9 are silenced in fibroblasts or in a line of cerebellar progenitor cells, the ability of PC3/Tis21 to inhibit proliferation is significantly reduced. Overexpression of HDAC1, HDAC4, or HDAC9 in fibroblasts and in cerebellar precursor cells synergizes with PC3/Tis21 in inhibiting the expression of cyclin D1, a cyclin selectively inhibited by PC3/Tis21. Conversely, the depletion of HDAC1 or HDAC4 (but not HDAC9) in fibroblasts and in cerebellar precursor cells significantly impairs the ability of PC3/Tis21 to inhibit cyclin D1 expression. An analysis of HDAC4 deletion mutants shows that both the amino-terminal moiety and the catalytic domain of HDAC4 associate to PC3/Tis21, but neither alone is sufficient to potentiate the inhibition of cyclin D1 by PC3/Tis21. As a whole, our findings indicate that PC3/Tis21 inhibits cell proliferation in a way dependent on the presence of HDACs, in fibroblasts as well as in neural cells. Considering that several reports have demonstrated that HDACs can act as transcriptional corepressors on the cyclin D1 promoter, our data suggest that the association of PC3/Tis21 to HDACs is functional to recruit them to target genes, such as cyclin D1, for repression of their expression. J. Cell. Physiol. 232: 1696-1707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
33
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
34
|
Ozcan L, Ghorpade DS, Zheng Z, de Souza JC, Chen K, Bessler M, Bagloo M, Schrope B, Pestell R, Tabas I. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance. Cell Rep 2016; 15:2214-2225. [PMID: 27239042 PMCID: PMC5068925 DOI: 10.1016/j.celrep.2016.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/24/2016] [Indexed: 01/29/2023] Open
Abstract
Defective insulin signaling in hepatocytes is a key factor in type 2 diabetes. In obesity, activation of calcium/calmodulin-dependent protein kinase II (CaMKII) in hepatocytes suppresses ATF6, which triggers a PERK-ATF4-TRB3 pathway that disrupts insulin signaling. Elucidating how CaMKII suppresses ATF6 is therefore essential to understanding this insulin resistance pathway. We show that CaMKII phosphorylates and blocks nuclear translocation of histone deacetylase 4 (HDAC4). As a result, HDAC4-mediated SUMOylation of the corepressor DACH1 is decreased, which protects DACH1 from proteasomal degradation. DACH1, together with nuclear receptor corepressor (NCOR), represses Atf6 transcription, leading to activation of the PERK-TRB3 pathway and defective insulin signaling. DACH1 is increased in the livers of obese mice and humans, and treatment of obese mice with liver-targeted constitutively nuclear HDAC4 or DACH1 small hairpin RNA (shRNA) increases ATF6, improves hepatocyte insulin signaling, and protects against hyperglycemia and hyperinsulinemia. Thus, DACH1-mediated corepression in hepatocytes emerges as an important link between obesity and insulin resistance.
Collapse
Affiliation(s)
- Lale Ozcan
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | - Devram S Ghorpade
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ze Zheng
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Ke Chen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marc Bessler
- Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Melissa Bagloo
- Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Beth Schrope
- Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Richard Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
35
|
Corpeno Kalamgi R, Salah H, Gastaldello S, Martinez-Redondo V, Ruas JL, Fury W, Bai Y, Gromada J, Sartori R, Guttridge DC, Sandri M, Larsson L. Mechano-signalling pathways in an experimental intensive critical illness myopathy model. J Physiol 2016; 594:4371-88. [PMID: 26990577 DOI: 10.1113/jp271973] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Using an experimental rat intensive care unit (ICU) model, not limited by early mortality, we have previously shown that passive mechanical loading attenuates the loss of muscle mass and force-generation capacity associated with the ICU intervention. Mitochondrial dynamics have recently been shown to play a more important role in muscle atrophy than previously recognized. In this study we demonstrate that mitochondrial dynamics, as well as mitophagy, is affected by mechanosensing at the transcriptional level, and muscle changes induced by unloading are counteracted by passive mechanical loading. The recently discovered ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that similarly is prevented by passive mechanical loading. ABSTRACT The complete loss of mechanical stimuli of skeletal muscles, i.e. loss of external strain related to weight bearing and internal strain related to activation of contractile proteins, in mechanically ventilated, deeply sedated and/or pharmacologically paralysed intensive care unit (ICU) patients is an important factor triggering the critical illness myopathy (CIM). Using a unique experimental ICU rat model, mimicking basic ICU conditions, we have recently shown that mechanical silencing is a dominant factor triggering the preferential loss of myosin, muscle atrophy and decreased specific force in fast- and slow-twitch muscles and muscle fibres. The aim of this study is to gain improved understanding of the gene signature and molecular pathways regulating the process of mechanical activation of skeletal muscle that are affected by the ICU condition. We have focused on pathways controlling myofibrillar protein synthesis and degradation, mitochondrial homeostasis and apoptosis. We demonstrate that genes regulating mitochondrial dynamics, as well as mitophagy are induced by mechanical silencing and that these effects are counteracted by passive mechanical loading. In addition, the recently identified ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that is reversed by passive mechanical loading. Thus, mechano-cell signalling events are identified which may play an important role for the improved clinical outcomes reported in response to the early mobilization and physical therapy in immobilized ICU patients.
Collapse
Affiliation(s)
- Rebeca Corpeno Kalamgi
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Heba Salah
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Wen Fury
- Regeneron Pharmaceuticals, Tarrytown, 10591, NY, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, 10591, NY, USA
| | | | - Roberta Sartori
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy.,Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Centre, Columbus, 43210, OH, USA
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy.,Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
36
|
Wiberg R, Jonsson S, Novikova LN, Kingham PJ. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury. PLoS One 2015; 10:e0142699. [PMID: 26691660 PMCID: PMC4686181 DOI: 10.1371/journal.pone.0142699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.
Collapse
Affiliation(s)
- Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Samuel Jonsson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
37
|
Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 2015; 14:957-70. [PMID: 26290460 PMCID: PMC4693467 DOI: 10.1111/acel.12387] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.
Collapse
Affiliation(s)
- Michael E. Walsh
- Department of Cellular and Structural Biology San Antonio TX 78229
| | - Arunabh Bhattacharya
- Department of Cellular and Structural Biology San Antonio TX 78229
- The Barshop Institute for Longevity and Aging Studies, San Antonio, TX 78245 The University of Texas Health Science Center at San Antonio TX 78229 USA
| | | | - Rizwan Qaisar
- Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Lauren Sloane
- The Barshop Institute for Longevity and Aging Studies, San Antonio, TX 78245 The University of Texas Health Science Center at San Antonio TX 78229 USA
| | - Md M. Rahman
- Department of Cellular and Structural Biology San Antonio TX 78229
| | - Michael Kinter
- Oklahoma Medical Research Foundation Oklahoma City OK USA
| | | |
Collapse
|
38
|
Macpherson PCD, Farshi P, Goldman D. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development 2015; 142:4038-48. [PMID: 26483211 DOI: 10.1242/dev.125674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/01/2015] [Indexed: 02/04/2023]
Abstract
Muscle denervation resulting from injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and endplate reinnervation. Muscle activity inhibits the reinnervation of denervated muscle. The mechanism by which muscle activity regulates muscle reinnervation is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional co-repressors that are highly expressed in innervated muscle and suppressed following muscle denervation. Dach2 and Hdac9 control the expression of endplate-associated genes such as those encoding nicotinic acetylcholine receptors (nAChRs). Here we tested the idea that Dach2 and Hdac9 mediate the effects of muscle activity on muscle reinnervation. Dach2 and Hdac9 were found to act in a collaborative fashion to inhibit reinnervation of denervated mouse skeletal muscle and appear to act, at least in part, by inhibiting denervation-dependent induction of Myog and Gdf5 gene expression. Although Dach2 and Hdac9 inhibit Myog and Gdf5 mRNA expression, Myog does not regulate Gdf5 transcription. Thus, Myog and Gdf5 appear to stimulate muscle reinnervation through parallel pathways. These studies suggest that manipulating the Dach2-Hdac9 signaling system, and Gdf5 in particular, might be a good approach for enhancing motor function in instances where neuromuscular communication has been disrupted.
Collapse
Affiliation(s)
- Peter C D Macpherson
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pershang Farshi
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
PAK1 and CtBP1 Regulate the Coupling of Neuronal Activity to Muscle Chromatin and Gene Expression. Mol Cell Biol 2015; 35:4110-20. [PMID: 26416879 DOI: 10.1128/mcb.00354-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylcholine receptor (AChR) expression in innervated muscle is limited to the synaptic region. Neuron-induced electrical activity participates in this compartmentalization by promoting the repression of AChR expression in the extrasynaptic regions. Here, we show that the corepressor CtBP1 (C-terminal binding protein 1) is present on the myogenin promoter together with repressive histone marks. shRNA-mediated downregulation of CtBP1 expression is sufficient to derepress myogenin and AChR expression in innervated muscle. Upon denervation, CtBP1 is displaced from the myogenin promoter and relocates to the cytoplasm, while repressive histone marks are replaced by activating ones concomitantly to the activation of myogenin expression. We also observed that upon denervation the p21-activated kinase 1 (PAK1) expression is upregulated, suggesting that phosphorylation by PAK1 may be involved in the relocation of CtBP1. Indeed, preventing CtBP1 Ser158 phosphorylation induces CtBP1 accumulation in the nuclei and abrogates the activation of myogenin and AChR expression. Altogether, these findings reveal a molecular mechanism to account for the coordinated control of chromatin modifications and muscle gene expression by presynaptic neurons via a PAK1/CtBP1 pathway.
Collapse
|
40
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
41
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Dupré-Aucouturier S, Castells J, Freyssenet D, Desplanches D. Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy. J Appl Physiol (1985) 2015; 119:342-51. [PMID: 26112243 DOI: 10.1152/japplphysiol.01031.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/22/2015] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (-38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy.
Collapse
Affiliation(s)
- Sylvie Dupré-Aucouturier
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France
| | - Josiane Castells
- Université de Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Damien Freyssenet
- Université de Lyon, Lyon, France; Laboratoire de Physiologie de l'Exercice, Université de Lyon, St Etienne, France
| | - Dominique Desplanches
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Villeurbanne, France;
| |
Collapse
|
43
|
Akt-mediated phosphorylation controls the activity of the Y-box protein MSY3 in skeletal muscle. Skelet Muscle 2015; 5:18. [PMID: 26146542 PMCID: PMC4491233 DOI: 10.1186/s13395-015-0043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a highly conserved cis-acting DNA element located just upstream of the myogenin minimal promoter (myogHCE). It is not known how this MSY3 activity is controlled in skeletal muscle. In this study, we provide multiple lines of evidence showing that the post-translational phosphorylation of MSY3 by Akt kinase modulates the MSY3 repression of myogenin. METHODS Skeletal muscle and myogenic C2C12 cells were used to study the effects of MSY3 phosphorylation in vivo and in vitro on its sub-cellular localization and activity, by blocking the IGF1/PI3K/Akt pathway, by Akt depletion and over-expression, and by mutating potential MSY3 phosphorylation sites. RESULTS We observed that, as skeletal muscle progressed from perinatal to postnatal and adult developmental stages, MSY3 protein became gradually dephosphorylated and accumulated in the nucleus. This correlated well with the reduction of phosphorylated active Akt. In C2C12 myogenic cells, blocking the IGF1/PI3K/Akt pathway using LY294002 inhibitor reduced MSY3 phosphorylation levels resulting in its accumulation in the nuclei. Knocking down Akt expression increased the amount of dephosphorylated MSY3 and reduced myogenin expression and muscle differentiation. MSY3 phosphorylation by Akt in vitro impaired its binding at the MyogHCE element, while blocking Akt increased MSY3 binding activity. While Akt over-expression rescued myogenin expression in MSY3 overexpressing myogenic cells, ablation of the Akt substrate, (Ser126 located in the MSY3 cold shock domain) promoted MSY3 accumulation in the nucleus and abolished this rescue. Furthermore, forced expression of Akt in adult skeletal muscle induced MSY3 phosphorylation and myogenin derepression. CONCLUSIONS These results support the hypothesis that MSY3 phosphorylation by Akt interferes with MSY3 repression of myogenin circuit activity during muscle development. This study highlights a previously undescribed Akt-mediated signaling pathway involved in the repression of myogenin expression in myogenic cells and in mature muscle. Given the significance of myogenin regulation in adult muscle, the Akt/MSY3/myogenin regulatory circuit is a potential therapeutic target to counteract muscle degenerative disease.
Collapse
|
44
|
Ferry A, Joanne P, Hadj-Said W, Vignaud A, Lilienbaum A, Hourdé C, Medja F, Noirez P, Charbonnier F, Chatonnet A, Chevessier F, Nicole S, Agbulut O, Butler-Browne G. Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscul Disord 2014; 24:960-72. [PMID: 25042397 DOI: 10.1016/j.nmd.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
Disease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation. However, the mechanisms of muscle weakness are not well known. Using murine models of amyotrophic lateral sclerosis (SOD1(G93A) transgenic mice), congenital myasthenic syndrome (AChE knockout mice and Musk(V789M/-) mutant mice), Schwartz-Jampel syndrome (Hspg2(C1532YNEO/C1532YNEO) mutant mice) and traumatic nerve injury (Neurotomized wild-type mice), we show that the reduced maximal activation capacity (the ability of the nerve to maximally activate the muscle) explains 52%, 58% and 100% of severe weakness in respectively SOD1(G93A), Neurotomized and Musk mice, whereas muscle atrophy only explains 37%, 27% and 0%. We also demonstrate that the impaired maximal activation capacity observed in SOD1, Neurotomized, and Musk mice is not highly related to Hdac4 gene upregulation. Moreover, in SOD1 and Neurotomized mice our results suggest LC3, Fn14, Bcl3 and Gadd45a as candidate genes involved in the maintenance of the severe atrophic state. In conclusion, our study indicates that muscle weakness can result from the triggering of different signaling pathways. This knowledge may be helpful in designing therapeutic strategies and finding new drug targets for amyotrophic lateral sclerosis, congenital myasthenic syndrome, Schwartz-Jampel syndrome and nerve injury.
Collapse
Affiliation(s)
- Arnaud Ferry
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France; Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France.
| | - Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Wahiba Hadj-Said
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alban Vignaud
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alain Lilienbaum
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Fadia Medja
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Philippe Noirez
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Biologie de la Nutrition EA 2498, Paris, France
| | - Frederic Charbonnier
- Université Paris Descartes, Sorbonne Paris Cité, CESeM, UMR 8194 CNRS, Paris F-75006, France
| | - Arnaud Chatonnet
- Universités Montpellier 1 et 2, INRA, UMR 866, Montpellier, France
| | - Frederic Chevessier
- Universitätsklinikum Erlangen, Neuropathologisches Institut, Erlangen, Germany
| | - Sophie Nicole
- Université Pierre et Marie Curie - Paris 6, INSERM U975, Centre de recherche de l'Institut Cerveau Moelle, CNRS UMR 7225, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| |
Collapse
|
45
|
Li W, Claypool MD, Friera AM, McLaughlin J, Baltgalvis KA, Smith IJ, Kinoshita T, White K, Lang W, Godinez G, Payan DG, Kinsella TM. Noninvasive imaging of in vivo MuRF1 expression during muscle atrophy. PLoS One 2014; 9:e94032. [PMID: 24710205 PMCID: PMC3977994 DOI: 10.1371/journal.pone.0094032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Numerous human diseases can lead to atrophy of skeletal muscle, and loss of this tissue has been correlated with increased mortality and morbidity rates. Clinically addressing muscle atrophy remains an unmet medical need, and the development of preclinical tools to assist drug discovery and basic research in this effort is important for advancing this goal. In this report, we describe the development of a bioluminescent gene reporter rat, based on the zinc finger nuclease-targeted insertion of a bicistronic luciferase reporter into the 3′ untranslated region of a muscle specific E3 ubiquitin ligase gene, MuRF1 (Trim63). In longitudinal studies, we noninvasively assess atrophy-related expression of this reporter in three distinct models of muscle loss (sciatic denervation, hindlimb unloading and dexamethasone-treatment) and show that these animals are capable of generating refined detail on in vivo MuRF1 expression with high temporal and anatomical resolution.
Collapse
Affiliation(s)
- Wei Li
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Mark D. Claypool
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Annabelle M. Friera
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - John McLaughlin
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Kristen A. Baltgalvis
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Ira J. Smith
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Taisei Kinoshita
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Kathy White
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Wayne Lang
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Guillermo Godinez
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Donald G. Payan
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Todd M. Kinsella
- Discovery Research, Rigel Pharmaceuticals Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Tang H, Inoki K, Lee M, Wright E, Khuong A, Khuong A, Sugiarto S, Garner M, Paik J, DePinho RA, Goldman D, Guan KL, Shrager JB. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Sci Signal 2014; 7:ra18. [PMID: 24570486 DOI: 10.1126/scisignal.2004809] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle mass and function are regulated by motor innervation, and denervation results in muscle atrophy. The activity of mammalian target of rapamycin complex 1 (mTORC1) is substantially increased in denervated muscle, but its regulatory role in denervation-induced atrophy remains unclear. At early stages after denervation of skeletal muscle, a pathway involving class II histone deacetylases and the transcription factor myogenin mediates denervation-induced muscle atrophy. We found that at later stages after denervation of fast-twitch muscle, activation of mTORC1 contributed to atrophy and that denervation-induced atrophy was mitigated by inhibition of mTORC1 with rapamycin. Activation of mTORC1 through genetic deletion of its inhibitor TSC1 (tuberous sclerosis complex 1) sensitized mice to denervation-induced muscle atrophy and suppressed the kinase activity of Akt, leading to activation of FoxO transcription factors and increasing the expression of genes encoding E3 ubiquitin ligases atrogin [also known as MAFbx (muscle atrophy F-box protein)] and MuRF1 (muscle-specific ring finger 1). Rapamycin treatment of mice restored Akt activity, suggesting that the denervation-induced increase in mTORC1 activity was producing feedback inhibition of Akt. Genetic deletion of the three FoxO isoforms in skeletal muscle induced muscle hypertrophy and abolished the late-stage induction of E3 ubiquitin ligases after denervation, thereby preventing denervation-induced atrophy. These data revealed that mTORC1, which is generally considered to be an important component of anabolism, is central to muscle catabolism and atrophy after denervation. This mTORC1-FoxO axis represents a potential therapeutic target in neurogenic muscle atrophy.
Collapse
Affiliation(s)
- Huibin Tang
- 1Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Furlow JD, Watson ML, Waddell DS, Neff ES, Baehr LM, Ross AP, Bodine SC. Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy. Physiol Genomics 2013; 45:1168-85. [PMID: 24130153 DOI: 10.1152/physiolgenomics.00022.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle atrophy can result from inactivity or unloading on one hand or the induction of a catabolic state on the other. Muscle-specific ring finger 1 (MuRF1), a member of the tripartite motif family of E3 ubiquitin ligases, is an essential mediator of multiple conditions inducing muscle atrophy. While most studies have focused on the role of MuRF1 in protein degradation, the protein may have other roles in regulating skeletal muscle mass and metabolism. We therefore systematically evaluated the effect of MuRF1 on gene expression during denervation and dexamethasone-induced atrophy. We find that the lack of MuRF1 leads to few differences in control animals, but there were several significant differences in specific sets of genes upon denervation- and dexamethasone-induced atrophy. For example, during denervation, MuRF1 knockout mice showed delayed repression of metabolic and structural genes and blunted induction of genes associated with the neuromuscular junction. In the latter case, this pattern correlates with blunted HDAC4 and myogenin upregulation. Lack of MuRF1 caused fewer changes in the dexamethasone-induced atrophy program, but certain genes involved in fat metabolism and intracellular signaling were affected. Our results demonstrate a new role for MuRF1 in influencing gene expression in two important models of muscle atrophy.
Collapse
Affiliation(s)
- J David Furlow
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California; and
| | | | | | | | | | | | | |
Collapse
|
48
|
Bongers KS, Fox DK, Ebert SM, Kunkel SD, Dyle MC, Bullard SA, Dierdorff JM, Adams CM. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab 2013; 305:E907-15. [PMID: 23941879 PMCID: PMC3798708 DOI: 10.1152/ajpendo.00380.2013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle denervation causes muscle atrophy via complex molecular mechanisms that are not well understood. To better understand these mechanisms, we investigated how muscle denervation increases growth arrest and DNA damage-inducible 45α (Gadd45a) mRNA in skeletal muscle. Previous studies established that muscle denervation strongly induces Gadd45a mRNA, which increases Gadd45a, a small myonuclear protein that is required for denervation-induced muscle fiber atrophy. However, the mechanism by which denervation increases Gadd45a mRNA remained unknown. Here, we demonstrate that histone deacetylase 4 (HDAC4) mediates induction of Gadd45a mRNA in denervated muscle. Using mouse models, we show that HDAC4 is required for induction of Gadd45a mRNA during muscle denervation. Conversely, forced expression of HDAC4 is sufficient to increase skeletal muscle Gadd45a mRNA in the absence of muscle denervation. Moreover, Gadd45a mediates several downstream effects of HDAC4, including induction of myogenin mRNA, induction of mRNAs encoding the embryonic nicotinic acetylcholine receptor, and, most importantly, skeletal muscle fiber atrophy. Because Gadd45a induction is also a key event in fasting-induced muscle atrophy, we tested whether HDAC4 might also contribute to Gadd45a induction during fasting. Interestingly, however, HDAC4 is not required for fasting-induced Gadd45a expression or muscle atrophy. Furthermore, activating transcription factor 4 (ATF4), which contributes to fasting-induced Gadd45a expression, is not required for denervation-induced Gadd45a expression or muscle atrophy. Collectively, these results identify HDAC4 as an important regulator of Gadd45a in denervation-induced muscle atrophy and elucidate Gadd45a as a convergence point for distinct upstream regulators during muscle denervation and fasting.
Collapse
Affiliation(s)
- Kale S Bongers
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa; and
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gordon BS, Delgado Díaz DC, White JP, Carson JA, Kostek MC. Six1 and Six1 cofactor expression is altered during early skeletal muscle overload in mice. J Physiol Sci 2012; 62:393-401. [PMID: 22700049 PMCID: PMC10717360 DOI: 10.1007/s12576-012-0214-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/23/2012] [Indexed: 12/31/2022]
Abstract
Six1 is a transcription factor that, along with cofactors (Eya1, Eya3, and Dach2), regulates skeletal muscle fiber-type and development. SIX1 (human) gene expression decreases after overload, but the time course of Six1 expression, if protein is affected, and if the response differs between muscles with differing phenotypes, is not known. Our purpose was to examine Six1 gene and protein expression and co-factor gene expression during the initiation of muscle overload, and determine if the muscle phenotype altered this response. The plantaris and soleus were functionally overloaded by synergistic ablation of the gastrocnemius, and Six1 gene and protein, and Six1 cofactor gene expression was measured. Six1 gene expression decreased at 1 day of overload 48 ± 9 and 47 ± 20 % (p < 0.01) in the plantaris and soleus. After 3 days of overload, Six1 protein expression increased 73 ± 17 and 168 ± 57 % in the plantaris and soleus (p < 0.05). After 1 day of overload, Dach2 gene expression decreased 56 ± 9 and 35 ± 3 % in both muscles (p < 0.001), while Eya1 decreased 33 ± 5 % only in the soleus (p < 0.01). Eya3 gene expression increased 127 ± 26 % (p < 0.05) and 76 ± 16 % (p < 0.05) in the plantaris and soleus, while Dach2 gene expression decreased 71 ± 4 % (p < 0.05) in the soleus after 3 days of overload. Six1 and Six1 co-factor expression is responsive to muscle overload in both fast and slow muscles. This indicates that this molecular program may affect overload adaptation regardless of muscle phenotype.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Exercise Science, Public Health Research Center, University of South Carolina, 3rd Floor, 921 Assembly Street, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
50
|
Bricceno KV, Sampognaro PJ, Van Meerbeke JP, Sumner CJ, Fischbeck KH, Burnett BG. Histone deacetylase inhibition suppresses myogenin-dependent atrogene activation in spinal muscular atrophy mice. Hum Mol Genet 2012; 21:4448-59. [PMID: 22798624 DOI: 10.1093/hmg/dds286] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by mutations in the survival of motor neuron 1 (SMN1) gene and deficient expression of the ubiquitously expressed SMN protein. Pathologically, SMA is characterized by motor neuron loss and severe muscle atrophy. During muscle atrophy, the E3 ligase atrogenes, atrogin-1 and muscle ring finger 1 (MuRF1), mediate muscle protein breakdown through the ubiquitin proteasome system. Atrogene expression can be induced by various upstream regulators. During acute denervation, they are activated by myogenin, which is in turn regulated by histone deacetylases 4 and 5. Here we show that atrogenes are induced in SMA model mice and in SMA patient muscle in association with increased myogenin and histone deacetylase-4 (HDAC4) expression. This activation during both acute denervation and SMA disease progression is suppressed by treatment with a histone deacetylase inhibitor; however, this treatment has no effect when atrogene induction occurs independently of myogenin. These results indicate that myogenin-dependent atrogene induction is amenable to pharmacological intervention with histone deacetylase inhibitors and help to explain the beneficial effects of these agents on SMA and other denervating diseases.
Collapse
Affiliation(s)
- Katherine V Bricceno
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|