1
|
Shibu S, Vasa S, Samantaray S, Joshi N, Zala D, G Chaudhari R, Chauhan K, Patel H, Parekh B, Modi A. A bioinformatics analysis of gene expression in endometrial cancer, endometriosis and obesity. Women Health 2025; 65:60-70. [PMID: 39653677 DOI: 10.1080/03630242.2024.2437493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Endometrial cancer (EC), endometriosis (ENDO), and obesity (OBY) are interconnected conditions in women that may share underlying genetic pathways. This study aimed to identify shared genetic pathways and differential gene expressions across these conditions to uncover potential therapeutic targets. A bioinformatics pipeline was applied using gene expression datasets from the GEO database, incorporating differential expression analysis, functional and pathway enrichment, PPI network construction, survival analysis, and mutational profiling across 198 samples. The analysis revealed 26 shared differentially expressed genes (DEGs), with IGF-1, CREBBP, EP300, and PIAS1 identified as key hub genes. Elevated IGF-1 expression was significantly linked to poorer survival outcomes in EC patients (p < .05). Frequent mutations were observed in these hub genes, suggesting their critical role in disease mechanisms. This study highlights genetic links among EC, ENDO, and OBY, emphasizing high IGF-1 expression as a potential prognostic marker in EC and recurrent alterations in hub genes as promising therapeutic targets. These findings provide insights into the shared genetic underpinnings of these conditions and present new avenues for targeted therapies.
Collapse
Affiliation(s)
- Shan Shibu
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Shrinal Vasa
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Swayamprabha Samantaray
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Nidhi Joshi
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Dolatsinh Zala
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Rajeshkumar G Chaudhari
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Kartik Chauhan
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Harsh Patel
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Bhavin Parekh
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
- Department of Validation of Indic Knowledge Through Advanced Research, Gujarat University, Ahmedabad, India
| | - Anupama Modi
- School Of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| |
Collapse
|
2
|
Juárez-Barber E, Corachán A, Carbajo-García MC, Faus A, Vidal C, Giles J, Pellicer A, Cervelló I, Ferrero H. Transcriptome analysis of adenomyosis eutopic endometrium reveals molecular mechanisms involved in adenomyosis-related implantation failure and pregnancy disorders. Reprod Biol Endocrinol 2024; 22:10. [PMID: 38195505 PMCID: PMC10775471 DOI: 10.1186/s12958-023-01182-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Women with adenomyosis are characterized by having defective decidualization, impaired endometrial receptivity and/or embryo-maternal communication, and implantation failure. However, the molecular mechanisms underlying adenomyosis-related infertility remain unknown, mainly because of the restricted accessibility and the difficult preservation of endometrial tissue in vitro. We have recently shown that adenomyosis patient-derived endometrial organoids, maintain disease-specific features while differentiated into mid-secretory and gestational endometrial phase, overcoming these research barriers and providing a robust platform to study adenomyosis pathogenesis and the associated molecular dysregulation related to implantation and pregnancy disorders. For this reason, we aim to characterize the dysregulated mechanisms in the mid-secretory and gestational endometrium of patients with adenomyosis by RNA-sequencing. METHODS Endometrial organoids were derived from endometrial biopsies collected in the proliferative phase of women with adenomyosis (ADENO) or healthy oocyte donors (CONTROL) (n = 15/group) and differentiated into mid-secretory (-SECorg) and gestational (-GESTorg) phases in vitro. Following RNA-sequencing, the significantly differentially expressed genes (DEGs) (FDR < 0.05) were identified and selected for subsequent functional enrichment analysis and QIAGEN Ingenuity Pathway Analysis (IPA). Statistical differences in gene expression were evaluated with the Student's t-test or Wilcoxon test. RESULTS We identified 1,430 DEGs in ADENO-SECorg and 1,999 DEGs in ADENO-GESTorg. In ADENO-SECorg, upregulated genes included OLFM1, FXYD5, and RUNX2, which are involved in impaired endometrial receptivity and implantation failure, while downregulated genes included RRM2, SOSTDC1, and CHAC2 implicated in recurrent implantation failure. In ADENO-GESTorg, upregulated CXCL14 and CYP24A1 and downregulated PGR were related to pregnancy loss. IPA predicted a significant inhibition of ID1 signaling, histamine degradation, and activation of HMGB1 and Senescence pathways, which are related to implantation failure. Alternatively, IPA predicted an inhibition of D-myo-inositol biosynthesis and VEGF signaling, and upregulation of Rho pathway, which are related to pregnancy loss and preeclampsia. CONCLUSIONS Identifying dysregulated molecular mechanisms in mid-secretory and gestational endometrium of adenomyosis women contributes to the understanding of adenomyosis-related implantation failure and/or pregnancy disorders revealing potential therapeutic targets. Following experimental validation of our transcriptomic and in silico findings, our differentiated adenomyosis patient-derived organoids have the potential to provide a reliable platform for drug discovery, development, and personalized drug screening for affected patients.
Collapse
Affiliation(s)
- Elena Juárez-Barber
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, 46010, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, 46010, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | | | - Juan Giles
- IVI-RMA Valencia, Valencia, 46015, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- IVI-RMA Rome, Rome, 00197, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
3
|
Li R, Wang T, Marquardt RM, Lydon JP, Wu SP, DeMayo FJ. TRIM28 modulates nuclear receptor signaling to regulate uterine function. Nat Commun 2023; 14:4605. [PMID: 37528140 PMCID: PMC10393996 DOI: 10.1038/s41467-023-40395-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ryan M Marquardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Zhang H, Wang Z, Zhou Q, Cao Z, Jiang Y, Xu M, Liu J, Zhou J, Yan G, Sun H. Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway. J Assist Reprod Genet 2023; 40:1135-1146. [PMID: 36913138 PMCID: PMC10239411 DOI: 10.1007/s10815-023-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). METHODS RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson's correlation analysis. RESULTS Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). CONCLUSIONS The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhilong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Quan Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Manlin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jingyu Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
6
|
P38α MAPK is a gatekeeper of uterine progesterone responsiveness at peri-implantation via Ube3c-mediated PGR degradation. Proc Natl Acad Sci U S A 2022; 119:e2206000119. [PMID: 35914132 PMCID: PMC9371708 DOI: 10.1073/pnas.2206000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.
Collapse
|
7
|
Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells 2022; 11:cells11091474. [PMID: 35563781 PMCID: PMC9104461 DOI: 10.3390/cells11091474] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
The uterus plays an essential role in the reproductive health of women and controls critical processes such as embryo implantation, placental development, parturition, and menstruation. Progesterone receptor (PR) regulates key aspects of the reproductive function of several mammalian species by directing the transcriptional program in response to progesterone (P4). P4/PR signaling controls endometrial receptivity and decidualization during early pregnancy and is critical for the establishment and outcome of a successful pregnancy. PR is also essential throughout gestation and during labor, and it exerts critical roles in the myometrium, mainly by the specialized function of its two isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), which display distinct and separate roles as regulators of transcription. This review summarizes recent studies related to the roles of PR function in the decidua and myometrial tissues. We discuss how PR acquired key features in placental mammals that resulted in a highly specialized and dynamic role in the decidua. We also summarize recent literature that evaluates the myometrial PR-A/PR-B ratio at parturition and discuss the efficacy of current treatment options for preterm birth.
Collapse
|
8
|
Huang P, Deng W, Bao H, Lin Z, Liu M, Wu J, Zhou X, Qiao M, Yang Y, Cai H, Rao F, Chen J, Chen D, Lu J, Wang H, Qin A, Kong S. SOX4 facilitates PGR protein stability and FOXO1 expression conducive for human endometrial decidualization. eLife 2022; 11:72073. [PMID: 35244538 PMCID: PMC8923662 DOI: 10.7554/elife.72073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
The establishment of pregnancy in human necessitates appropriate decidualization of stromal cells, which involves steroids regulated periodic transformation of endometrial stromal cells during the menstrual cycle. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of decidualization in humans is yet to be fully elucidated. In this investigation, we document that SOX4 is a key regulator of human endometrial stromal cells decidualization by directly regulating FOXO1 expression as revealed by whole genomic binding of SOX4 assay and RNA sequencing. Besides, our immunoprecipitation and mass spectrometry results unravel that SOX4 modulates progesterone receptor (PGR) stability through repressing E3 ubiquitin ligase HERC4-mediated degradation. More importantly, we provide evidence that dysregulated SOX4–HERC4–PGR axis is a potential cause of defective decidualization and recurrent implantation failure in in-vitro fertilization (IVF) patients. In summary, this study evidences that SOX4 is a new and critical regulator for human endometrial decidualization, and provides insightful information for the pathology of decidualization-related infertility and will pave the way for pregnancy improvement.
Collapse
Affiliation(s)
- Pinxiu Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbo Deng
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Haili Bao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Zhong Lin
- Department of Reproductive Medicine, Liuzhou Maternity and Child Health Hospital, Liuzhou, China
| | - Mengying Liu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Jinxiang Wu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Manting Qiao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Yihua Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Cai
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Faiza Rao
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua Lu
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Haibin Wang
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| | - Aiping Qin
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuangbo Kong
- Department of Obstetrics and Gynecology, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Muter J, Kong CS, Brosens JJ. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:804921. [PMID: 36303960 PMCID: PMC9580781 DOI: 10.3389/frph.2021.804921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- *Correspondence: Joanne Muter
| | - Chow-Seng Kong
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
11
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
12
|
Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell 2021; 72:101586. [PMID: 34217128 DOI: 10.1016/j.tice.2021.101586] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Decidualization is characterized by a series of genetic, metabolic, morphological, biochemical, vascular and immune changes occurring in the endometrial stroma in response to the implanting embryo or even before conception and involves the stromal cells of the endometrium. It is a fundamental reproductive event occurring in mammalian species with hemochorial placentation. A growing body of experimental and clinical evidence strongly suggests that defective or disrupted decidualization contributes to the establishment of an inappropriate maternal-fetal interface. This has relevant clinical consequences, ranging from recurrent implantation failure and recurrent pregnancy loss in early pregnancy to several significant complications of advanced gestation. Moreover, recent evidence indicates that selected diseases of the endometrium, such as chronic endometritis and endometriosis, can have a detrimental impact on the decidualization response in the endometrium and may help explain some aspects of the reduced reproductive outcome associated with these conditions. Further research efforts are needed to fully understand the biomolecular mechanisms ans events underlying an abnormal decidualization response. This will permit the development of new diagnostic and therapeutic strategies aimed to improve the likelihood of achieveing a successful pregnancy.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS, Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
13
|
Wang Z, Li C, Sun X, Li Z, Li J, Wang L, Sun Y. Hypermethylation of miR-181b in monocytes is associated with coronary artery disease and promotes M1 polarized phenotype via PIAS1-KLF4 axis. Cardiovasc Diagn Ther 2020; 10:738-751. [PMID: 32968630 DOI: 10.21037/cdt-20-407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dysregulated microRNAs are involved in the macrophage polarization and atherosclerotic development. Apart from microRNAs, alteration in DNA methylation is considered as one of the most frequent epigenetic changes. The purpose of the research is to investigate the altered methylation status of miR-181b in the circulating monocytes from patients with coronary artery disease (CAD) and explore the underlying mechanisms. Methods We examined the methylation status of miR-181b in purified circulating monocytes from patients with CAD and healthy controls. We then transfected monocytes with miR-181b mimics and determined the role of miR-181b on the phenotypic switch of macrophages and inflammatory response. DNA methylation levels determined by MethyLight PCR and pyrosequencing at the promoter of miR-181b significantly increased in CAD patients. Based on TargetScan database, we identified PIAS1 as the target gene of miR-181b and explored the interaction of miR-181b and PIAS1 by Dual-Luciferase assay, quantitative PCR and immunoblots. We also investigated the role of miR-181b and PIAS1 on macrophage polarization and inflammation. Results Hypermethylation at the promoter of miR-181b directly contributed to the decrease of miR-181b activity and expression. Overexpression of miR-181b reduced M1 polarization and facilitated M2 polarization determined by quantitative PCR. While knockdown of PIAS1 induced KLF4 degradation and SUMOylation in monocytes, miR-181b mimics reverse the KLF4 SUMOylation via suppression of PIAS1. Moreover, KLF4 SUMOylation by PIAS1 reversed M1 polarization induced by depletion of miR-181b in monocytes. Conclusions Hypermethylation of miR-181b induces M1 polarization and promotes atherosclerosis through activation of PIAS1 and KLF4 SUMOylation in macrophages.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuqin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lanfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanming Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Yin M, Zhou HJ, Lin C, Long L, Yang X, Zhang H, Taylor H, Min W. CD34 +KLF4 + Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep 2020; 27:2709-2724.e3. [PMID: 31141693 PMCID: PMC6548470 DOI: 10.1016/j.celrep.2019.04.088] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the human endometrium requires a population of local stem cells. However, the phenotypes, locations, and origin of these cells are still unknown. In a mouse menstruation model, uterine stromal SM22α+-derived CD34+KLF4+ stem cells are activated and integrate into the regeneration area, where they differentiate and incorporate into the endometrial epithelium; this process is correlated with enhanced protein SUMOylation in CD34+KLF4+ cells. Mice with a stromal SM22α-specific SENP1 deletion (SENP1smKO) exhibit accelerated endometrial repair in the regeneration model and develop spontaneous uterine hyperplasia. Mechanistic studies suggest that SENP1 deletion induces SUMOylation of ERα, which augments ERα transcriptional activity and proliferative signaling in SM22α+CD34+KLF4+ cells. These cells then transdifferentiate to the endometrial epithelium. Our study reveals that CD34+KLF4+ stromal-resident stem cells directly contribute to endometrial regeneration, which is regulated through SENP1-mediated ERα suppression. The regenerative capacity of the human endometrium requires a population of local stem cells. Here, Yin et al. show that uterine stromal SM22α+CD34+KLF4+ stem cells are activated by ERα SUMOylation and integrate into the regeneration area, where they differentiate and incorporate into the endometrial epithelium.
Collapse
Affiliation(s)
- Mingzhu Yin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520, USA
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520, USA
| | - Caixia Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lingli Long
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaolei Yang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520, USA
| | - Hugh Taylor
- Department of Comparative Medicine and Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Tewary S, Lucas ES, Fujihara R, Kimani PK, Polanco A, Brighton PJ, Muter J, Fishwick KJ, Da Costa MJMD, Ewington LJ, Lacey L, Takeda S, Brosens JJ, Quenby S. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. EBioMedicine 2020; 51:102597. [PMID: 31928963 PMCID: PMC7000352 DOI: 10.1016/j.ebiom.2019.102597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. METHODS A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. FINDINGS CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32-1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. INTERPRETATION Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. FUNDING Tommy's Baby Charity. CLINICAL TRIAL REGISTRATION EU Clinical Trials Register no. 2016-001120-54.
Collapse
Affiliation(s)
- Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Peter K Kimani
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Angela Polanco
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Maria José Minhoto Diniz Da Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren Lacey
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
16
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
17
|
Ewington LJ, Tewary S, Brosens JJ. New insights into the mechanisms underlying recurrent pregnancy loss. J Obstet Gynaecol Res 2018; 45:258-265. [PMID: 30328240 DOI: 10.1111/jog.13837] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Recurrent pregnancy loss (RPL), defined as multiple consecutive miscarriages, is a devastating disorder for which there are no good treatment options. Two opposing paradigms have emerged to explain RPL. The prevailing clinical viewpoint is that RPL is caused by a spectrum of subclinical disorders, ranging from thrombophilia to anatomical, endocrine and immunological disorders, that somehow converge on a 'fragile' early pregnancy state, leading to miscarriage. A new paradigm, based on emerging concepts around early implantation events, challenges the conventional thinking around RPL. It purports that the high incidence of embryonic aneuploidies and mosaicism coupled with a cycling endometrium necessitates the introduction of multiple 'quality control' checkpoints in the first trimester of pregnancy to limit maternal investment in a failing pregnancy. Here we review the evidence underpinning both paradigms and examine how new thinking around RPL may lead to more effective preventative strategies.
Collapse
Affiliation(s)
- Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, UK
| |
Collapse
|
18
|
Brosens I, Muter J, Ewington L, Puttemans P, Petraglia F, Brosens JJ, Benagiano G. Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention. Reprod Sci 2018; 26:159-171. [DOI: 10.1177/1933719118804412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ivo Brosens
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Lauren Ewington
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | | | - Felice Petraglia
- Department of Biomedical, Experimental and Clinical Sciences (Mario Serio), University of Florence, Florence, Italy
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Giuseppe Benagiano
- Department of Gynaecology, Obstetrics and Urology, “Sapienza” University, Rome, Italy
| |
Collapse
|
19
|
Liu F, Li L, Li Y, Ma X, Bian X, Liu X, Wang G, Zhang D. Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV. Int J Oncol 2018; 53:2010-2020. [PMID: 30226577 PMCID: PMC6192779 DOI: 10.3892/ijo.2018.4537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma stem cells are able to escape treatment with conventional chemotherapeutic drugs, as the majority of them are in a quiescent state. Recent reports have suggested that small ubiquitin-like modifiers (SUMOs) serve important roles in the maintenance of cancer stem cell stemness. Therefore, a potential strategy to increase the effectiveness of chemotherapeutic agents is to interfere with SUMO modification of proteins associated with the maintenance of stemness in osteosarcoma stem cells. The present study revealed a significant decrease in the expression of SUMO1 specific peptidase 1 (SENP1) in osteosarcoma tissues and osteosarcoma cell lines, and SENP1 expression was much lower in osteosarcoma stem cells than in non-cancer stem cells. Further experiments indicated that the low levels of SENP1 were essential for maintenance of stemness in osteosarcoma stem cells. Overexpression of SENP1 resulted in a marked decrease in the maintenance of stemness, but only slightly induced apoptosis of osteosarcoma cells, which is crucial to reduce the side effects of drugs on normal precursor cells. Finally, SENP1 overexpression led to a significant increase in the sensitivity of osteosarcoma stem cells to the herpes simplex virus 1 thymidine kinase gene in combination with ganciclovir in vitro and in vivo. In conclusion, the present study described a novel method to increase the sensitivity of osteosarcoma stem cells to chemotherapeutic drugs. Notably, this approach may significantly reduce the required dose of conventional chemotherapeutic drugs and reduce side effects.
Collapse
Affiliation(s)
- Fengting Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dianying Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
20
|
Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci 2018; 19:ijms19092477. [PMID: 30134622 PMCID: PMC6164241 DOI: 10.3390/ijms19092477] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cells perceive and respond to their microenvironment forming the basis of endometrial homeostasis. Errors in endometrial cell signaling are responsible for a wide spectrum of endometrial pathologies ranging from infertility to cancer. Intensive research over the years has been decoding the sophisticated molecular means by which endometrial cells communicate to each other and with the embryo. The objective of this review is to provide the scientific community with the first overview of key endometrial cell signaling pathways operating throughout the menstrual cycle. On this basis, a comprehensive and critical assessment of the literature was performed to provide the tools for the authorship of this narrative review summarizing the pivotal components and signaling cascades operating during seven endometrial cell fate “routes”: proliferation, decidualization, implantation, migration, breakdown, regeneration, and angiogenesis. Albeit schematically presented as separate transit routes in a subway network and narrated in a distinct fashion, the majority of the time these routes overlap or occur simultaneously within endometrial cells. This review facilitates identification of novel trajectories of research in endometrial cellular communication and signaling. The meticulous study of endometrial signaling pathways potentiates both the discovery of novel therapeutic targets to tackle disease and vanguard fertility approaches.
Collapse
|
21
|
Peter Durairaj RR, Aberkane A, Polanski L, Maruyama Y, Baumgarten M, Lucas ES, Quenby S, Chan JKY, Raine-Fenning N, Brosens JJ, Van de Velde H, Lee YH. Deregulation of the endometrial stromal cell secretome precedes embryo implantation failure. Mol Hum Reprod 2018; 23:478-487. [PMID: 28402555 DOI: 10.1093/molehr/gax023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is implantation failure following ART associated with a perturbed decidual response in endometrial stromal cells (EnSCs)? SUMMARY ANSWER Dynamic changes in the secretome of decidualizing EnSCs underpin the transition of a hostile to a supportive endometrial microenvironment for embryo implantation; perturbation in this transitional pathway prior to ART is associated with implantation failure. WHAT IS KNOWN ALREADY Implantation is the rate-limiting step in ART, although the contribution of an aberrant endometrial microenvironment in IVF failure remains ill defined. STUDY DESIGN, SIZE, DURATION In vitro characterization of the temporal changes in the decidual response of primary EnSCs isolated prior to a successful or failed ART cycle. An analysis of embryo responses to secreted cues from undifferentiated and decidualizing EnSCs was performed. The primary clinical outcome of the study was a positive urinary pregnancy test 14 days after embryo transfer. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary EnSCs were isolated from endometrial biopsies obtained prior to IVF treatment and cryopreserved. EnSCs from 10 pregnant and 10 non-pregnant patients were then thawed, expanded in culture, subjected to clonogenic assays, and decidualized for either 2 or 8 days. Transcript levels of decidual marker gene [prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1) and 11β-hydroxysteroid dehydrogenase (HSD11B1)] were analysed using real-time quantitative PCR and temporal secretome changes of 45 cytokines, chemokines and growth factors were measured by multiplex suspension bead immunoassay. The impact of the EnSC secretome on human blastocyst development was scored morphologically; and embryo secretions in response to EnSC cues analyzed by multiplex suspension bead immunoassay. MAIN RESULTS AND THE ROLE OF CHANCE Clonogenicity and induction of decidual marker genes were comparable between EnSC cultures from pregnant and non-pregnant group groups (P > 0.05). Analysis of 23 secreted factors revealed that successful implantation was associated with co-ordinated secretome changes in decidualizing EnSCs, which were most pronounced on Day 2 of differentiation: 17 differentially secreted proteins on Day 2 of decidualization relative to undifferentiated (Day 0) EnSCs (P < 0.05); 11 differentially secreted proteins on Day 8 relative to Day 2 (P < 0.05); and eight differentially secreted proteins on Day 8 relative to Day 0 (P < 0.05). By contrast, failed implantation was associated with a disordered secretome response. Blastocyst development was compromised when cultured for 24 h in medium conditioned by undifferentiated EnSCs when compared to decidualizing EnSCs. Analysis of the embryo microdroplets revealed that human blastocysts mount a secretory cytokine response to soluble decidual factors produced during the early (Day 2) but not late phase (Day 8) of differentiation. The embryo responses to secreted factors from decidualizing EnSCs were comparable between the pregnant and non-pregnant group (P > 0.05). LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Although this study uses primary EnSCs and human embryos, caution is warranted when extrapolating the results to the in vivo situation because of the correlative nature of the study and limited sample size. WIDER IMPLICATIONS OF THE FINDINGS Our finding raises the prospect that endometrial analysis prior to ART could minimize the risk of treatment failure. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by funds from the Biomedical Research Unit in Reproductive Health, a joint initiative of the University Hospitals Coventry & Warwickshire NHS Trust and Warwick Medical School, the University of Nottingham and Nurture Fertility, and the National Medical Research Council, Singapore (NMRC/BNIG14NOV023), the "Instituut voor Innovatie door Wetenschap en Technologie" (IWT, Flanders, Belgium), the "Fonds voor Wetenschappelijk Onderzoek" (FWO, Flanders, Belgium) and the "Wetenschappelijk Fonds Willy Gepts" (WFWG, UZ Brussel). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Ruban Rex Peter Durairaj
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Asma Aberkane
- Reproductive Immunology and Implantation, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, Belgium
| | - Lukasz Polanski
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.,Department of Obstetrics and Gynaecology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Miriam Baumgarten
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.,Department of Obstetrics and Gynaecology, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Jerry K Y Chan
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore.,Nurture Fertility, The East Midlands Fertility Centre, Bostocks Lane, Nottingham NG10 5QG, UK
| | - Nick Raine-Fenning
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.,Obstetrics & Gynaecology-Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Hilde Van de Velde
- Reproductive Immunology and Implantation, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, Belgium
| | - Yie Hou Lee
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore.,Department of Obstetrics and Gynaecology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
22
|
Muter J, Alam MT, Vrljicak P, Barros FSV, Ruane PT, Ewington LJ, Aplin JD, Westwood M, Brosens JJ. The Glycosyltransferase EOGT Regulates Adropin Expression in Decidualizing Human Endometrium. Endocrinology 2018; 159:994-1004. [PMID: 29244071 DOI: 10.1210/en.2017-03064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In pregnancy, resistance of endometrial decidual cells to stress signals is critical for the integrity of the fetomaternal interface and, by extension, survival of the conceptus. O-GlcNAcylation is an essential posttranslational modification that links glucose sensing to cellular stress resistance. Unexpectedly, decidualization of primary endometrial stromal cells (EnSCs) was associated with a 60% reduction in O-linked β-N-acetylglucosamine (O-GlcNAc)‒modified proteins, reflecting downregulation of the enzyme that adds O-GlcNAc to substrates (O-GlcNAc transferase; OGT) but not the enzyme that removes the modification (O-GlcNAcase). Notably, epidermal growth factor domain-specific O-linked GlcNAc transferase (EOGT), an endoplasmic reticulum-specific OGT that modifies a limited number of secreted and membrane proteins, was markedly induced in differentiating EnSCs. Knockdown of EOGT perturbed a network of decidual genes involved in multiple cellular functions. The most downregulated gene upon EOGT knockdown in decidualizing cells was the energy homeostasis-associated gene (ENHO), which encodes adropin, a metabolic hormone involved in energy homeostasis and glucose and fatty acid metabolism. Analysis of midluteal endometrial biopsies revealed an inverse correlation between endometrial EOGT and ENHO expression and body mass index. Taken together, our findings revealed that obesity impairs the EOGT-adropin axis in decidual cells, which in turn points toward a mechanistic link between metabolic disorders and adverse pregnancy outcome.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad T Alam
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Flavio S V Barros
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter T Ruane
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
23
|
Albaghdadi AJH, Kan FWK. Immunosuppression with tacrolimus improved implantation and rescued expression of uterine progesterone receptor and its co-regulators FKBP52 and PIASy at nidation in the obese and diabetic mice: Comparative studies with metformin. Mol Cell Endocrinol 2018; 460:73-84. [PMID: 28689771 DOI: 10.1016/j.mce.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
Diabesity is often associated with subfertility and recurrent miscarriages. Evidence links systemic and local uterine cytotoxicity to the pathogenesis of implantation failure (IF) in diabetes. Immunosuppression with tacrolimus improved pregnancy outcomes in obese and diabetic mice and repeated IF in women with elevated Th1/Th2 blood cell ratios. However the mode of action of tacrolimus in protecting against IF and the molecular mechanisms associated with recurrent miscarriages in the obese and diabetic subjects are yet to be elucidated. Here we administered tacrolimus (FK506) (0.1 mg/kg) for four consecutive weeks to the NONcNZO10/LtJ mice, a model of human PCOS, chronically fed with 60% kCal fat for 16 consecutive weeks to simulate human obesity-associated T2DM. Compared to those immunosuppressed with tacrolimus and their normative controls, high-fat fed (HFD) diabetic NONcNZO mice exhibited higher rates of peri- and post-implantation resorption and had aberrant expression of uterine IFNγ and progesterone receptor (PGR) and its immunophilin co-chaperone FKBP52 at nidation. Immature uterodomes and lack of activation of uterine STAT3 and NFκB at implantation were characteristics of IF in the HFD-dNONcNZO dams also low in the deciduogenic factors IL11 and GM-CSF. Therapeutic interventions with tacrolimus or metformin normalized the expression of decidual IFNγ, PGR and FKBP52, increased co-localization of protein inhibitor of activated STATy (PIASy) to PGR and resulted in the upregulation of uterine IL11and LIF. Rescued phosphorylation of STAT3 and NFκBp65 and uterodome maturation at nidation defined implantation success in treated dams. To our knowledge this is the first report to show that the impact of HFD on the hemochorial implantation is at least in part mediated through disruption of PGR signaling at nidation and that immunosuppression with tacrolimus or treatment with metformin restores PGR-mediated influences during implantation in the obese and diabetic subjects.
Collapse
Affiliation(s)
- Ahmad J H Albaghdadi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
24
|
Çelik Ö, Acet M, İmren A, Çelik N, Erşahin A, Aktun LH, Otlu B, Çelik S, Çalışkan E, Ünlü C. DHEA supplementation improves endometrial HOXA-10 mRNA expression in poor responders. J Turk Ger Gynecol Assoc 2017; 18:160-166. [PMID: 29278227 PMCID: PMC5776153 DOI: 10.4274/jtgga.2017.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: The study was planned to investigate whether DHEA supplementation had an impact on endometrial receptivity in women who were poor responders (POR). Material and Methods: Twenty-eight POR women who were undergoing hysteroscopy and five fertile control subjects were included. The POR women were equally subdivided into two separate groups as patients who were currently using DHEA and those who were not. Endometrial samples of the subjects were obtained during hysteroscopy at the late follicular phase. Expression levels of endometrial HOXA-10, HOXA-11, and LIF mRNA were measured with the using real-time polymerase chain reaction. Spontaneous clinical pregnancy rates were also noted. Results: Compared with POR women who were not given DHEA, upregulated endometrial HOXA-10 (7.33-fold) and HOXA-11 (2.39-fold) mRNA expression were detected in POR women on DHEA. The increase in HOXA-10 mRNA was significant (p<0.03). The fold increase in HOXA-11 mRNA was found as 2.39, which indicated a positive upregulation. However, this fold increment was insignificant (p<0.45). An insignificant increase in spontaneous clinical pregnancy rates in POR women on DHEA (53.3%) was observed compared with POR women who were not given DHEA (43.8%). Conclusion: Oral DHEA supplementation in POR upregulates endometrial HOXA-10 mRNA expression, which is known to positively modulate endometrial receptivity.
Collapse
Affiliation(s)
- Önder Çelik
- Private Clinic, Obstetrics and Gynecology, Uşak, Turkey
| | - Mustafa Acet
- Department of Obstetrics and Gynecology, Medipol University Faculty of Medicine, İstanbul, Turkey
| | - Aytaç İmren
- Clinic of Obstetric and Gynecology, Medical Park Hospital, Uşak, Turkey
| | - Nilüfer Çelik
- Clinic of Biochemistry, Behçet Uz Children's Hospital, İzmir, Turkey
| | - Aynur Erşahin
- Department of Obstetrics and Gynecology, Bahçeşehir University Faculty of Medicine, İstanbul, Turkey
| | - Lebriz Hale Aktun
- Department of Obstetrics and Gynecology, Medipol University Faculty of Medicine, İstanbul, Turkey
| | - Barış Otlu
- Department of Medical Microbiology, İnönü University Faculty of Medicine, Malatya, Turkey
| | | | - Eray Çalışkan
- Department of Obstetrics and Gynecology, Bahçeşehir University Faculty of Medicine, Kocaeli, Turkey
| | - Cihat Ünlü
- Department of Obstetrics and Gynecology, Acıbadem University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
25
|
Jiang R, Ding L, Zhou J, Huang C, Zhang Q, Jiang Y, Liu J, Yan Q, Zhen X, Sun J, Yan G, Sun H. Enhanced HOXA10 sumoylation inhibits embryo implantation in women with recurrent implantation failure. Cell Death Discov 2017; 3:17057. [PMID: 29018572 PMCID: PMC5632741 DOI: 10.1038/cddiscovery.2017.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
HOXA10 has emerged as an important molecular marker of endometrial receptivity. Recurrent implantation failure (RIF) after in vitro fertilization-embryo transplantation (IVF-ET) treatment is associated with impaired endometrial receptivity, but the exact underlying mechanism of this phenomenon remains elusive. Here we found that HOXA10 was modified by small ubiquitin like-modifier 1 (SUMO1) at the evolutionarily conserved lysine 164 residue. Sumoylation inhibited HOXA10 protein stability and transcriptional activity without affecting its subcellular localization. SUMO1-modified HOXA10 expression was decreased in estradiol- and progesterone-treated Ishikawa cells. Sumoylation inhibited the accelerant role of HOXA10 in BeWo spheroid and mouse embryo attachment to Ishikawa cells. Importantly, aberrantly high SUMO1-HOXA10 expression was detected in mid-secretory endometria of women with RIF compared with that of the control fertile women. Together, our results suggest that HOXA10 sumoylation impairs the process of embryo implantation in vitro and takes part in the development of RIF.
Collapse
Affiliation(s)
- Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Huang JY, Yu PH, Li YC, Kuo PL. NLRP7 contributes to in vitro decidualization of endometrial stromal cells. Reprod Biol Endocrinol 2017; 15:66. [PMID: 28810880 PMCID: PMC5558772 DOI: 10.1186/s12958-017-0286-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NACHT), leucine rich repeat (LRR) and pyrin domain (PYD) 7 containing protein, NLRP7, is a member of the NLR family which serves as innate immune sensors. Mutations and genetic variants of NLRP7 have been found in women with infertility associated conditions, such as recurrent hydatidiform mole, recurrent miscarriage, and preeclampsia. Decidualization of endometrial stromal cells is a hallmark of tissue remodeling to support embryo implantation and proper placental development. Given defective decidualization has been implicated in miscarriage as well as preeclampsia, we aimed to explore the link between the NLRP7 gene and decidualization. METHODS Endometrial samples obtained from pregnant women in the first trimester and non-pregnant women were used to study NLRP7 expression pattern. The human telomerase reverse transcriptase (hTERT)-immortalized human endometrial stromal cells (T-HESCs) were used to study the effect of NLRP7 on decidualization. Decidualization of T-HESCs was induced with 1 μM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP). siRNA was used to knock down NLRP7 while lentiviral vectors were used to overexpress NLRP7 in cells. NLRP7 expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Decidualization markers, Insulin-like growth factor-binding protein 1 (IGFBP-1) and prolactin (PRL), were detected by qRT-PCR and ELISA. Nuclear translocation of NLRP7 was detected by the subcellular fractionation and confocal microscopy. The effect of NLRP7 on progesterone receptor (PR) activity was evaluated by a reporter system. RESULTS NLRP7 was up-regulated in the decidual stromal cells of human first-trimester endometrium. After in vitro decidualization, T-HESCs presented with the swollen phenotype and increased expressions of IGFBP-1 and PRL. Knockdown or over-expression of NLRP7 reduced or enhanced the decidualization, respectively, according to the expression level of IGFBP-1. NLRP7 was found to translocate in the nucleus of decidualized T-HESCs and able to promote PR activity. CONCLUSIONS NLRP7 was upregulated and translocated to the nucleus of the endometrial stromal cells in an in vitro decidualization model. Overexpressed NLRP7 promoted the IGFBP-1 expression and PR reporter activation. IGFBP-1 expression decreased with the knockdown of NLRP7. Therefore, we suggest that NLRP7 contributes to in vitro decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South Dist, Taichung City, 402, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan.
| |
Collapse
|
27
|
Li DD, Zhao SY, Yang ZQ, Duan CC, Guo CH, Zhang HL, Geng S, Yue ZP, Guo B. Hmgn5 functions downstream of Hoxa10 to regulate uterine decidualization in mice. Cell Cycle 2016; 15:2792-805. [PMID: 27579887 DOI: 10.1080/15384101.2016.1220459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although Hmgn5 is involved in the regulation of cellular proliferation and differentiation, its physiological function during decidualization is still unknown. Here we showed that Hmgn5 was highly expressed in the decidual cells. Silencing of Hmgn5 expression by specific siRNA reduced the proliferation of uterine stromal cells and expression of Ccnd3 and Cdk4 in the absence or presence of estrogen and progesterone, whereas overexpression of Hmgn5 exhibited the opposite effects. Simultaneously, Hmgn5 might induce the expression of Prl8a2 and Prl3c1 which were 2 well-known differentiation markers for decidualization. In the uterine stromal cells, cAMP analog 8-Br-cAMP and progesterone could up-regulate the expression of Hmgn5, but the up-regulation was impeded by H89 and RU486, respectively. Attenuation of Hmgn5 expression could block the differentiation of uterine stromal cells in response to cAMP and progesterone. Further studies found that regulation of cAMP and progesterone on Hmgn5 expression was mediated by Hoxa10. During in vitro decidualization, knockdown of Hmgn5 could abrogate Hoxa10-induced upregulation of Prl8a2 and Prl3c1, while overexpression of Hmgn5 reversed the inhibitory effects of Hoxa10 siRNA on the expression of Prl8a2 and Prl3c1. In the stromal cells undergoing decidualization, Hmgn5 might act downstream of Hoxa10 to regulate the expression of Cox-2, Vegf and Mmp2. Collectively, Hmgn5 may play an important role during mouse decidualization.
Collapse
Affiliation(s)
- Dang-Dang Li
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Shu-Yi Zhao
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Zhan-Qing Yang
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Cui-Cui Duan
- b Institute of Agro-food Technology , Jilin Academy of Agricultural Sciences , Changchun , P. R. China
| | - Chuan-Hui Guo
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Hong-Liang Zhang
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Shuang Geng
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Zhan-Peng Yue
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| | - Bin Guo
- a College of Veterinary Medicine , Jilin University , Changchun , P. R. China
| |
Collapse
|
28
|
Muter J, Brighton PJ, Lucas ES, Lacey L, Shmygol A, Quenby S, Blanks AM, Brosens JJ. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells. Endocrinology 2016; 157:2883-93. [PMID: 27167772 PMCID: PMC4972893 DOI: 10.1210/en.2015-1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Paul J Brighton
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Lauren Lacey
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Anatoly Shmygol
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Andrew M Blanks
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| |
Collapse
|
29
|
Ke J, Yang Y, Che Q, Jiang F, Wang H, Chen Z, Zhu M, Tong H, Zhang H, Yan X, Wang X, Wang F, Liu Y, Dai C, Wan X. Prostaglandin E2 (PGE2) promotes proliferation and invasion by enhancing SUMO-1 activity via EP4 receptor in endometrial cancer. Tumour Biol 2016; 37:12203-12211. [PMID: 27230680 PMCID: PMC5080328 DOI: 10.1007/s13277-016-5087-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/15/2016] [Indexed: 11/26/2022] Open
Abstract
Prostaglandin E2 (PGE2), a derivative of arachidonic acid, has been identified as a tumorigenic factor in many cancers in recent studies. Prostaglandin E synthase 2 (PTGES2) is an enzyme that in humans is encoded by the PTGES2 gene located on chromosome 9, and it synthesizes PGE2 in human cells. In our study, we selected 119 samples from endometrial cancer patients, with 50 normal endometrium tissue samples as controls, in which we examined the expression of PTGES2. Both immunohistochemistry (IHC) and Western blot analyses demonstrated that synthase PTGES2, which is required for PGE2 synthesis, was highly expressed in endometrium cancer tissues compared with normal endometrium. Stable PTGES2-shRNA transfectants were generated in Ishikawa and Hec-1B endometrial cancer cell lines, and transfection efficiencies were confirmed by RT-PCR and Western blot analyses. We found that PGE2 promoted proliferation and invasion of cells in Ishikawa and Hec-1B cells by cell counting kit-8 tests (CCK8) and transwell assays, respectively. PGE2 stimulation enhanced the expression of SUMO-1, via PGE2 receptor subtype 4 (EP4). Further analysis implicated the Wnt/β-catenin signaling pathway function as the major mediator of EP4 and SUMO-1. The increase in SUMO-1 activity prompted the SUMOlyation of target proteins which may be involved in proliferation and invasion. These findings suggest SUMO-1 and EP4 as two potential targets for new therapeutic or prevention strategies for endometrial cancers.
Collapse
Affiliation(s)
- Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixia Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjiao Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Yan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyun Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital affiliated with Tong Ji University, No. 536, Changle Road, Jing'an District, Shanghai, China.
| |
Collapse
|
30
|
Jiang Y, Kong S, He B, Wang B, Wang H, Lu J. Uterine Prx2 restrains decidual differentiation through inhibiting lipolysis in mice. Cell Tissue Res 2016; 365:403-14. [PMID: 26987819 DOI: 10.1007/s00441-016-2383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
Uterine decidualization, characterized as extensive stromal cell proliferation, differentiation and polyploidization, is a crucial event for successful pregnancy and is tightly regulated by many different molecules and pathways. Prx2, an evolutionarily conserved homeobox transcription factor expressed in both embryos and adults, plays an important role during mesenchymal cell differentiation. However, it remains unclear what the exact function of Prx2 is in the uterine stromal cells, one type of mesenchymal cells. In the present study, employing in vivo and in vitro stromal cell decidualization models, combining adenovirus-mediated overexpression of Prx2, we found that the expression of Prx2 is initiated in the uterine stromal cells once the blastocyst attached to the epithelium and is always detected around the differentiated decidual zone in the anti-mesometrium of the uterus during post-implantation uterine development. Also, overexpression of Prx2 disturbed stromal-decidual differentiation, which is reflected by the decreased expression of decidual/trophoblast prolactin-related protein (Dtprp), the marker for uterine decidualization in mice. Further, we demonstrate that Prx2 overexpression disturbs lipolysis, leading to lipid droplets accumulation in uterine stromal cells, partially mediated by downregulated expression of adipocyte triglyceride lipase. Collectively, these data indicate that uterine Prx2 restrains uterine decidual differentiation through regulating lipid metabolism.
Collapse
Affiliation(s)
- Yufei Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shuangbo Kong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bo He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bingyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Jinhua Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
31
|
Kaya Okur HS, Das A, Taylor RN, Bagchi IC, Bagchi MK. Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization. Mol Endocrinol 2016; 30:302-13. [PMID: 26849466 DOI: 10.1210/me.2015-1274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The steroid hormones 17β-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization.
Collapse
Affiliation(s)
- Hatice S Kaya Okur
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Amrita Das
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Robert N Taylor
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Indrani C Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology (H.S.K.O., M.K.B.) and Comparative Biosciences (A.D., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
32
|
Yoshie M, Kusama K, Tamura K. Molecular Mechanisms of Human Endometrial Decidualization Activated by Cyclic Adenosine Monophosphate Signaling Pathways. ACTA ACUST UNITED AC 2015. [DOI: 10.1274/jmor.32.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Li DD, Guo CH, Yue L, Duan CC, Yang ZQ, Cao H, Guo B, Yue ZP. Expression, regulation and function of Hmgn3 during decidualization in mice. Mol Cell Endocrinol 2015; 413:13-25. [PMID: 26112184 DOI: 10.1016/j.mce.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023]
Abstract
Although Hmgn3 is involved in the regulation of development and cellular differentiation, its physiological roles on decidualization are still unknown. Here we showed that Hmgn3 was highly expressed in the decidua and decidualizing stromal cells. Overexpression of Hmgn3 variants, Hmgn3a or Hmgn3b, enhanced the expression of decidualization markers Prl8a2 and Prl3c1, whereas inhibition of Hmgn3 reduced their expression. Hmgn3 could mediate the effects of Hoxa10 and cAMP on the expression of Prl8a2 and Prl3c1. Further study found that Hmgn3 directed the process of decidualization through influencing the expression of Hand2. Progesterone could induce the expression of Hmgn3 in the ovariectomized mouse uterus, uterine epithelial cells and stromal cells. Knockdown of Hoxa10 with siRNA alleviated the induction of progesterone and cAMP on Hmgn3 expression. Simultaneously, siRNA-mediated down-regulation of Hmgn3 in the uterine stromal cells could attenuate the effects of progesterone, cAMP and Hoxa10 on the expression of Hand2. Collectively, Hmgn3 may play an important role during mouse decidualization.
Collapse
Affiliation(s)
- Dang-Dang Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chuan-Hui Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Liang Yue
- College of Clinical Medicine, Jilin University, Changchun, PR China
| | - Cui-Cui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Hang Cao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| |
Collapse
|
34
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
35
|
Vasquez YM, Mazur EC, Li X, Kommagani R, Jiang L, Chen R, Lanz RB, Kovanci E, Gibbons WE, DeMayo FJ. FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol Endocrinol 2015; 29:421-33. [PMID: 25584414 DOI: 10.1210/me.2014-1292] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The forkhead box O1A (FOXO1) is an early-induced target of the protein kinase A pathway during the decidualization of human endometrial stromal cells (HESCs). In this study we identified the cistrome and transcriptome of FOXO1 and its role as a transcriptional regulator of the progesterone receptor (PR). Direct targets of FOXO1 were identified by integrating RNA sequencing with chromatin immunoprecipitation followed by deep sequencing. Gene ontology analysis demonstrated that FOXO1 regulates a subset of genes in decidualization such as those involved in cancer, p53 signaling, focal adhesions, and Wnt signaling. An overlap of the FOXO1 and PR chromatin immunoprecipitation followed by deep sequencing intervals revealed the co-occupancy of FOXO1 in more than 75% of PR binding intervals. Among these intervals were highly enriched motifs for the interferon regulatory factor member 4 (IRF4). IRF4 was determined to be a genomic target of both FOXO1 and PR and also to be differentially regulated in HESCs treated with small interfering RNA targeting FOXO1 or PR prior to decidualization stimulus. Ablation of FOXO1 was found to abolish binding of PR to the shared binding interval downstream of the IRF4 gene. Finally, small interfering RNA-mediated ablation of IRF4 was shown to compromise morphological transformation of decidualized HESCs and to attenuate the expression of the decidual markers IGFBP1, PRL, and WNT4. These results provide the first evidence that FOXO1 is functionally required for the binding of PR to genomic targets. Most notably, FOXO1 and PR are required for the regulation of IRF4, a novel transcriptional regulator of decidualization in HESCs.
Collapse
Affiliation(s)
- Yasmin M Vasquez
- Departments of Molecular and Cellular Biology (Y.M.V., X.L., R.K., R.B.L., F.J.D.) and Molecular and Human Genetics (L.J., R.C.), Baylor College of Medicine, and Division of Reproductive Endocrinology and Infertility (E.C.M., E.K., W.E.G.), Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Muter J, Lucas ES, Chan YW, Brighton PJ, Moore JD, Lacey L, Quenby S, Lam EWF, Brosens JJ. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells. FASEB J 2015; 29:1603-14. [PMID: 25573754 PMCID: PMC4396614 DOI: 10.1096/fj.14-267195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 01/24/2023]
Abstract
Implantation requires coordinated interactions between the conceptus and surrounding decidual cells, but the involvement of clock genes in this process is incompletely understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK (circadian locomotor output cycles kaput) and brain muscle arnt-like 1 and repressors encoded by PER (Period) and Cryptochrome genes. We show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Down-regulation occurred between 12 and 24 hours following differentiation and coincided with reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter. RNA sequencing revealed that premature inhibition of PER2 by small interfering RNA knockdown leads to a grossly disorganized decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators among the 1121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of 70 midluteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure (Spearman rank test, ρ = −0.3260; P = 0.0046). Thus, PER2 synchronizes endometrial proliferation with initiation of aperiodic decidual gene expression; uncoupling of these events may cause recurrent pregnancy loss.—Muter, J., Lucas, E. S., Chan, Y.-W., Brighton, P. J., Moore, J. D., Lacey, L., Quenby, S., Lam, E. W.-F., Brosens, J. J. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.
Collapse
Affiliation(s)
- Joanne Muter
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Emma S Lucas
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Yi-Wah Chan
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Paul J Brighton
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Jonathan D Moore
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Lauren Lacey
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Siobhan Quenby
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Eric W-F Lam
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| | - Jan J Brosens
- *Division of Translational & Systems Medicine, Warwick Medical School, and Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom; and Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, United Kingdom
| |
Collapse
|
37
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 711] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
38
|
Murakami K, Lee YH, Lucas ES, Chan YW, Durairaj RP, Takeda S, Moore JD, Tan BK, Quenby S, Chan JKY, Gargett CE, Brosens JJ. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology 2014; 155:4542-53. [PMID: 25116707 DOI: 10.1210/en.2014-1370] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endometrial perivascular microenvironment is rich in mesenchymal stem-like cells that express type 1 integral membrane protein Sushi domain containing 2 (SUSD2) but the role of these cells in the decidual transformation of this tissue in pregnancy is unknown. We used an antibody directed against SUSD2 (W5C5) to isolate perivascular (W5C5(+)) and nonperivascular (W5C5(-)) fibroblasts from mid-luteal biopsies. We show that SUSD2 expression, and hence the ratio of W5C5(+):W5C5(-) cells, changes in culture depending on cell-cell contact and activation of the Notch signaling pathway. RNA sequencing revealed that cultures derived from W5C5(+) progenitor cells remain phenotypically distinct by the enrichment of novel and established endometrial perivascular signature genes. In an undifferentiated state, W5C5(+)-derived cells produced lower levels of various chemokines and inflammatory modulators when compared with their W5C5(-) counterparts. This divergence in secretomes was switched and became more pronounced upon decidualization, which transformed perivascular W5C5(+) cells into the dominant source of a range of chemokines and cytokines, including leukemia inhibitory factor and chemokine (C-C motif) ligand 7. Our findings suggest that the decidual response is spatially organized at the embryo-maternal interface with differentiating perivascular cells establishing distinct cytokine and chemokine profiles that could potentially direct trophoblast toward maternal vessels and govern local immune responses in pregnancy.
Collapse
Affiliation(s)
- Keisuke Murakami
- Division of Reproductive Health, Clinical Science Research Laboratories (K.M., E.S.L., R.P.D., B.K.T., S.Q., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV2 2DX, United Kingdom; Department of Obstetrics and Gynaecology (K.M., S.T.), Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan; Interdisciplinary Research Groups of BioSystems and Micromechanics, and Infectious Diseases (Y.H.L.), Singapore-MIT Alliance for Research and Technology, Singapore 138602; Warwick Systems Biology Centre (Y.-W.C., J.D.M.), University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Reproductive Medicine (J.K.Y.C.), KK Women's and Children's Hospital, Singapore 229899; Cancer and Stem Cell Biology Program (J.K.Y.C.), Duke-NUS Graduate Medical School, Singapore, 169857; and The Ritchie Centre (C.E.G.), Monash Institute of Medical Research-Prince Henry's Institute, Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton, 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jividen K, Movassagh MJ, Jazaeri A, Li H. Two methods for establishing primary human endometrial stromal cells from hysterectomy specimens. J Vis Exp 2014. [PMID: 24894444 DOI: 10.3791/51513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many efforts have been devoted to establish in vitro cell culture systems. These systems are designed to model a vast number of in vivo processes. Cell culture systems arising from human endometrial samples are no exception. Applications range from normal cyclic physiological processes to endometrial pathologies such as gynecological cancers, infectious diseases, and reproductive deficiencies. Here, we provide two methods for establishing primary endometrial stromal cells from surgically resected endometrial hysterectomy specimens. The first method is referred to as "the scraping method" and incorporates mechanical scraping using surgical or razor blades whereas the second method is termed "the trypsin method." This latter method uses the enzymatic activity of trypsin to promote the separation of cells and primary cell outgrowth. We illustrate step-by-step methodology through digital images and microscopy. We also provide examples for validating endometrial stromal cell lines via quantitative real time polymerase chain reactions (qPCR) and immunofluorescence (IF).
Collapse
Affiliation(s)
| | | | - Amir Jazaeri
- Department of Obstetrics & Gynecology, University of Virginia
| | - Hui Li
- Department of Pathology, University of Virginia;
| |
Collapse
|
40
|
Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D. Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 2014; 62:1241-53. [PMID: 24753081 DOI: 10.1002/glia.22677] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
EAAT2 is a predominantly astroglial glutamate transporter responsible for the majority of synaptic glutamate clearance in the mammalian central nervous system (CNS). Its dysfunction has been linked with many neurological disorders, including amyotrophic lateral sclerosis (ALS). Decreases in EAAT2 expression and function have been implicated in causing motor neuron excitotoxic death in ALS. Nevertheless, increasing EAAT2 expression does not significantly improve ALS phenotype in mouse models or in clinical trials. In the SOD1-G93A mouse model of inherited ALS, the cytosolic carboxy-terminal domain is cleaved from EAAT2, conjugated to SUMO1, and accumulated in astrocytes where it triggers astrocyte-mediated neurotoxic effects as disease progresses. However, it is not known whether this fragment is sumoylated after cleavage or if full-length EAAT2 is already sumoylated prior to cleavage as part of physiological regulation. In this study, we show that a fraction of full-length EAAT2 is constitutively sumoylated in primary cultures of astrocytes in vitro and in the CNS in vivo. Furthermore, the extent of sumoylation of EAAT2 does not change during the course of ALS in the SOD1-G93A mouse and is not affected by the expression of ALS-causative mutant SOD1 proteins in astrocytes in vitro, indicating that EAAT2 sumoylation is not driven by pathogenic mechanisms. Most interestingly, sumoylated EAAT2 localizes to intracellular compartments, whereas non-sumoylated EAAT2 resides on the plasma membrane. In agreement, promoting desumoylation in primary astrocytes causes increased EAAT2-mediated glutamate uptake. These findings could have implications for optimizing therapeutic approaches aimed at increasing EAAT2 activity in the dysfunctional or diseased CNS.
Collapse
Affiliation(s)
- E Foran
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
41
|
Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci U S A 2014; 111:5574-9. [PMID: 24706897 DOI: 10.1073/pnas.1315034111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation.
Collapse
|
42
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Governini L, Carrarelli P, Rocha ALL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 2014; 21:1249-55. [PMID: 24520083 DOI: 10.1177/1933719114522549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study investigated expression and protein localization of FOXL2 messenger RNA (mRNA) in endometrium of healthy women and in patients with endometriosis during endometrial cycle. In endometriotic lesions, FOXL2 mRNA and protein were evaluated and a possible correlation with activin A mRNA expression changes was also studied. Endometrium was collected from healthy women (n = 52) and from women with endometriosis (n = 31) by hysteroscopy; endometriotic tissues were collected by laparoscopy (n = 38). FOXL2 gene expression analysis in endometrium of healthy women showed a significant expression and no significant changes in mRNA levels between proliferative and secretory phases; a similar pattern was observed in endometrium of patients with endometriosis. Immunohistochemical evaluation showed that FOXL2 protein localized in stromal and glandular cells and colocalized with SUMO-1. FOXL2 mRNA expression was 3-fold higher in endometriosis than in healthy endometrium (P < .01) and a positive correlation between FOXL2 and activin A mRNA was found (P < .05) in endometriosis. In conclusion, FOXL2 mRNA expression and its protein localization do not change during endometrial cycle in eutopic endometrium from healthy individuals or patients with endometriosis; the hyperexpression of FOXL2 in endometriotic lesions suggests an involvement of this transcriptional regulator, probably associated with activin A expression and related to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ana Luiza Lunardi Rocha
- Department of Obstetrics and Gynaecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, CHU Cochin, Paris, France
| | - Louise M Bilezikjian
- The Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
44
|
Myatt SS, Kongsema M, Man CWY, Kelly DJ, Gomes AR, Khongkow P, Karunarathna U, Zona S, Langer JK, Dunsby CW, Coombes RC, French PM, Brosens JJ, Lam EWF. SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene 2013; 33:4316-29. [PMID: 24362530 PMCID: PMC4096495 DOI: 10.1038/onc.2013.546] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response.
Collapse
Affiliation(s)
- S S Myatt
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - M Kongsema
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - C W-Y Man
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR China
| | - D J Kelly
- 1] Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK [2] Photonics Group, Department of Physics, Imperial College London, London, UK
| | - A R Gomes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - P Khongkow
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - U Karunarathna
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - S Zona
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - J K Langer
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - C W Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - R C Coombes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - P M French
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - J J Brosens
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry, UK
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| |
Collapse
|
45
|
Lucas ES, Salker MS, Brosens JJ. Reprint of: Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:664-72. [DOI: 10.1016/j.rbmo.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Reprint of: In-vitro model systems for the study of human embryo–endometrium interactions. Reprod Biomed Online 2013; 27:673-88. [DOI: 10.1016/j.rbmo.2013.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:506-14. [DOI: 10.1016/j.rbmo.2013.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022]
|
48
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
49
|
Weimar CHE, Post Uiterweer ED, Teklenburg G, Heijnen CJ, Macklon NS. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod Biomed Online 2013; 27:461-76. [PMID: 24055530 DOI: 10.1016/j.rbmo.2013.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 07/27/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
Implantation requires highly orchestrated interactions between the developing embryo and maternal endometrium. The association between abnormal implantation and reproductive failure is evident, both in normal pregnancy and in assisted reproduction patients. Failure of implantation is the pregnancy rate-limiting step in assisted reproduction, but, as yet, empirical interventions have largely failed to address this problem. Better understanding of the mechanisms underlying human embryo-endometrium signalling is a prerequisite for the further improvement of assisted reproduction outcomes and the development of effective interventions to prevent early pregnancy loss. Studying human embryo implantation is challenging since in-vivo experiments are impractical and unethical, and studies in animal models do not always translate well to humans. However, in recent years in-vitro models have been shown to provide a promising way forward. This review discusses the principal models used to study early human embryo development and initial stages of implantation in vitro. While each model has limitations, exploiting these models will improve understanding of the molecular mechanisms and embryo-endometrium cross-talk at the early implantation site. They provide valuable tools to study early embryo development and pathophysiology of reproductive disorders and have revealed novel disease mechanisms such as the role of epigenetic modifications in recurrent miscarriage.
Collapse
Affiliation(s)
- Charlotte H E Weimar
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
|