1
|
Pisciottano F, Campos MC, Penna C, Bruque CD, Gabaldón T, Saragüeta P. Positive selection in gamete interaction proteins in Carnivora. Mol Ecol 2024; 33:e17263. [PMID: 38318732 DOI: 10.1111/mec.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María Clara Campos
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clementina Penna
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate SAMIC, El Calafate, Santa Cruz, Argentina
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC), Institute for Research in Biomedicine (IRB), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Carlisle JA, Glenski MA, Swanson WJ. Recurrent Duplication and Diversification of Acrosomal Fertilization Proteins in Abalone. Front Cell Dev Biol 2022; 10:795273. [PMID: 35465314 PMCID: PMC9022041 DOI: 10.3389/fcell.2022.795273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Reproductive proteins mediating fertilization commonly exhibit rapid sequence diversification driven by positive selection. This pattern has been observed among nearly all taxonomic groups, including mammals, invertebrates, and plants, and is remarkable given the essential nature of the molecular interactions mediating fertilization. Gene duplication is another important mechanism that facilitates the generation of molecular novelty through functional divergence. Following duplication, paralogs may partition ancestral gene function (subfunctionalization) or acquire new roles (neofunctionalization). However, the contributions of duplication followed by sequence diversification to the molecular diversity of gamete recognition genes has been understudied in many models of fertilization. The marine gastropod mollusk abalone is a classic model for fertilization. Its two acrosomal proteins (lysin and sp18) are ancient gene duplicates with unique gamete recognition functions. Through detailed genomic and bioinformatic analyses we show how duplication events followed by sequence diversification has played an ongoing role in the evolution of abalone acrosomal proteins. The common ancestor of abalone had four members of its acrosomal protein family in a tandem gene array that repeatedly experienced positive selection. We find that both sp18 paralogs contain positively selected sites located in different regions of the paralogs, suggestive of functional divergence where selection acted upon distinct binding interfaces in each paralog. Further, a more recent species-specific duplication of both lysin and sp18 in the European abalone H. tuberculata is described. Despite clade-specific acrosomal protein paralogs, there are no concomitant duplications of egg coat proteins in H. tuberculata, indicating that duplication of egg proteins per se is not responsible for retention of duplicated acrosomal proteins. We hypothesize that, in a manner analogous to host/pathogen evolution, sperm proteins are selected for increased diversity through extensive sequence divergence and recurrent duplication driven by conflict mechanisms.
Collapse
Affiliation(s)
- J. A. Carlisle
- Genome Sciences Department, University of Washington Medical School, Seattle, WA, United States
- *Correspondence: J. A. Carlisle,
| | - M. A. Glenski
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - W. J. Swanson
- Genome Sciences Department, University of Washington Medical School, Seattle, WA, United States
| |
Collapse
|
4
|
Saito T, Sawada H. Fertilization of Ascidians: Gamete Interaction, Self/Nonself Recognition and Sperm Penetration of Egg Coat. Front Cell Dev Biol 2022; 9:827214. [PMID: 35186958 PMCID: PMC8849226 DOI: 10.3389/fcell.2021.827214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fertilization is one of the most important events in living organisms to generate a new life with a mixed genetic background. To achieve successful fertilization, sperm and eggs must undergo complex processes in a sequential order. Fertilization of marine invertebrate Ciona intestinalis type A (Ciona robusta) has been studied for more than a hundred years. Ascidian sperm are attracted by chemoattractants from eggs and bind to the vitelline coat. Subsequently, sperm penetrate through the vitelline coat proteolytically and finally fuse with the egg plasma membrane. Here, we summarize the fertilization mechanisms of ascidians, particularly from sperm-egg interactions to sperm penetration of the egg coat. Since ascidians are hermaphrodites, inbreeding depression is a serious problem. To avoid self-fertilization, ascidians possess a self-incompatibility system. In this review, we also describe the molecular mechanisms of the self-incompatibility system in C. intestinalis type A governed by three allelic gene pairs of s-Themis and v-Themis.
Collapse
Affiliation(s)
- Takako Saito
- Faculty of Agriculture Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Hitoshi Sawada
- Depatment of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Murata K, Kinoshita M. Targeted deletion of liver-expressed Choriogenin L results in the production of soft eggs and infertility in medaka, Oryzias latipes. ZOOLOGICAL LETTERS 2022; 8:1. [PMID: 34983666 PMCID: PMC8729012 DOI: 10.1186/s40851-021-00185-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Egg envelopes (chorions) in medaka, Oryzias latipes, are composed of three major glycoproteins: ZI-1, - 2, and - 3. These gene-encoded chorion glycoproteins are expressed in the liver and/or ovarian oocytes of sexually mature female fish. In medaka, the glycoproteins produced in the female liver are induced by estrogen as Choriogenin (Chg.) H and Chg. H minor (m), which correspond to the zona pellucida (ZP) B (ZPB) protein in mammals, and Chg. L, which corresponds to ZPC in mammals. Chg. H, Chg. Hm, and Chg. L, are then converted to ZI-1, - 2, and - 3, respectively, during oogenesis in medaka ovaries.In the present study, we established a medaka line in which the chg.l gene was inactivated using the transcription activator-like effector nuclease (TALEN) technique. Neither intact chg.l transcripts nor Chg. L proteins were detected in livers of sexually mature female homozygotes for the mutation (homozygous chg.l knockout: chg.l-/-). The chg.l-/- females spawned string-like materials containing "smashed eggs." Closer examination revealed the oocytes in the ovaries of chg.l-/- females had thin chorions, particularly at the inner layer, despite a normal growth rate. In comparing chorions from normal (chg.l+/+) and chg.l-/- oocytes, the latter exhibited abnormal architecture in the chorion pore canals through which the oocyte microvilli pass. These microvilli mediate the nutritional exchange between the oocyte and surrounding spaces and promote sperm-egg interactions during fertilization. Thus, following in vitro fertilization, no embryos developed in the artificially inseminated oocytes isolated from chg.l-/- ovaries. These results demonstrated that medaka ZI-3 (Chg.L) is the major component of the inner layer of the chorion, as it supports and maintains the oocyte's structural shape, enabling it to withstand the pressures exerted against the chorion during spawning, and is essential for successful fertilization. Therefore, gene products of oocyte-specific ZP genes that may be expressed in medaka oocytes cannot compensate for the loss Chg. L function to produce offspring for this species.
Collapse
Affiliation(s)
- Kenji Murata
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
6
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
7
|
Killingbeck EE, Wilburn DB, Merrihew GE, MacCoss MJ, Swanson WJ. Proteomics support the threespine stickleback egg coat as a protective oocyte envelope. Mol Reprod Dev 2021; 88:500-515. [PMID: 34148267 PMCID: PMC8362008 DOI: 10.1002/mrd.23517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Kumar V, Kumar PG, Yadav JK. Impact of semen-derived amyloid (SEVI) on sperm viability and motility: its implication in male reproductive fitness. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:659-671. [PMID: 31392382 DOI: 10.1007/s00249-019-01391-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/13/2018] [Accepted: 07/29/2019] [Indexed: 01/09/2023]
Abstract
Human semen contains a large number of macromolecules, including proteins/enzymes and carbohydrates, regulating and protecting sperm cells. Proteomic analysis of human seminal fluid led to the discovery of semen amyloids derived from short peptide fragments of the proteins prostatic acid phosphatase (PAP) and semenogelin (SG) which are known to play a crucial role in enhancing HIV infection. However, the relevance of their existence in human semen and role in maintaining sperm behavior remains unclear. Distinct physiological, biochemical, and biophysical attributes might cause these amyloids to influence sperm behavior positively or negatively, affecting fertilization or other reproductive processes. We assessed the direct effect of amyloids derived from a PAP248-286 fragment, on sperm motility and viability, which are crucial parameters for assessment of sperm quality in semen. Co-incubation of human sperm with PAP248-286 amyloids at normal physiological concentrations formed in buffer led to significant reduction in sperm viability, though approximately a 10× higher concentration was needed to show a similar effect with amyloid formed in seminal fluid. Both forms of PAP248-286 amyloid also had a significant impact on sperm motility at physiological levels, in agreement with a previous report. Our study suggests that PAP248-286 amyloids can directly influence sperm motility and viability in a concentration-dependent manner. We hypothesise that the direct toxic effect of PAP248-286 amyloid is normally mitigated by other seminal fluid ingredients, but that in pathological conditions, where PAP248-286 concentrations are elevated and it plays a role in determining sperm health and viability, with relevance for male fertility as well as sterility.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Jaipur-Ajmer Highway, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep G Kumar
- Molecular Reproduction Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Jaipur-Ajmer Highway, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
9
|
Tanaka Y, Yamada S, Connop SL, Hashii N, Sawada H, Shih Y, Nishida H. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Dev Biol 2019; 449:52-61. [PMID: 30710513 DOI: 10.1016/j.ydbio.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
Stereotyped left-right asymmetry both in external and internal organization is found in various animals. Left-right symmetry is broken by the neurula rotation in the ascidian, Halocynthia roretzi. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and the rotation stops when the left side of the embryo is oriented downwards, resulting in contact of the left-side epidermis with the vitelline membrane at the bottom of perivitelline space. Then, such contact induces the expression of nodal and its downstream Pitx2 gene in the left-side epidermis. Vitelline membrane is required for the promotion of nodal expression. Here, we showed that a chemical signal from the vitelline membrane promotes nodal gene expression, but mechanical stimulus at the point of contact is unnecessary since the treatment of devitellinated neurulae with an extract of the vitelline membrane promoted nodal expression on both sides. The signal molecules are already present in the vitelline membranes of unfertilized eggs. These signal molecules are proteins but not sugars. Specific fractions in gel filtration chromatography had the nodal promoting activity. By mass spectrometry, we selected 48 candidate proteins. Proteins that contain both a zona pellucida (ZP) domain and epidermal growth factor (EGF) repeats were enriched in the candidates of the nodal inducing molecules. Six of the ZP proteins had multiple EGF repeats that are only found in ascidian ZP proteins. These were considered to be the most viable candidates of the nodal-inducing molecules. Signal molecules are anchored to the entire vitelline membrane, and contact sites of signal-receiving cells are spatially and mechanically controlled by the neurula rotation. In this context, ascidians are unusual with respect to mechanisms for specification of the left-right axis. By suppressing formation of epidermis monocilia, we also showed that epidermal cilia drive the neurula rotation but are dispensable for sensing the signal from the vitelline membrane.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Samantha L Connop
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | - Yu Shih
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
10
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Feng JM, Tian HF, Hu QM, Meng Y, Xiao HB. Evolution and multiple origins of zona pellucida genes in vertebrates. Biol Open 2018; 7:7/11/bio036137. [PMID: 30425109 PMCID: PMC6262864 DOI: 10.1242/bio.036137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal egg coats are composed of different glycoproteins collectively named zona pellucida (ZP) proteins. The characterized vertebrate genes encoding ZP proteins have been classified into six subfamilies, and exhibit low similarity to the ZP genes characterized in certain invertebrates. The origin and evolution of the vertebrate ZP genes remain obscure. A search against 97 representative metazoan species revealed various numbers (ranging from three to 33) of different putative egg-coat ZP genes in all 47 vertebrates and several ZP genes in five invertebrate species, but no putative ZP gene was found in the other 45 species. Based on phylogenetic and synteny analyses, all vertebrate egg-coat ZP genes were classified into eight ZP gene subfamilies. Lineage- and species-specific gene duplications and gene losses occurred frequently and represented the main causes of the patchy distribution of the eight ZP gene subfamilies in vertebrates. Thorough phylogenetic analyses revealed that the vertebrate ZP genes could be traced to three independent origins but were not orthologues of the characterized invertebrate ZP genes. Our results suggested that vertebrate egg-coat ZP genes should be classified into eight subfamilies, and a putative evolutionary map is proposed. These findings would aid the functional and evolutionary analyses of these reproductive genes in vertebrates. Summary: Phylogenetic and synteny analyses indicate that the vertebrate zona pellucida (ZP) genes encoding egg coat proteins can be classified into eight subfamilies, and the evolutionary origins of these genes are discussed.
Collapse
Affiliation(s)
- Jin-Mei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan, Hubei Province 430056, China
| | - Hai-Feng Tian
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Qiao-Mu Hu
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Yan Meng
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Han-Bing Xiao
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| |
Collapse
|
12
|
Drinan DP, Gruenthal KM, Canino MF, Lowry D, Fisher MC, Hauser L. Population assignment and local adaptation along an isolation-by-distance gradient in Pacific cod ( Gadus macrocephalus). Evol Appl 2018; 11:1448-1464. [PMID: 30151052 PMCID: PMC6100185 DOI: 10.1111/eva.12639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 01/03/2023] Open
Abstract
The discernment of populations as management units is a fundamental prerequisite for sustainable exploitation of species. A lack of clear stock boundaries complicates not only the identification of spatial management units, but also the assessment of mixed fisheries by population assignment and mixed stock analysis. Many marine species, such as Pacific cod, are characterized by isolation by distance, showing significant differentiation but no clear stock boundaries. Here, we used restriction-site-associated DNA (RAD) sequencing to investigate population structure and assess power to genetically assign Pacific cod to putative populations of origin. Samples were collected across the species range in the eastern Pacific Ocean, from the Salish Sea to the Aleutian Islands. A total of 6,425 putative biallelic single nucleotide polymorphisms were identified from 276 individuals. We found a strong isolation-by-distance signal along coastlines that mirrored previous microsatellite results and pronounced genetic differentiation between coastal samples and those from the inland waters of the Salish Sea, with no evidence for hybridization between these two populations. Individual assignment success based on two methods was high overall (≥84%) but decreased from south to north. Assignment to geographic location of origin also was successful, with average distance between capture and assignment location of 220 km. Outlier analyses identified more loci potentially under selection along the coast than between Salish Sea and coastal samples, suggesting more diverse adaptation to latitudinal environmental factors than inshore vs. offshore environments. Our results confirm previous observations of sharp genetic differentiation of the Salish Sea population and isolation by distance along the coast, but also highlight the feasibility of using modern genomic techniques to inform stock boundaries and fisheries management in a low FST marine species.
Collapse
Affiliation(s)
- Daniel P. Drinan
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | | | | - Dayv Lowry
- Washington Department of Fish and WildlifeOlympiaWashington
| | - Mary C. Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| |
Collapse
|
13
|
Yu L, Xu D, Ye H, Yue H, Ooka S, Kondo H, Yazawa R, Takeuchi Y. Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:467-480. [PMID: 29616430 DOI: 10.1007/s10126-018-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.
Collapse
Affiliation(s)
- Lingyun Yu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
| | - Dongdong Xu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316100, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shioh Ooka
- Japan Ocean Resources Development and Engineering Co., Ltd., 7-1 Jizohamacho, Kishiwada, Osaka, 596-0015, Japan
| | - Hidehiro Kondo
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Yutaka Takeuchi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
14
|
Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 2018; 19:488. [PMID: 29929489 PMCID: PMC6014011 DOI: 10.1186/s12864-018-4872-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic data from various organisms have been used to study how sexual selection has shaped genetic diversity in reproductive proteins, and in particular, to elucidate how mating systems may have influenced evolution at the molecular and phenotypic levels. However, large-scale proteomic data including protein identifications and abundances are only now entering the field of evolutionary and comparative genomics. Variation in both protein sequence and expression level may play important roles in the evolution of sexual traits and behaviors. RESULTS Here, we broadly analyze the components of seminal fluid from primates with diverse mating systems ranging from monogamous to polygynous, and include genomics, proteomics, phylogenetic and quantitative characters into our framework. Our analyses show that seminal fluid proteins are undergoing rapid evolution and some of these quickly evolving proteins may be influenced by sexual selection. Through evolutionary analyses and protein abundance differences, we identified 84 genes whose evolutionary rates or expression levels were correlated with mating system and other sexual characters. We found that many proteins differ in abundance between monogamous and polygynous primate mating systems. Many of these proteins are enriched in the copulatory plug pathway, which suggests that post-zygotic selective barriers are important regardless of mating system type. CONCLUSIONS This work is the first to comprehensively compare seminal fluid proteins between human and non-human primates using high-throughput proteomics. Our findings highlight the impact of mating system variation on seminal fluid protein evolution and abundance.
Collapse
|
15
|
Mulyana JS, Iwai T, Takahashi M, Farajallah A, Wardiatno Y, Miura C, Miura T. Sex-changing patterns of Akoya pearl oyster ( Pinctada fucata). ZOOLOGICAL LETTERS 2018; 4:11. [PMID: 29992043 PMCID: PMC5987639 DOI: 10.1186/s40851-018-0098-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pearl production by transplantation in Akoya pearl oyster (Pinctada fucata) is a biotechnology developed in Japan that skillfully utilizes the pearl-forming ability of oysters. In this method, cultured pearls are formed from a pearl nucleus and a small piece of mantle transplanted into the gonads of recipient pearl oysters. In this study, we hypothesized that the sex of the recipient pearl oyster might affect the quality of pearl produced. While some previous studies have examined the sex of Akoya pearl oyster, detailed information is lacking. RESULTS To investigate sex in Akoya pearl oyster, we collected small gonadal fragments from 1-year-old pearl oysters by biopsy. Using the collected gonad fragment, the sex of the oysters was determined by microscopic observation, and the remaining samples were stored for gene expression analyses. All oysters were labeled to distinguish each individual for serial samplings every four months over the 2-year study period. At the start of experiment, nearly all of the pearl oysters were male, but the male:female ratio ofmale decreased over the course of the experiment. Interestingly, the number of males increased after spring, during the breeding season. This suggests that, in pearl oyster, sex is affected by season. Expression analysis of sex-related genes (Dmrt2, Vtg, Zp) indicated that all genes were expressed in all individuals and all periods. CONCLUSIONS These results suggest that Akoya pearl oysters are hermaphroditic, and that females appear as necessary, such as during the breeding season. These findings could contribute to higher efficiency and quality of pearl cultivation.
Collapse
Affiliation(s)
| | - Toshiharu Iwai
- Laboratory of Fish Reproductive Physiology, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime Japan
| | - Masaharu Takahashi
- Pearl Oyster Research Laboratory, Shimonada Fisheries Cooperative, Uwajima, Ehime Japan
| | - Achmad Farajallah
- Department of Aquatic Resources Management, Bogor Agricultural University, Bogor, West Jawa Indonesia
| | - Yusli Wardiatno
- Department of Aquatic Resources Management, Bogor Agricultural University, Bogor, West Jawa Indonesia
| | - Chiemi Miura
- Laboratory of Fish Reproductive Physiology, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, Hiroshima, Hiroshima Japan
| | - Takeshi Miura
- Laboratory of Fish Reproductive Physiology, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime Japan
| |
Collapse
|
16
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
17
|
Firman RC. Postmating sexual conflict and female control over fertilization during gamete interaction. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology University of Western Australia Western Australia Australia
| |
Collapse
|
18
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Sano K, Kawaguchi M, Katano K, Tomita K, Inokuchi M, Nagasawa T, Hiroi J, Kaneko T, Kitagawa T, Fujimoto T, Arai K, Tanaka M, Yasumasu S. Comparison of Egg Envelope Thickness in Teleosts and its Relationship to the Sites of ZP Protein Synthesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:240-258. [DOI: 10.1002/jez.b.22729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Kaori Sano
- Department of Chemistry, Faculty of Science; Josai University; Sakado Saitama Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; Chiyoda-ku Tokyo Japan
| | - Keita Katano
- Department of Chemistry, Faculty of Science; Josai University; Sakado Saitama Japan
| | - Kenji Tomita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Tatsuki Nagasawa
- Department of Anatomy; The Jikei University School of Medicine; Minato-ku Tokyo Japan
| | - Junya Hiroi
- Department of Anatomy; St. Marianna University School of Medicine; Miyamae-ku Kawasaki Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Takashi Kitagawa
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwa Chiba Japan
| | - Takafumi Fujimoto
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Katsutoshi Arai
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Masaru Tanaka
- International Institute for Advanced Studies; Kizugawa-shi Kyoto Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology; Sophia University; Chiyoda-ku Tokyo Japan
| |
Collapse
|
20
|
Shu L, Laurila A, Suter MJF, Räsänen K. Molecular phenotyping of maternally mediated parallel adaptive divergence withinRana arvalisandRana temporaria. Mol Ecol 2016; 25:4564-79. [DOI: 10.1111/mec.13786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics; Evolutionary Biology Center; Uppsala University; Uppsala 75236 Sweden
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Eawag; Duebendorf 8600 Switzerland
- Department of Environmental Systems Science; ETH Zürich; Zürich 8092 Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Eawag; Duebendorf 8600 Switzerland
- Institute of Integrative Biology; ETH Zürich; Zürich 8092 Switzerland
| |
Collapse
|
21
|
Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2015; 16:27520-34. [PMID: 26593905 PMCID: PMC4661900 DOI: 10.3390/ijms161126042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/01/2022] Open
Abstract
The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.
Collapse
|
22
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
23
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
24
|
Egge N, Muthusubramanian A, Cornwall GA. Amyloid properties of the mouse egg zona pellucida. PLoS One 2015; 10:e0129907. [PMID: 26043223 PMCID: PMC4456372 DOI: 10.1371/journal.pone.0129907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023] Open
Abstract
The zona pellucida (ZP) surrounding the oocyte is an extracellular fibrillar matrix that plays critical roles during fertilization including species-specific gamete recognition and protection from polyspermy. The mouse ZP is composed of three proteins, ZP1, ZP2, and ZP3, all of which have a ZP polymerization domain that directs protein fibril formation and assembly into the three-dimensional ZP matrix. Egg coats surrounding oocytes in nonmammalian vertebrates and in invertebrates are also fibrillar matrices and are composed of ZP domain-containing proteins suggesting the basic structure and function of the ZP/egg coat is highly conserved. However, sequence similarity between ZP domains is low across species and thus the mechanism for the conservation of ZP/egg coat structure and its function is not known. Using approaches classically used to identify amyloid including conformation-dependent antibodies and dyes, X-ray diffraction, and negative stain electron microscopy, our studies suggest the mouse ZP is a functional amyloid. Amyloids are cross-β sheet fibrillar structures that, while typically associated with neurodegenerative and prion diseases in mammals, can also carry out functional roles in normal cells without resulting pathology. An analysis of the ZP domain from mouse ZP3 and ZP3 homologs from five additional taxa using the algorithm AmylPred 2 to identify amyloidogenic sites, revealed in all taxa a remarkable conservation of regions that were predicted to form amyloid. This included a conserved amyloidogenic region that localized to a stretch of hydrophobic amino acids previously shown in mouse ZP3 to be essential for fibril assembly. Similarly, a domain in the yeast protein α-agglutinin/Sag 1p, that possesses ZP domain-like features and which is essential for mating, also had sites that were predicted to be amyloidogenic including a hydrophobic stretch that appeared analogous to the critical site in mouse ZP3. Together, these studies suggest that amyloidogenesis may be a conserved mechanism for ZP structure and function across billions of years of evolution.
Collapse
Affiliation(s)
- Nathan Egge
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mathé-Hubert H, Gatti JL, Colinet D, Poirié M, Malausa T. Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: an application to parasitoid venom. Mol Ecol Resour 2015; 15:1120-32. [PMID: 25691098 DOI: 10.1111/1755-0998.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/03/2023]
Abstract
Understanding the forces that shape eco-evolutionary patterns often requires linking phenotypes to genotypes, allowing characterization of these patterns at the molecular level. DNA-based markers are less informative in this aim compared to markers associated with gene expression and, more specifically, with protein quantities. The characterization of eco-evolutionary patterns also usually requires the analysis of large sample sizes to accurately estimate interindividual variability. However, the methods used to characterize and compare protein samples are generally expensive and time-consuming, which constrains the size of the produced data sets to few individuals. We present here a method that estimates the interindividual variability of protein quantities based on a global, semi-automatic analysis of 1D electrophoretic profiles, opening the way to rapid analysis and comparison of hundreds of individuals. The main original features of the method are the in silico normalization of sample protein quantities using pictures of electrophoresis gels at different staining levels, as well as a new method of analysis of electrophoretic profiles based on a median profile. We demonstrate that this method can accurately discriminate between species and between geographically distant or close populations, based on interindividual variation in venom protein profiles from three endoparasitoid wasps of two different genera (Psyttalia concolor, Psyttalia lounsburyi and Leptopilina boulardi). Finally, we discuss the experimental designs that would benefit from the use of this method.
Collapse
Affiliation(s)
- H Mathé-Hubert
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - J-L Gatti
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - D Colinet
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - M Poirié
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - T Malausa
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.,CNRS, UMR 7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
26
|
Exploiting genomic data to identify proteins involved in abalone reproduction. J Proteomics 2014; 108:337-53. [DOI: 10.1016/j.jprot.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/31/2023]
|
27
|
Zou M, Guo B, Ma X. Characterizing the transcriptome of yellow-cheek carp (Elopichthys bambusa) enables evolutionary analyses within endemic East Asian Cyprinidae. Gene 2014; 547:267-72. [PMID: 24973763 DOI: 10.1016/j.gene.2014.06.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
Abstract
The identification of genes that may be responsible for the divergence of closely related species is one of the central goals of evolutionary biology. The species of endemic East Asian Cyprinidae diverged less than 8millionyears ago, and the morphological differences among these species are great. However, the genetic basis of their divergence remains unknown. In this report, we investigated the transcriptome of one endemic East Asian cyprinid - the yellow-cheek carp Elopichthys bambusa. A comparison with the publicly available transcriptomes of other endemic East Asian cyprinids, including the silver carp (Hypophthalmichthys molitrix) and blunt-nose black bream (Megalobrama amblycephala), revealed a number of candidate adaptive genes in each species, such as zona pellucida glycoprotein 2 in E. bambusa and zebrafish vitelline envelope protein in M. amblycephala. An enrichment test showed the enrichment of some specific gene ontology (GO) terms for these putatively adaptive genes. Taken together, our work is the first step toward elucidating the genes that may be related to the divergence of endemic East Asian Cyprinidae, and these genes identified as being probably under positive selection should be good candidates for subsequent evolutionary and functional studies.
Collapse
Affiliation(s)
- Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, People's Republic of China.
| | - Baocheng Guo
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, People's Republic of China
| |
Collapse
|
28
|
Aagaard JE, George RD, Fishman L, MacCoss MJ, Swanson WJ. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers. PLoS Genet 2013; 9:e1003965. [PMID: 24339787 PMCID: PMC3854799 DOI: 10.1371/journal.pgen.1003965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.
Collapse
Affiliation(s)
- Jan E. Aagaard
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Renee D. George
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Willie J. Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Evans JP, Sherman CDH. Sexual selection and the evolution of egg-sperm interactions in broadcast-spawning invertebrates. THE BIOLOGICAL BULLETIN 2013; 224:166-183. [PMID: 23995741 DOI: 10.1086/bblv224n3p166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many marine invertebrate taxa are broadcast spawners, where multiple individuals release their gametes into the water for external fertilization, often in the presence of gametes from heterospecifics. Consequently, sperm encounter the considerable challenges of locating and fertilizing eggs from conspecific females. To overcome these challenges, many taxa exhibit species-specific attraction of sperm toward eggs through chemical signals released from eggs (sperm chemotaxis) and species-specific gamete recognition proteins (GRPs) that mediate compatibility of gametes at fertilization. In this prospective review, we highlight these selective forces, but also emphasize the role that sexual selection, manifested through sperm competition, cryptic female choice, and evolutionary conflicts of interest between the sexes (sexual conflict), can also play in mediating the action of egg chemoattractants and GRPs, and thus individual reproductive fitness. Furthermore, we explore patterns of selection at the level of gametes (sperm phenotype, gamete plasticity, and egg traits) to identify putative traits targeted by sexual selection in these species. We conclude by emphasizing the excellent, but relatively untapped, potential of broadcast-spawning marine invertebrates as model systems to illuminate several areas of research in post-mating sexual selection.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
30
|
Glukhova VA, Tomazela DM, Findlay GD, Monnat RJ, MacCoss MJ. Rapid assessment of RNAi-mediated protein depletion by selected reaction monitoring mass spectrometry. J Proteome Res 2013; 12:3246-54. [PMID: 23713831 DOI: 10.1021/pr400067k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the use of a targeted proteomics approach, selected reaction monitoring (SRM) mass spectrometry, to detect and assess RNAi-mediated depletion or "knockdown" of specific proteins from human cells and from Drosophila flies. This label-free approach does not require any specific reagents to confirm the depletion of RNAi target protein(s) in unfractionated cell or whole organism extracts. The protocol described here is general, can be developed rapidly, and can be multiplexed to detect and measure multiple proteins at once. Furthermore, the methodology can be extended to any tandem mass spectrometer, making it widely accessible. This methodology will be applicable to a wide range of basic science and clinical questions where RNAi-mediated protein depletion needs to be verified, or where differences in relative abundance of target proteins need to be rapidly assessed between samples.
Collapse
Affiliation(s)
- Veronika A Glukhova
- Departments of Genome Sciences and Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
31
|
SANO KAORI, KAWAGUCHI MARI, WATANABE SATOSHI, NAGAKURA YOSHITOMO, HIRAKI TAKASHI, YASUMASU SHIGEKI. Inferring the Evolution of TeleosteanzpGenes Based on Their Sites of Expression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:332-43. [DOI: 10.1002/jez.b.22507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/26/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
Affiliation(s)
- KAORI SANO
- Department of Science and Technology; Sophia University; Tokyo Japan
| | - MARI KAWAGUCHI
- Department of Science and Technology; Sophia University; Tokyo Japan
| | - SATOSHI WATANABE
- Japan International Research Center for Agricultural Sciences; Tsukuba Japan
| | - YOSHITOMO NAGAKURA
- Tohoku National Fisheries Research Institute; Fisheries Research Agency; Miyagi Japan
| | - TAKASHI HIRAKI
- Department of Science and Technology; Sophia University; Tokyo Japan
| | - SHIGEKI YASUMASU
- Department of Science and Technology; Sophia University; Tokyo Japan
| |
Collapse
|
32
|
Palmer MR, McDowall MH, Stewart L, Ouaddi A, MacCoss MJ, Swanson WJ. Mass spectrometry and next-generation sequencing reveal an abundant and rapidly evolving abalone sperm protein. Mol Reprod Dev 2013; 80:460-5. [PMID: 23585193 DOI: 10.1002/mrd.22182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/07/2013] [Indexed: 11/06/2022]
Abstract
Abalone, a broadcast spawning marine mollusk, is an important model for molecular interactions and positive selection in fertilization, but the focus has previously been on only two sperm proteins, lysin and sp18. We used genomic and proteomic techniques to bring new insights to this model by characterizing the testis transcriptome and sperm proteome of the Red abalone Haliotis rufescens. One pair of homologous, testis-specific proteins contains a secretion signal and is small, abundant, and associated with the acrosome. Comparative analysis revealed that homologs are extremely divergent between species, and show strong evidence for positive selection. The acrosomal localization and rapid evolution of these proteins indicates that they play an important role in fertilization, and could be involved in the species-specificity of sperm-egg interactions in abalone. Our genomic and proteomic characterization of abalone fertilization resulted in the identification of interesting, novel peptides that have eluded detection in this important model system for 20 years.
Collapse
Affiliation(s)
- Melody R Palmer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195-5065, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Aagaard JE, Springer SA, Soelberg SD, Swanson WJ. Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization. PLoS Genet 2013; 9:e1003287. [PMID: 23408913 PMCID: PMC3567151 DOI: 10.1371/journal.pgen.1003287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/14/2012] [Indexed: 12/22/2022] Open
Abstract
Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (dN/dS) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL. Interacting sperm and egg proteins must co-evolve to maintain compatibility at fertilization, so their divergence among species should be correlated—lineages with rapidly evolving sperm proteins should have rapidly evolving egg proteins. We use this expectation to target biochemical studies of fertilization in a model system (abalone). We study a discrete functional domain (ZP-N) found in a pair of duplicated egg coat proteins, and we find the ZP-N motif from both proteins bind sperm lysin (a protein important for sperm passage of the egg coat) in a similar fashion. ZP-N is a feature of vertebrate and invertebrate egg coat proteins, as well as yeast mating recognition proteins, demonstrating its broad significance in sexual reproduction. Unexpectedly, we find that the ZP-N motifs of VEZP14 and VERL exhibit inverse patterns of co-evolution with lysin, suggesting that these duplicates may have opposite functions in fertilization. Using computer simulations, we model a novel explanation for this pattern whereby VEZP14 acts as a decoy of VERL in order to decrease the effective amount of sperm lysin and slow the rate of fertilization. Such molecular mimicry could complement other well-established fertilization blocks that females use to control rates of fertilization and limit polyspermy.
Collapse
Affiliation(s)
- Jan E Aagaard
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
34
|
Xu Q, Li G, Cao L, Wang Z, Ye H, Chen X, Yang X, Wang Y, Chen L. Proteomic characterization and evolutionary analyses of zona pellucida domain-containing proteins in the egg coat of the cephalochordate, Branchiostoma belcheri. BMC Evol Biol 2012; 12:239. [PMID: 23216630 PMCID: PMC3543715 DOI: 10.1186/1471-2148-12-239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023] Open
Abstract
Background Zona pellucida domain-containing proteins (ZP proteins) have been identified as the principle constituents of the egg coat (EC) of diverse metazoan taxa, including jawed vertebrates, urochordates and molluscs that span hundreds of millions of years of evolutionary divergence. Although ZP proteins generally contain the zona pellucida (ZP) structural modules to fulfill sperm recognition and EC polymerization functions during fertilization, the primary sequences of the ZP proteins from the above-mentioned animal classes are drastically different, which makes it difficult to assess the evolutionary relationships of ZP proteins. To understand the origin of vertebrate ZP proteins, we characterized the egg coat components of Branchiostoma belcheri, an invertebrate species that belongs to the chordate subphylum Cephalochordata. Results Five ZP proteins (BbZP1-5) were identified by mass spectrometry analyses using the egg coat extracts from both unfertilized and fertilized eggs. In addition to the C-terminal ZP module in each of the BbZPs, the majority contain a low-density lipoprotein receptor domain and a von Willebrand factor type A (vWFA) domain, but none possess an EGF-like domain that is frequently observed in the ZP proteins of urochordates. Fluorescence in situ hybridization and immuno-histochemical analyses of B. belcheri ovaries showed that the five BbZPs are synthesized predominantly in developing eggs and deposited around the extracellular space of the egg, which indicates that they are bona fide egg coat ZP proteins. BbZP1, BbZP3 and BbZP4 are significantly more abundant than BbZP2 and BbZP5 in terms of gene expression levels and the amount of mature proteins present on the egg coats. The major ZP proteins showed high polymorphism because multiple variants are present with different molecular weights. Sequence comparison and phylogenetic analysis between the ZP proteins from cephalochordates, urochordates and vertebrates showed that BbZP1-5 form a monophyletic group and share no significant sequence similarities with the ZP proteins of urochordates and the ZP3 subtype of jawed vertebrates. By contrast, small regions of homology were identifiable between the BbZP and ZP proteins of the non-jawed vertebrate, the sea lamprey Petromyzon marinus. The lamprey ZP proteins were highly similar to the ZP1 and ZP2 subtypes of the jawed vertebrates, which suggests that the ZP proteins of basal chordates most likely shared a recent common ancestor with vertebrate ZP1/2 subtypes and lamprey ZP proteins. Conclusions The results document the spectra of zona pellucida domain-containing proteins of the egg coat of basal chordates. Particularly, the study provides solid evidence for an invertebrate origin of vertebrate ZP proteins and indicates that there are diverse domain architectures in ZP proteins of various metazoan groups.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sun J, Zhang H, Wang H, Heras H, Dreon MS, Ituarte S, Ravasi T, Qian PY, Qiu JW. First Proteome of the Egg Perivitelline Fluid of a Freshwater Gastropod with Aerial Oviposition. J Proteome Res 2012; 11:4240-8. [PMID: 22738194 DOI: 10.1021/pr3003613] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huoming Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi
Arabia
| | - Hao Wang
- Division of Life Science, The Hong Kong University of Science and Technology,
Hong Kong, China
| | - Horacio Heras
- Instituto
de Investigaciones Bioquímicas
de La Plata (INIBIOLP), CONICET CCT La Plata — Universidad Nacional de La Plata (UNLP), 60 y 120,
(1900) La Plata, Argentina
| | - Marcos S. Dreon
- Instituto
de Investigaciones Bioquímicas
de La Plata (INIBIOLP), CONICET CCT La Plata — Universidad Nacional de La Plata (UNLP), 60 y 120,
(1900) La Plata, Argentina
| | - Santiago Ituarte
- Instituto
de Investigaciones Bioquímicas
de La Plata (INIBIOLP), CONICET CCT La Plata — Universidad Nacional de La Plata (UNLP), 60 y 120,
(1900) La Plata, Argentina
| | - Timothy Ravasi
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi
Arabia
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology,
Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
36
|
Abstract
The evolution of the egg is dynamic, and eggs have numerous species-specific properties across vertebrates and invertebrates. Interestingly, although the structure and function of the egg have remained relatively conserved over time, some constituents of the egg's extracellular barriers are undergoing rapid evolution. In this article, we review current ideas regarding sperm-egg interactions, discuss genetic approaches used to elucidate egg gene functions, and highlight the interesting differences that have evolved across taxa. We suggest that the rapid evolution of egg components and the mechanisms behind sperm-egg interactions are integrally connected, and delve in depth into each component of the egg's extracellular matrices. Finally, we discuss the promising future of reproductive research and how high-throughput genomics and proteomics have the potential to revolutionize the field and provide new evidence that will challenge previously held views about the fertilization process.
Collapse
Affiliation(s)
- Katrina G Claw
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA.
| | | |
Collapse
|
37
|
Diz AP, Martínez-Fernández M, Rolán-Alvarez E. Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 2012; 21:1060-80. [PMID: 22268916 DOI: 10.1111/j.1365-294x.2011.05426.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of the proteome (proteomics), which includes the dynamics of protein expression, regulation, interactions and its function, has played a less prominent role in evolutionary and ecological investigations in comparison with the study of the genome and transcriptome. There are, however, a number of arguments suggesting that this situation should change. First, the proteome is closer to the phenotype than the genome or the transcriptome, and as such may be more directly responsive to natural selection, and thus closely linked to adaptation. Second, there is evidence of a low correlation between protein and transcript expression levels across genes in many different organisms. Finally, there have been some recent important technological improvements in proteomics methods that make them feasible, practical and useful to address a wide range of evolutionary questions even in nonmodel organisms. The different proteomic methods, their limitations and problems when interpreting empirical data are described and discussed. In addition, the proteomic literature pertaining to evolutionary ecology is reviewed with examples, and potential applications of proteomics in a variety of evolutionary contexts are outlined. New proteomic research trends such as the study of posttranslational modifications and protein-protein interactions, as well as the combined use of the different -omics approaches, are discussed in relation to the development of a more functional and integrated perspective, needed for achieving a more comprehensive knowledge of evolutionary change.
Collapse
Affiliation(s)
- Angel P Diz
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
38
|
Hellberg ME, Dennis AB, Arbour-Reily P, Aagaard JE, Swanson WJ. The Tegula tango: a coevolutionary dance of interacting, positively selected sperm and egg proteins. Evolution 2012; 66:1681-94. [PMID: 22671539 DOI: 10.1111/j.1558-5646.2011.01530.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL is a major component of the VE surrounding the egg, includes a conserved zona pellucida (ZP) domain at its C-terminus, and possesses a unique, negatively charged domain of about 150 amino acids implicated in interactions with the positively charged lysin. Unlike for abalone VERL, where this unique VERL domain occurs in a tandem array of 22 repeats, Tegula VERL has just one such domain. Interspecific comparisons show that both lysin and the VERL domain diverge via positive selection, whereas the ZP domain evolves neutrally. Rates of nonsynonymous substitution are correlated between lysin and the VERL domain, consistent with sexual antagonism, although lineage-specific effects, perhaps owing to different ecologies, may alter the relative evolutionary rates of sperm- and egg-borne proteins.
Collapse
Affiliation(s)
- Michael E Hellberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
39
|
Matveev IV, Adonin LS, Shaposhnikova TG, Podgornaya OI. Aurelia aurita-Cnidarian with a prominent medusiod stage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:1-12. [PMID: 22081514 DOI: 10.1002/jez.b.21440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/02/2011] [Accepted: 08/08/2011] [Indexed: 11/11/2022]
Abstract
Aurelia aurita has a complex life cycle that consists of several stages including alternating generations of medusa and polyps, huge sexual, and tiny asexual stages. Cnidarian is thought to possess two tissue layers: endoderm (gastroderm) and ectoderm, which are separated by mesoglea in medusa. The determination of the composition of the A. aurita jellyfish mesoglea was performed. New protein "mesoglein" was determined as one of the main components of mesoglea. Mesoglein is synthesized by mesogleal cells (Mc), which are populated A. aurita mesoglea as a high molecular mass precursor. Mc are involved in the formation of noncollagenous "elastic" fibers. Deduced amino acid sequence of mesoglein contains Zona Pellucida (ZP) domain and Delta/Serrate/Lag-2 domain. According to reverse transcription PCR, mesoglein is expressed in the mature medusa exclusively in the Mc. The sperm binding to the ZP is particularly important for successful fertilization. Antibodies against mesoglein stain the plate in the place of contact of germinal epithelium and oocyte. The structure found was named the "contact plate." The contact plate could be the precursor of the ZP. All our data suggest that Mc and, probably, the whole mesoglea originate from the epidermis (ectoderm). Computer search for mesoglein relatives reveals Nematostella and Trichoplax proteins as predicted ORFs, indicating that ZP proteins are quite ancient purchase in the evolution.
Collapse
|
40
|
Vacquier VD, Swanson WJ. Selection in the rapid evolution of gamete recognition proteins in marine invertebrates. Cold Spring Harb Perspect Biol 2011; 3:a002931. [PMID: 21730046 PMCID: PMC3220358 DOI: 10.1101/cshperspect.a002931] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Animal fertilization is governed by the interaction (binding) of proteins on the surfaces of sperm and egg. In many examples presented herein, fertilization proteins evolve rapidly and show the signature of positive selection (adaptive evolution). This review describes the molecular evolution of fertilization proteins in sea urchins, abalone, and oysters, animals with external fertilization that broadcast their gametes into seawater. Theories regarding the selective forces responsible for the rapid evolution driven by positive selection seen in many fertilization proteins are discussed. This strong selection acting on divergence of interacting fertilization proteins might lead to prezygotic reproductive isolation and be a significant factor in the speciation process. Since only a fraction of all eggs are fertilized and only an infinitesimal fraction of male gametes succeed in fertilizing an egg, gametes are obviously a category of entities subjected to intense selection. It is curious that this is never mentioned in the literature dealing with selection, perhaps because we know so little about fitness differences among gametes. (Ernst Mayr, 1997).
Collapse
Affiliation(s)
- Victor D Vacquier
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | |
Collapse
|
41
|
Burnett LA, Anderson DM, Rawls A, Bieber AL, Chandler DE. Mouse sperm exhibit chemotaxis to allurin, a truncated member of the cysteine-rich secretory protein family. Dev Biol 2011; 360:318-28. [PMID: 22008793 DOI: 10.1016/j.ydbio.2011.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022]
Abstract
Allurin, a 21 kDa protein isolated from egg jelly of the frog Xenopus laevis, has previously been demonstrated to attract frog sperm in two-chamber and microscopic assays. cDNA cloning and sequencing has shown that allurin is a truncated member of the Cysteine-Rich Secretory Protein (CRISP) family, whose members include mammalian sperm-binding proteins that have been postulated to play roles in spermatogenesis, sperm capacitation and sperm-egg binding in mammals. Here, we show that allurin is a chemoattractant for mouse sperm, as determined by a 2.5-fold stimulation of sperm passage across a porous membrane and by analysis of sperm trajectories within an allurin gradient as observed by time-lapse microscopy. Chemotaxis was accompanied by an overall change in trajectory from circular to linear thereby increasing sperm movement along the gradient axis. Allurin did not increase sperm velocity although it did produce a modest increase in flagellar beat frequency. Oregon Green 488-conjugated allurin was observed to bind to the sub-equatorial region of the mouse sperm head and to the midpiece of the flagellum. These findings demonstrate that sperm have retained the ability to bind and respond to truncated Crisp proteins over 300 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
42
|
Swanson WJ, Aagaard JE, Vacquier VD, Monné M, Sadat Al Hosseini H, Jovine L. The molecular basis of sex: linking yeast to human. Mol Biol Evol 2011; 28:1963-6. [PMID: 21282709 PMCID: PMC3167683 DOI: 10.1093/molbev/msr026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Species-specific recognition between egg and sperm, a crucial event that marks the beginning of fertilization in multicellular organisms, mirrors the binding between haploid cells of opposite mating type in unicellular eukaryotes such as yeast. However, as implied by the lack of sequence similarity between sperm-binding regions of invertebrate and vertebrate egg coat proteins, these interactions are thought to rely on completely different molecular entities. Here, we argue that these recognition systems are, in fact, related: despite being separated by 0.6-1 billion years of evolution, functionally essential domains of a mollusc sperm receptor and a yeast mating protein adopt the same 3D fold as egg zona pellucida proteins mediating the binding between gametes in humans.
Collapse
Affiliation(s)
| | | | - Victor D. Vacquier
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego
| | - Magnus Monné
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Hamed Sadat Al Hosseini
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
43
|
Dean MD, Findlay GD, Hoopmann MR, Wu CC, MacCoss MJ, Swanson WJ, Nachman MW. Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling. BMC Genomics 2011; 12:306. [PMID: 21663664 PMCID: PMC3144466 DOI: 10.1186/1471-2164-12-306] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/10/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins. RESULTS We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract. CONCLUSION Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.
Collapse
Affiliation(s)
- Matthew D Dean
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, USA
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey D Findlay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael R Hoopmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine C Wu
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael W Nachman
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Xie X, Qiu WG, Lipke PN. Accelerated and adaptive evolution of yeast sexual adhesins. Mol Biol Evol 2011; 28:3127-37. [PMID: 21633112 DOI: 10.1093/molbev/msr145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a recent emergence of interest in the genes involved in gametic recognition as drivers of reproductive isolation. The recent population genomic sequencing of two species of sexually primitive yeasts (Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V et al. [23 co-authors]. 2009. Population genomics of domestic and wild yeasts. Nature 458:337-341.) has provided data for systematic study of the roles these genes play in the early evolution of sex and speciation. Here, we discovered that among genes encoding cell surface proteins, the sexual adhesin genes have evolved significantly more rapidly than others, both within and between Saccharomyces cerevisiae and its closest relative S. paradoxus. This result was supported by analyses using the PAML pairwise model, a modified McDonald-Kreitman test, and the PAML branch model. Moreover, using a combination of a new statistic of neutrality, an information theory-based measure of evolutionary variability, and functional characterization of amino acid changes, we found that a higher proportion of amino acid changes are fixed in the sexual adhesins than in other proteins and a greater proportion of the fixed amino acid changes either between the two species or the two subgroups of S. paradoxus are functionally dissimilar or radically different. These results suggest that the accelerated evolution of sexual adhesin genes may facilitate speciation, or incipient speciation, and promote sexual selection in general.
Collapse
Affiliation(s)
- Xianfa Xie
- Department of Biology, Brooklyn College, City University of New York, NY, USA.
| | | | | |
Collapse
|
45
|
Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci U S A 2010; 107:21593-8. [PMID: 21115821 DOI: 10.1073/pnas.1007883107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary model escape from adaptive conflict (EAC) posits that adaptive conflict between the old and an emerging new function within a single gene could drive the fixation of gene duplication, where each duplicate can freely optimize one of the functions. Although EAC has been suggested as a common process in functional evolution, definitive cases of neofunctionalization under EAC are lacking, and the molecular mechanisms leading to functional innovation are not well-understood. We report here clear experimental evidence for EAC-driven evolution of type III antifreeze protein gene from an old sialic acid synthase (SAS) gene in an Antarctic zoarcid fish. We found that an SAS gene, having both sialic acid synthase and rudimentary ice-binding activities, became duplicated. In one duplicate, the N-terminal SAS domain was deleted and replaced with a nascent signal peptide, removing pleiotropic structural conflict between SAS and ice-binding functions and allowing rapid optimization of the C-terminal domain to become a secreted protein capable of noncolligative freezing-point depression. This study reveals how minor functionalities in an old gene can be transformed into a distinct survival protein and provides insights into how gene duplicates facing presumed identical selection and mutation pressures at birth could take divergent evolutionary paths.
Collapse
|
46
|
Abstract
During mammalian fertilisation, the zona pellucida (ZP) matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction (AR) in the ZP-bound spermatozoon. The AR is crucial for the penetration of the ZP matrix by spermatozoa. The ZP matrix in mice is composed of three glycoproteins designated ZP1, ZP2 and ZP3, whereas in humans, it is composed of four (ZP1, ZP2, ZP3 and ZP4). ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in mice, whereas in humans (in addition to ZP3), ZP1 and ZP4 also induce the AR. The ability of ZP3 to induce the AR resides in its C-terminal fragment. O-linked glycans are critical for the murine ZP3-mediated AR. However, N-linked glycans of human ZP1, ZP3 and ZP4 have important roles in the induction of the AR. Studies with pharmacological inhibitors showed that the ZP3-induced AR involves the activation of the G(i)-coupled receptor pathway, whereas ZP1- and ZP4-mediated ARs are independent of this pathway. The ZP3-induced AR involves the activation of T-type voltage-operated calcium channels (VOCCs), whereas ZP1- and ZP4-induced ARs involve both T- and L-type VOCCs. To conclude, in mice, ZP3 is primarily responsible for the binding of capacitated spermatozoa to the ZP matrix and induction of the AR, whereas in humans (in addition to ZP3), ZP1 and ZP4 also participate in these stages of fertilisation.
Collapse
|
47
|
Kelley JL, Aagaard JE, MacCoss MJ, Swanson WJ. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni. J Mol Evol 2010; 71:111-8. [PMID: 20686757 DOI: 10.1007/s00239-010-9367-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/06/2010] [Indexed: 12/01/2022]
Abstract
Antifreeze proteins (AFPs) have independently evolved in many organisms. AFPs act by binding to ice crystals, effectively lowering the freezing point. AFPs are often at high copy number in a genome and diversity exists between copies. Type III antifreeze proteins are found in Arctic and Antarctic eel pouts, and have previously been shown to evolve under positive selection. Here we combine molecular and proteomic techniques to understand the molecular evolution and diversity of Type III antifreeze proteins in a single individual Antarctic fish Lycodichthys dearborni. Our expressed sequence tag (EST) screen reveals that at least seven different AFP variants are transcribed, which are ultimately translated into five different protein isoforms. The isoforms have identical 66 base pair signal sequences and different numbers of subsequent ice-binding domains followed by a stop codon. Isoforms with one ice-binding unit (monomer), two units (dimer), and multiple units (multimer) were present in the EST library. We identify a previously uncharacterized protein dimer, providing further evidence that there is diversity between Type III AFP isoforms, perhaps driven by positive selection for greater thermal hysteresis. Proteomic analysis confirms that several of these isoforms are translated and present in the liver. Our molecular evolution study shows that paralogs have diverged under positive selection. We hypothesize that antifreeze protein diversity is an important contributor to depressing the serum freezing point.
Collapse
Affiliation(s)
- Joanna L Kelley
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
48
|
Walters JR, Harrison RG. Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 2010; 27:2000-13. [PMID: 20375075 DOI: 10.1093/molbev/msq092] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seminal fluid proteins (SFPs) directly influence a wide range of reproductive processes, including fertilization, sperm storage, egg production, and immune response. Like many other reproductive proteins, the molecular evolution of SFPs is generally characterized by rapid and frequently adaptive evolution. However, the evolutionary processes underlying this often-documented pattern have not yet been confidently determined. A robust understanding of the processes governing SFP evolution will ultimately require identifying SFPs and characterizing their evolution in many different taxa, often where only limited genomic resources are available. Here, we report the first comprehensive molecular genetic and evolutionary analysis of SFPs conducted in Lepidoptera (moths and butterflies). We have identified 51 novel SFPs from two species of Heliconius butterflies (Heliconius erato and Heliconius melpomene) by combining "indirect" bioinformatic and expression analyses of expressed sequence tags from male accessory gland and wing tissues with "direct" proteomic analyses of spermatophores. Proteomic analyses identified fewer SFPs than the indirect criteria but gave consistent results. Of 51 SFPs, 40 were identified in both species but fewer than half could be functionally annotated via similarity searches (Blast, IPRscan, etc.). The majority of annotated Heliconius SFPs were predicted to be chymotrypsins. Comparisons of Heliconius SFPs with those from fruit fly, mosquito, honeybee, and cricket suggest that gene turnover is high among these proteins and that SFPs are rarely conserved across insect orders. Pairwise estimates of evolutionary rates between SFPs and nonreproductive proteins show that, on average, Heliconius SFPs are evolving rapidly. At least one of these SFPs is evolving adaptively (dN/dS > 1), implicating a role for positive selection in this rapid evolution. This work establishes a strong precedent for future research on the causes and consequences of reproductive protein evolution in the Lepidoptera. Butterflies and moths have an extremely rich history of organismal research, which will provide an informative ecological context for further molecular evolutionary investigations.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolutionary Biology, Cornell University, USA.
| | | |
Collapse
|
49
|
Aagaard JE, Vacquier VD, MacCoss MJ, Swanson WJ. ZP domain proteins in the abalone egg coat include a paralog of VERL under positive selection that binds lysin and 18-kDa sperm proteins. Mol Biol Evol 2010; 27:193-203. [PMID: 19767347 DOI: 10.1093/molbev/msp221] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL). Rapid adaptive divergence of abalone lysin and VERL are an example of positive selection on interacting fertilization proteins contributing to reproductive isolation. Previously, we characterized a subset of the abalone VE proteins that share a structural feature, the zona pellucida (ZP) domain, which is common to VERL and the egg envelopes of vertebrates. Here, we use additional expressed sequence tag sequencing and shotgun proteomics to characterize this family of proteins in the abalone egg VE. We expand 3-fold the number of known ZP domain proteins present within the VE (now 30 in total) and identify a paralog of VERL (vitelline envelope zona pellucida domain protein [VEZP] 14) that contains a putative lysin-binding motif. We find that, like VERL, the divergence of VEZP14 among abalone species is driven by positive selection on the lysin-binding motif alone and that these paralogous egg VE proteins bind a similar set of sperm proteins including a rapidly evolving 18-kDa paralog of lysin, which may mediate sperm-egg fusion. This work identifies an egg coat paralog of VERL under positive selection and the candidate sperm proteins with which it may interact during abalone fertilization.
Collapse
Affiliation(s)
- Jan E Aagaard
- Department of Genome Sciences, University of Washington, USA.
| | | | | | | |
Collapse
|
50
|
Findlay GD, Swanson WJ. Proteomics enhances evolutionary and functional analysis of reproductive proteins. Bioessays 2010; 32:26-36. [PMID: 20020477 DOI: 10.1002/bies.200900127] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.
Collapse
Affiliation(s)
- Geoffrey D Findlay
- Department of Genome Sciences, University of Washington, Seattle, 98195-5065, USA.
| | | |
Collapse
|