1
|
Hafidi Z, García MT, Vazquez S, Martinavarro-Mateos M, Ramos A, Pérez L. Antimicrobial and biofilm-eradicating properties of simple double-chain arginine-based surfactants. Colloids Surf B Biointerfaces 2025; 253:114762. [PMID: 40344742 DOI: 10.1016/j.colsurfb.2025.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The increasing emergence of multidrug-resistant bacteria and fungi represents a significant challenge for contemporary medicine. In an effort to design and develop new antimicrobial drugs, we have prepared double chain arginine-based surfactants using a simple and cost-effective procedure. These compounds consist of the cationic arginine linked by amide bonds to two hydrophobic chains, one containing 12 carbon atoms, while the length of the other has been systematically varied. We investigated their self-assembly in an aqueous medium, their antimicrobial efficiency against a panel of clinically relevant bacteria and fungi, their antibiofilm activity, and their cytotoxicity. The results demonstrated that these arginine-based surfactants were effective against a broad spectrum of bacteria and fungi, including methicillin-resistant strains. Their antimicrobial activity depends on their hydrophobic content, with the LANHC5 and LANHC6 homologs being the most effective. Notably, these compounds can eradicate mature biofilms of MRSA C. albicans and C. tropicalis at low concentrations. Furthermore, they induced cell lysis only at concentrations exceeding their MIC values against both bacteria and fungi. The findings presented here provide valuable insights into the structure-activity relationships underlying the toxicity of cationic surfactants, which must be better understood to facilitate their transition from bench research to pharmaceutical applications.
Collapse
Affiliation(s)
- Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Maria Teresa García
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Sergio Vazquez
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Marta Martinavarro-Mateos
- While Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Anderson Ramos
- While Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
2
|
Peggion C, Schivo A, Rotondo M, Oancea S, Popovici L, Călin T, Mkrtchyan A, Saghyan A, Hayriyan L, Khachatryan E, Formaggio F, Biondi B. Synthesis and Biological Activity of Ultrashort Antimicrobial Peptides Bearing a Non-Coded Amino Acid. J Pept Sci 2025; 31:e70021. [PMID: 40230062 PMCID: PMC11997541 DOI: 10.1002/psc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Antimicrobial resistance represents a significant global health threat, prompting the exploration of alternative therapeutic strategies. Antimicrobial peptides (AMPs) and lipopeptides are promising candidates due to their unique ability to disrupt bacterial cell membranes through mechanisms distinct from conventional antibiotics. These peptides are typically enhanced by motifs involving cationic amino acids, positive charge, and aromatic residues. Additionally, the conjugation of acyl chains to the N-terminus of AMPs has been shown to improve their antimicrobial activity and selectivity. However, the susceptibility of peptides to enzymatic degradation presents a major limitation. To address this, we investigated the incorporation of non-coded amino acids (NCAAs) to enhance peptide stability. Specifically, we synthesized the NCAA 2-amino-3-(1H-imidazol-1-yl)propanoic acid [His*], producing both enantiomers with high yield and optical purity. We then designed various analogs of ultra-short AMPs by inserting His* at specific positions, evaluating their antimicrobial properties with different acyl chain lengths (C16 and C12) at the N-terminus and the C-terminus. We were able to identify a very promising candidate for applications (P8) characterized by resistance to proteolysis and enhanced biological effectiveness.
Collapse
Affiliation(s)
- Cristina Peggion
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomolecular ChemistryPadovaItaly
| | - Andrea Schivo
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | - Martina Rotondo
- Institute of Biomolecular ChemistryPadovaItaly
- Department of BiologyUniversity of NapoliNaplesItaly
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering“Lucian Blaga” University of SibiuSibiuRomania
| | - Lucia‐Florina Popovici
- Department of Agricultural Sciences and Food Engineering“Lucian Blaga” University of SibiuSibiuRomania
| | - Teodora Călin
- Laboratory of Diagnostic and Investigation, Directorate of Public HealthSibiuRomania
| | - Anna Mkrtchyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
- Institute of PharmacyYerevan State UniversityYerevanArmenia
| | - Ashot Saghyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
- Institute of PharmacyYerevan State UniversityYerevanArmenia
| | - Liana Hayriyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
- Institute of PharmacyYerevan State UniversityYerevanArmenia
| | | | - Fernando Formaggio
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomolecular ChemistryPadovaItaly
| | | |
Collapse
|
3
|
Kiper E, Ben Hur D, Alfandari D, Camacho AC, Wani NA, Efrat GD, Morandi MI, Goldsmith M, Rotkopf R, Kamyshinsky R, Deshmukh A, Binte Zulkifli NE, Asmari N, Penedo M, Fantner G, Porat Z, Azuri I, Rosenhek-Goldian I, Chitnis CE, Shai Y, Regev-Rudzki N. Antimicrobial peptides selectively target malaria parasites by a cholesterol-dependent mechanism. J Biol Chem 2025; 301:108298. [PMID: 39971158 PMCID: PMC11993164 DOI: 10.1016/j.jbc.2025.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Hundreds of thousands die annually from malaria caused by Plasmodium falciparum (Pf), with the emergence of drug-resistant parasites hindering eradication efforts. Antimicrobial peptides (AMPs) are known for their ability to disrupt pathogen membranes without targeting specific receptors, thereby reducing the chance of drug resistance. However, their effectiveness and the biophysical mechanisms by which they target the intracellular parasite remain unexplored. Here, by using native and synthetic AMPs, we discovered a selective mechanism that underlies the antimalarial activity. Remarkably, the AMPs exclusively interact with Pf-infected red blood cells, disrupting the cytoskeletal network and reaching the enclosed parasites with correlation to their activity. Moreover, we showed that the unique feature of reduced cholesterol content in the membrane of the infected host makes Pf-infected red blood cells susceptible to AMPs. Overall, this work highlights the Achilles' heel of malaria parasite and demonstrates the power of AMPs as potential antimalarial drugs with reduced risk of resistance.
Collapse
Affiliation(s)
- Edo Kiper
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Ben Hur
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Abel Cruz Camacho
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Naiem Ahmad Wani
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal David Efrat
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic
| | - Moshe Goldsmith
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Roman Kamyshinsky
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Arunaditya Deshmukh
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nur Elyza Binte Zulkifli
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Navid Asmari
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Marcos Penedo
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Georg Fantner
- École Polytechnique Fédérale de Lausanne, Laboratory for Bio- and Nano-Instrumentation, Lausanne, Switzerland
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Azuri
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yechiel Shai
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Liu L, Shi Z, Tong M, Fang Y, Yang D, Yu J, Cao Z. Designing a Novel Ultrashort Cyclic [R 3W 4V] Antimicrobial Peptide with Superior Antimicrobial Potential Based on the Transmembrane Structure to Facilitate Pore Formation. J Chem Inf Model 2025; 65:2623-2635. [PMID: 39976454 DOI: 10.1021/acs.jcim.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The clinical application of antimicrobial peptides (AMPs) is frequently hindered by the inherent limitations of linear peptides. Previous studies have primarily focused on the physicochemical properties of AMPs, and there is a scarcity of information regarding the transmembrane structure and interactions of AMPs with cell membranes and their antimicrobial activity. The present study is the first to propose that the backbone cyclization of linear R3W4V (l(R3W4V)) into the cyclic R3W4V (c[R3W4V]) form can enhance the stability of its transmembrane structure and consequently improve its antibacterial activity. The results of the bacterial inhibition assays performed herein demonstrated that the antibacterial activity of c[R3W4V] against Staphylococcus aureus and Bacillus subtilis was approximately 17-fold and 19-fold higher than that of l(R3W4V). The effect of c[R3W4V] on the structure of the bilayer membrane was further assessed via well-tempered bias-exchange metadynamics simulations and long-time conventional unbiased molecular dynamics simulations. This study demonstrated that the single c[R3W4V] peptide assumes a stable transmembrane configuration. Consequently, as the number of peptides accumulating in the membrane core increases at higher peptide-lipid ratios, a higher number of phospholipid headgroups embedded into the hydrophobic lipid core, leading to membrane fusion, permeabilization, and deformation of the upper and lower leaflets of the bilayer. The study provides a novel computational perspective on enhancing the antimicrobial efficacy of AMPs and highlights the importance of peptide-membrane structures, dynamics, and interactions in promoting the membrane-disruptive potential of peptides.
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhihong Shi
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Yaqing Fang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Dongying Yang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
5
|
Pramanik B, Mukherjee P, Ahmed S. Ultrashort Peptide Hydrogels Biomaterials with Potent Antibacterial Activity. Chem Asian J 2025; 20:e202401137. [PMID: 39688224 DOI: 10.1002/asia.202401137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
For the past few decades, ultrashort peptide hydrogels have been at the forefront of biomaterials due to their unique properties like biocompatibility, tunable mechanical properties, and potent antibacterial activity. These ultrashort peptides self-assemble into a hydrogel matrix with nanofibrous networks. In this minireview, we have explored the design and self-assembly of these ultrashort peptide hydrogels by focusing on their antibacterial properties. Cationic and hydrophobic residues are incorporated to engineer the peptides, facilitating interaction with bacterial membranes and leading to membrane disruption and cell death. The hydrogels exhibit broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, this minireview highlights the potential of ultrashort peptide hydrogels as versatile and practical antibacterial biomaterials, providing a novel approach to combating bacterial infections and addressing the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Bapan Pramanik
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Payel Mukherjee
- Dept. of Chemistry, School of Basic and Applied Sciences, Adamas University, Kolkata, 700126, India
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, 700054, India
| |
Collapse
|
6
|
Gao N, Fang C, Bai P, Wang J, Dong N, Shan A, Zhang L. De novo design of Na +-activated lipopeptides with selective antifungal activity: A promising strategy for antifungal drug discovery. Int J Biol Macromol 2024; 283:137894. [PMID: 39571872 DOI: 10.1016/j.ijbiomac.2024.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
In recent years, invasive fungal infections have posed a significant threat to human health, particularly due to the limited availability of effective antifungal medications. This study responds to the urgent need for powerful and selective antifungal agents by designing and synthesizing a series of lipopeptides with lipoylation at the N-terminus of the antimicrobial peptide I6. Compared to the parent peptide I6, lipopeptides exhibited selective antifungal efficacy in the presence of Na+. Among the variants tested, C8-I6 emerged as the most effective, with an average effective concentration of 5.3 μM against 12 different fungal species. C8-I6 combated fungal infections by disrupting both cytoplasmic and mitochondrial membranes, impairing the proton motive force, generating reactive oxygen species, and triggering apoptosis in fungal cells. Importantly, C8-I6 exhibited minimal hemolysis and cytotoxicity while effectively inhibiting fungal biofilm formation. In vivo experiments further validated the safety and therapeutic potential of C8-I6 in treating fungal skin infections. These findings underscore the significance of lipoylation in enhancing the efficacy of antimicrobial peptides, positioning C8-I6 as a promising candidate in fighting against drug-resistant fungal infections.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyang Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
7
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Braik A, Serna-Duque JA, Nefzi A, Aroui S, Esteban MÁ. Potential therapeutic use of dermaseptin S4 from the frog Phyllomedusa sauvagii and its derivatives against bacterial pathogens in fish. J Appl Microbiol 2024; 135:lxae222. [PMID: 39187398 DOI: 10.1093/jambio/lxae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
AIM Dermaseptins are one of the main families of antimicrobial peptides (AMPs) derived from the skin secretions of Hylidae frogs. Among them, dermaseptin S4 (DS4) is characterized by its broad-spectrum of activity against bacteria, protozoa, and fungi. In this study, the physicochemical properties of the native peptide DS4 (1-28) and two derivatives [DS4 (1-28)a and DS4 (1-26)a] isolated from the skin of the frog Phyllomedusa sauvagii were investigated and their antimicrobial properties against two marine pathogenic bacteria (Vibrio harveyi and Vibrio anguillarum) were examined. METHODS AND RESULTS The results indicate that the peptide DS4 (1-26)a has high-antibacterial activity against the tested strains and low-hemolytic activity (<30% lysis at the highest tested concentration of 100 µg/mL) compared to the other two peptides tested. In addition, all three peptides affect the membrane and cell wall integrity of both pathogenic bacteria, causing leakage of cell contents, with DS4 (1-26)a having the most severe impact. These skills were corroborated by transmission electron microscopy and by the variation of cations in their binding sites due to the effects caused by the AMPs. CONCLUSIONS These results suggest that DS4 and its derivatives, in particular the truncated and amidated peptide DS4 (1-26)a could be effective in the treatment of infections caused by these marine pathogenic bacteria. Future studies are required to validate the use of DS4 in vivo for the prevention of bacterial diseases in fish.
Collapse
Affiliation(s)
- Afef Braik
- Research Unit of Analysis and Process Applied on The Environment- APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5019, Tunisia
| | - John Alberto Serna-Duque
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| | - Adel Nefzi
- Florida International University, Port St. Lucie, FL 34987, USA
| | - Sonia Aroui
- Laboratory of Biochemistry, Research Unit: UR 12ES08 "Cell Signaling and Pathologies", Faculty of Medicine of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| |
Collapse
|
9
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Hernández-Ortiz N, Sánchez-Murcia PA, Gil-Campillo C, Domenech M, Lucena-Agell D, Hortigüela R, Velázquez S, Camarasa MJ, Bustamante N, de Castro S, Menéndez M. Design, synthesis and structure-activity relationship (SAR) studies of an unusual class of non-cationic fatty amine-tripeptide conjugates as novel synthetic antimicrobial agents. Front Pharmacol 2024; 15:1428409. [PMID: 39156106 PMCID: PMC11329928 DOI: 10.3389/fphar.2024.1428409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.
Collapse
Affiliation(s)
- Noelia Hernández-Ortiz
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Celia Gil-Campillo
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mirian Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Departamento Genética, Fisiología y Microbiología, Facultad Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María José Camarasa
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Bustamante
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia de Castro
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física “Blas Cabrera” (IQF), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Singh R, Sharma S, Kautu A, Joshi KB. Self-assembling short peptide amphiphiles as versatile delivery agents: a new frontier in antibacterial research. Chem Commun (Camb) 2024; 60:7687-7696. [PMID: 38958435 DOI: 10.1039/d4cc01762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-assembling short peptide amphiphiles, crafted through a minimalistic approach, spontaneously generate well-ordered nanostructures, facilitating the creation of precise nanostructured biomaterials for diverse biomedical applications. The seamless integration of bioactive metal ions and nanoparticles endows them with the potential to serve as pioneering materials in combating bacterial infections. Nanomanipulation of these molecules' binary structures enables effective penetration of membranes, forming structured nanoarchitectures with antibacterial properties. Through a comprehensive exploration, we attempt to reveal the innovative potential of short peptide amphiphiles, particularly in conjugation with metal cations and nanoparticles, offering insights for future research trajectories.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
12
|
Panjla A, Kaul G, Shukla M, Akhir A, Tripathi S, Arora A, Chopra S, Verma S. Membrane-targeting, ultrashort lipopeptide acts as an antibiotic adjuvant and sensitizes MDR gram-negative pathogens toward narrow-spectrum antibiotics. Biomed Pharmacother 2024; 176:116810. [PMID: 38823276 DOI: 10.1016/j.biopha.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjulika Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India; Mehta Family Center for Engineering in Medicine, Center for Nanoscience Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
13
|
Antunes B, Zanchi C, Johnston PR, Maron B, Witzany C, Regoes RR, Hayouka Z, Rolff J. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures. PLoS Biol 2024; 22:e3002692. [PMID: 38954678 PMCID: PMC11218975 DOI: 10.1371/journal.pbio.3002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.
Collapse
Affiliation(s)
- Bernardo Antunes
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
| | - Paul R. Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
- University of St. Andrews, School of Medicine, North Haugh, St Andrews, Fife, United Kingdom
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
14
|
Hu J, Liu N, Fan Q, Gu Y, Chen S, Zhu F, Cheng Y. A Fluorous Peptide Amphiphile with Potent Antimicrobial Activity for the Treatment of MRSA-induced Sepsis and Chronic Wound Infection. Angew Chem Int Ed Engl 2024; 63:e202403140. [PMID: 38393614 DOI: 10.1002/anie.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
The rising prevalence of global antibiotic resistance evokes the urgent need for novel antimicrobial candidates. Cationic lipopeptides have attracted much attention due to their strong antimicrobial activity, broad-spectrum and low resistance tendency. Herein, a library of fluoro-lipopeptide amphiphiles was synthesized by tagging a series of cationic oligopeptides with a fluoroalkyl tail via a disulfide spacer. Among the lipopeptide candidates, R6F bearing six arginine moieties and a fluorous tag shows the highest antibacterial activity, and it exhibits an interesting fluorine effect as compared to the non-fluorinated lipopeptides. The high antibacterial activity of R6F is attributed to its excellent bacterial membrane permeability, which further disrupts the respiratory chain redox stress and cell wall biosynthesis of the bacteria. By co-assembling with lipid nanoparticles, R6F showed high therapeutic efficacy and minimal adverse effects in the treatment of MRSA-induced sepsis and chronic wound infection. This work provides a novel strategy to design highly potent antibacterial peptide amphiphiles for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Nan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Qianqian Fan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yunqing Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Sijia Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| |
Collapse
|
15
|
Gilliard G, Demortier T, Boubsi F, Jijakli MH, Ongena M, De Clerck C, Deleu M. Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes. Colloids Surf B Biointerfaces 2024; 239:113933. [PMID: 38729019 DOI: 10.1016/j.colsurfb.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Lipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity. It also reveals that SRF and FGC exhibit diverse effects on membrane integrity and lipid packing. SRF primarily influences membrane physical state without significant membrane permeabilization, while FGC permeabilizes membranes without significantly affecting lipid packing. From our results, we can suggest that the direct antagonistic activity of lipopeptides is linked to their capacity to permeabilize lipid membrane while the stimulation of plant immunity is more likely the result of their ability to alter the mechanical properties of the membrane. Our work also explores how membrane lipid composition modulates the activities of SRF and FGC. Sterols negatively impact both lipopeptides' activities while sphingolipids mitigate the effects on membrane lipid packing but enhance membrane leakage. In conclusion, our findings emphasize the importance of considering both membrane lipid packing and leakage mechanisms in predicting the biological effects of lipopeptides. It also sheds light on the intricate interplay between the membrane composition and the effectiveness of the lipopeptides, providing insights for targeted biocontrol agent design.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Thomas Demortier
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Farah Boubsi
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - M Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium.
| |
Collapse
|
16
|
Swain N, Sharma S, Maitra R, Saxena D, Kautu A, Singh R, Kesharwani K, Chopra S, Joshi KB. Antimicrobial peptide mimetic minimalistic approach leads to very short peptide amphiphiles-gold nanostructures for potent antibacterial activity. ChemMedChem 2024; 19:e202300576. [PMID: 38301146 DOI: 10.1002/cmdc.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Strategically controlling concentrations of lipid-conjugated L-tryptophan (vsPA) guides the self-assembly of nanostructures, transitioning from nanorods to fibres and culminating in spherical shapes. The resulting Peptide-Au hybrids, exhibiting size-controlled 1D, 2D, and 3D nanostructures, show potential in antibacterial applications. Their high biocompatibility, favourable surface area-to-volume ratio, and plasmonic properties contribute to their effectiveness against clinically relevant bacteria. This controlled approach not only yields diverse nanostructures but also holds promise for applications in antibacterial therapeutics.
Collapse
Affiliation(s)
- Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rahul Maitra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
- Current address: Colorado State University USA
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
17
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
18
|
Megaw J, Skvortsov T, Gori G, Dabai AI, Gilmore BF, Allen CCR. A novel bioinformatic method for the identification of antimicrobial peptides in metagenomes. J Appl Microbiol 2024; 135:lxae045. [PMID: 38383848 DOI: 10.1093/jambio/lxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS This study aimed to develop a new bioinformatic approach for the identification of novel antimicrobial peptides (AMPs), which did not depend on sequence similarity to known AMPs held within databases, but on structural mimicry of another antimicrobial compound, in this case an ultrashort, synthetic, cationic lipopeptide (C12-OOWW-NH2). METHODS AND RESULTS When applied to a collection of metagenomic datasets, our outlined bioinformatic method successfully identified several short (8-10aa) functional AMPs, the activity of which was verified via disk diffusion and minimum inhibitory concentration assays against a panel of 12 bacterial strains. Some peptides had activity comparable to, or in some cases, greater than, those from published studies that identified AMPs using more conventional methods. We also explored the effects of modifications, including extension of the peptides, observing an activity peak at 9-12aa. Additionally, the inclusion of a C-terminal amide enhanced activity in most cases. Our most promising candidate (named PB2-10aa-NH2) was thermally stable, lipid-soluble, and possessed synergistic activity with ethanol but not with a conventional antibiotic (streptomycin). CONCLUSIONS While several bioinformatic methods exist to predict AMPs, the approach outlined here is much simpler and can be used to quickly scan huge datasets. Searching for peptide sequences bearing structural similarity to other antimicrobial compounds may present a further opportunity to identify novel AMPs with clinical relevance, and provide a meaningful contribution to the pressing global issue of AMR.
Collapse
Affiliation(s)
- Julianne Megaw
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Timofey Skvortsov
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Giulia Gori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Aliyu I Dabai
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| |
Collapse
|
19
|
Guru A, Murugan R, Arockiaraj J. Histone acetyltransferases derived RW20 protects and promotes rapid clearance of Pseudomonas aeruginosa in zebrafish larvae. Int Microbiol 2024; 27:25-35. [PMID: 37335389 DOI: 10.1007/s10123-023-00391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/27/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Pseudomonas is a group of bacteria that can cause a wide range of infections, particularly in people with weakened immune systems, such as those with cystic fibrosis or who are hospitalized. It can also cause infections in the skin and soft tissue, including cellulitis, abscesses and wound infections. Antimicrobial peptides (AMPS) are the alternative strategy due to their broad spectrum of activity and act as effective treatment against multi-drug resistance pathogens. In this study, we have used an AMP, RW20 (1RPVKRKKGWPKGVKRGPPKW20). RW20 peptide is derived from the histone acetyltransferases (HATs) of the freshwater teleost, Channa striatus. The antimicrobial prediction tool has been utilized to identify the RW20 sequence from the HATs sequence. We synthesized the peptide to explore its mechanism of action. In an in vitro assay, RW20 was challenged against P. aeruginosa and we showed that RW20 displayed antibacterial properties and damaged the cell membrane. The mechanism of action of RW20 against P. aeruginosa has been established via field emission scanning electron microscopy (FESEM) as well as fluorescence assisted cell sorter (FACS) analysis. Both these experiments established that RW20 caused bacterial membrane disruption and cell death. Moreover, the impact of RW20, in-vivo, was tested against P. aeruginosa-infected zebrafish larvae. In the infected larvae, RW20 showed protective effect against P. aeruginosa by increasing the larval antioxidant enzymes, reducing the excess oxidative stress and apoptosis. Thus, it is possible that HATs-derived RW20 can be an efficient antimicrobial molecule against P. aeruginosa.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600 077, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India.
| |
Collapse
|
20
|
Ramesh S, Roy U, Roy S, Rudramurthy SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action. Appl Microbiol Biotechnol 2024; 108:161. [PMID: 38252130 DOI: 10.1007/s00253-023-12976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: • The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans • Its biological activity was stable to proteolysis • Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India.
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
21
|
Bint-E-Naser SF, Mohamed ZJ, Chao Z, Bali K, Owens RM, Daniel S. Gram-Positive Bacterial Membrane-Based Biosensor for Multimodal Investigation of Membrane-Antibiotic Interactions. BIOSENSORS 2024; 14:45. [PMID: 38248423 PMCID: PMC10813107 DOI: 10.3390/bios14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the Bacillus subtilis WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.
Collapse
Affiliation(s)
- Samavi Farnush Bint-E-Naser
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | | | - Zhongmou Chao
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | - Karan Bali
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| |
Collapse
|
22
|
Tchakouani GFY, Mouafo HT, Nguimbou RM, Nganou ND, Mbawala A. Antibacterial activity of bioemulsifiers/biosurfactants produced by Levilactobacillus brevisS4 and Lactiplantibacillus plantarumS5 and their utilization to enhance the stability of cold emulsions of milk chocolate drinks. Food Sci Nutr 2024; 12:141-153. [PMID: 38268904 PMCID: PMC10804106 DOI: 10.1002/fsn3.3740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 01/26/2024] Open
Abstract
Chocolate milk drink, one of the most popular and widely consumed milk products among the population, independent of their age, has as its main challenge the problem of its physical instability. The aim of this study was to assess the stabilizing effect of bioemulsifiers/biosurfactants (BE/BS) from two lactobacilli strains in a cold chocolate milk drink. The strains Levilactobacillus brevis S4 and Lactiplantibacillus plantarum S5 isolated from pendidam were screened for their ability to produce BE/BS. The produced BE/BS were characterized, their antimicrobial activities were assessed, and their ability to stabilize cold chocolate milk drinks was determined. The results obtained showed BE/BS yields of 3.48 and 4.37 g/L from L. brevis S4 and L. plantarum S5, respectively. These BE/BS showed emulsifying and surface activities that remained stable after treatment at different temperatures, pH, and salinity. The emulsions formed using BE/BS were stable for 72 h at room temperature (25 ± 1°C). The BE/BS exhibited antimicrobial activity against Staphylococcus aureus S1 and Escherichia coli E1. When applied to cold chocolate milk drinks at 0.2% (w/v), the BE/BS from L. brevis S4 and L. plantarum S5 showed interesting solubility indexes and water absorption capacities, which led to the successful stabilization of the drinks. The results of this study demonstrate the stabilizer potential of BE/BS from L. brevis S4 and L. plantarum S5 and suggest their use in the dairy and food industries.
Collapse
Affiliation(s)
| | - Hippolyte Tene Mouafo
- Centre for Food, Food Security and Nutrition ResearchInstitute of Medical Research and Medicinal Plant StudiesYaoundéCameroon
| | - Richard Marcel Nguimbou
- Department of Food Sciences and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | - Nadège Donkeng Nganou
- Department of Food Engineering and Quality ControlUniversity Institute of Technology, University of NgaoundéréNgaoundéréCameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundéréNgaoundéréCameroon
| |
Collapse
|
23
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
24
|
Sikora K, Jędrzejczak J, Bauer M, Neubauer D, Jaśkiewicz M, Szaryńska M. Quaternary Ammonium Salts of Cationic Lipopeptides with Lysine Residues - Synthesis, Antimicrobial, Hemolytic and Cytotoxic Activities. Probiotics Antimicrob Proteins 2023; 15:1465-1483. [PMID: 37770629 PMCID: PMC10687119 DOI: 10.1007/s12602-023-10161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Ultrashort cationic lipopeptides (USCLs) and quaternary ammonium salts constitute two groups of cationic surfactants with high antimicrobial activity. This study aimed to investigate the influence of quaternization of the amino group of the lysine side chain in USCLs on their antimicrobial, hemolytic and cytotoxic activities. To do this, two series of lipopeptides were synthesized, USLCs and their quaternized analogues containing trimethylated lysine residues - qUSCLs (quaternized ultrashort cationic lipopeptides). Quaternization was performed on a resin during a standard solid-phase peptide synthesis with CH3I as the methylating agent. According to our knowledge, this is the first study presenting on-resin peptide quaternization. The lipopeptides were tested for their antibacterial and antifungal activities against the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella aerogenes) bacteria and Candida glabrata yeast-like fungus. Most of the compounds proved to be active antimicrobial agents with enhanced activity against Gram-positive strains and fungi and a lower against Gram-negative species. In addition, the antimicrobial activity of lipopeptides was increasing with an increase in hydrophobicity but qUSCLs exhibited usually a poorer antimicrobial activity than their parent molecules. Furthermore, the toxicity against red blood cells and human keratinocytes was assessed. It's worth emphasizing that qUSCLs were less toxic than the parent molecules of comparative hydrophobicity. The results of the study proved that qUSCLs can offer a higher selectivity to pathogens over human cells than that of USCLs. Last but not least, quaternization of the peptides could increase their solubility and therefore their bioavailability and utility.
Collapse
Affiliation(s)
- Karol Sikora
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Jakub Jędrzejczak
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, Building no. 5, 80-211, Gdańsk, Poland
| | - Magdalena Szaryńska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
25
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
26
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
27
|
Liu H, Wang L, Yao C. Optimization of Antibacterial Activity and Biosafety through Ultrashort Peptide/Cyclodextrin Inclusion Complexes. Int J Mol Sci 2023; 24:14801. [PMID: 37834247 PMCID: PMC10573328 DOI: 10.3390/ijms241914801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)-modified tripeptide RWR (LA-RWR) with β-cyclodextrin (β-CD) to form nano-inclusion complexes. The free cationic tripeptide region in the nano-inclusion complex provided high antibacterial activity, while β-CD enhanced its biocompatibility. Compared with peptides (LA-RWR, LA-RWR-phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram-negative/Gram-positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano-inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non-included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.
Collapse
Affiliation(s)
| | | | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; (H.L.); (L.W.)
| |
Collapse
|
28
|
Biondi B, de Pascale L, Mardirossian M, Di Stasi A, Favaro M, Scocchi M, Peggion C. Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36. Sci Rep 2023; 13:15132. [PMID: 37704689 PMCID: PMC10499915 DOI: 10.1038/s41598-023-41945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Cathelicidins, a family of host defence peptides in vertebrates, play an important role in the innate immune response, exhibiting antimicrobial activity against many bacteria, as well as viruses and fungi. This work describes the design and synthesis of shortened analogues of porcine cathelicidin PMAP-36, which contain structural changes to improve the pharmacokinetic properties. In particular, 20-mers based on PMAP-36 (residues 12-31) and 13-mers (residues 12-24) with modification of amino acid residues at critical positions and introduction of lipid moieties of different lengths were studied to identify the physical parameters, including hydrophobicity, charge, and helical structure, required to optimise their antibacterial activity. Extensive conformational analysis, performed by CD and NMR, revealed that the substitution of Pro25-Pro26 with Ala25-Lys26 increased the α-helix content of the 20-mer peptides, resulting in broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus epidermidis strains. Interestingly, shortening to just 13 residues resulted in only a slight decrease in antibacterial activity. Furthermore, two sequences, a 13-mer and a 20-mer, did not show cytotoxicity against HaCat cells up to 64 µM, indicating that both derivatives are not only effective but also selective antimicrobial peptides. In the short peptide, the introduction of the helicogenic α-aminoisobutyric acid forced the helix toward a prevailing 310 structure, allowing the antimicrobial activity to be maintained. Preliminary tests of resistance to Ser protease chymotrypsin indicated that this modification resulted in a peptide with an increased in vivo lifespan. Thus, some of the PMAP-36 derivatives studied in this work show a good balance between chain length, antibacterial activity, and selectivity, so they represent a good starting point for the development of even more effective and proteolysis-resistant active peptides.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Padova, Italy
| | - Luigi de Pascale
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Matteo Favaro
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Cristina Peggion
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Padova, Italy.
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
29
|
Cho O, Takada S, Odaka T, Futamura S, Kurakado S, Sugita T. Tacrolimus (FK506) Exhibits Fungicidal Effects against Candida parapsilosis Sensu Stricto via Inducing Apoptosis. J Fungi (Basel) 2023; 9:778. [PMID: 37504766 PMCID: PMC10381508 DOI: 10.3390/jof9070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Tacrolimus (FK506), an immunosuppressant and calcineurin inhibitor, has fungicidal effects. However, its fungicidal effect is thought to be limited to basidiomycetes, such as Cryptococcus and Malassezia, and not to ascomycetes. FK506 had no fungicidal effect on Candida albicans, C. auris, C. glabrata, C. guilliermondii, C. kefyr, C. krusei, and C. tropicalis (>8 µg/mL); however, C. parapsilosis was susceptible to it at low concentrations of 0.125-0.5 µg/mL. C. metapsilosis and C. orthopsils, previously classified as C. parapsilosis, are molecularly and phylogenetically closely related to C. parapsilosis, but neither species was sensitive to FK506. FK506 increased the mitochondrial reactive oxygen species production and cytoplasmic and mitochondrial calcium concentration and activated metacaspases, nuclear condensation, and DNA fragmentation, suggesting that it induced mitochondria-mediated apoptosis in C. parapsilosis. Elucidating why FK506 exhibits fungicidal activity only against C. parapsilosis will provide new information for developing novel antifungal drugs.
Collapse
Affiliation(s)
- Otomi Cho
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| | - Shintaro Takada
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| | - Takahiro Odaka
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| | - Satoshi Futamura
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose 204-8588, Japan
| |
Collapse
|
30
|
Nyembe PL, Ntombela T, Makatini MM. Review: Structure-Activity Relationship of Antimicrobial Peptoids. Pharmaceutics 2023; 15:pharmaceutics15051506. [PMID: 37242748 DOI: 10.3390/pharmaceutics15051506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their broad-spectrum activity against Gram-negative and Gram-positive bacteria, natural antimicrobial peptides (AMPs) and their synthetic analogs have emerged as prospective therapies for treating illnesses brought on by multi-drug resistant pathogens. To overcome the limitations of AMPs, such as protease degradation, oligo-N-substituted glycines (peptoids) are a promising alternative. Despite having the same backbone atom sequence as natural peptides, peptoid structures are more stable because, unlike AMP, their functional side chains are attached to the backbone nitrogen (N)-atom rather than the alpha carbon atom. As a result, peptoid structures are less susceptible to proteolysis and enzymatic degradation. The advantages of AMPs, such as hydrophobicity, cationic character, and amphipathicity, are mimicked by peptoids. Furthermore, structure-activity relationship studies (SAR) have shown that tuning the structure of peptoids is a crucial step in developing effective antimicrobials.
Collapse
Affiliation(s)
- Priscilla L Nyembe
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Thandokuhle Ntombela
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Maya M Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
31
|
Cao R, Li L, Xu Z, Li J, Wu D, Wang Y, Zhu H. The lipidation and glycosylation enabling bioactivity enhancement and structural change of antibacterial peptide G3. Bioorg Med Chem Lett 2023; 90:129322. [PMID: 37182609 DOI: 10.1016/j.bmcl.2023.129322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Bacterial resistance has led to increased interest in the use of antibacterial peptides (AMPs), but their clinical application is limited by poor stability and solubility, as well as complex cytotoxicity. Chemical modification is a common strategy to modulate AMPs. In this study, a de novo designed AMP (G3) was modified by adding an alkyl acid at the N-terminal and a monosaccharide at the C-terminal. Bio-activity assays demonstrated that conjugation with n-caprylic acid increased the peptide's antibacterial activity and permeabilized the membrane. Attachment of glucose or galactose at the C-terminal improved its biofilm inhibitory capacity and marginally reduced cytotoxicity. The hybrid peptide, containing both n-caprylic acid and galactose, exhibited excellent antibacterial and antibiofilm activity, as well as permeabilized the outer membrane.
Collapse
Affiliation(s)
- Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Danli Wu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
32
|
Peng J, Lu Q, Yuan L, Zhang H. Synthetic Cationic Lipopeptide Can Effectively Treat Mouse Mastitis Caused by Staphylococcus aureus. Biomedicines 2023; 11:biomedicines11041188. [PMID: 37189805 DOI: 10.3390/biomedicines11041188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to treat. Therefore, novel lipopeptide antibiotics are becoming increasingly important in treating bacterial diseases, and developing novel antibiotics is critical in controlling mastitis in dairy cows. We designed and synthesized three cationic lipopeptides with palmitic acid, all with two positive charges and dextral amino acids. The lipopeptides' antibacterial activity against S. aureus was determined using MIC and scanning electron microscopy. The safety concentration range of lipopeptides for clinical usage was then estimated using the mouse erythrocyte hemolysis assay and CCK8 cytotoxicity. Finally, lipopeptides with high antibacterial activity and minimal cytotoxicity were selected for the treatment experiments regarding mastitis in mice. The observation of histopathological changes, bacterial tissue load and expression of inflammatory factors determined the therapeutic effects of lipopeptides on mastitis in mice. The results showed that all three lipopeptides displayed some antibacterial activity against S. aureus, with C16dKdK having a strong antibacterial impact and being able to treat the mastitis induced by S. aureus infection in mice within a safe concentration range. The findings of this study can be used as a starting point for the development of new medications for the treatment of mastitis in dairy cows.
Collapse
Affiliation(s)
- Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hecheng Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
33
|
Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals (Basel) 2023; 16:ph16030439. [PMID: 36986538 PMCID: PMC10059750 DOI: 10.3390/ph16030439] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum proteases. Indeed, several chemical strategies, such as peptide cyclization, N-methylation, PEGylation, glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how lipidation and glycosylation are commonly used to increase AMPs’ efficacy and engineer novel AMP-based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties such as glucose and N-acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells, thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs, which involves the covalent addition of fatty acids, has a significant impact on their therapeutic index by influencing their physicochemical properties and interaction with bacterial and mammalian membranes. This review highlights the possibility of using glycosylation and lipidation strategies to increase the efficacy and activity of conventional AMPs.
Collapse
|
34
|
Kumar Tripathi S, Kesharwani K, Saxena D, Singh R, Kautu A, Sharma S, Pandey A, Chopra S, Ballabh Joshi K. Silver-Nanoparticle-Embedded Short Amphiphilic Peptide Nanostructures and Their Plausible Application to Reduce Bacterial Infections. ChemMedChem 2023; 18:e202200654. [PMID: 36604305 DOI: 10.1002/cmdc.202200654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The microbiota-gut-brain axis (GBA) plays a critical role in the development of neurodegenerative diseases. Dysbiosis of the intestinal microbiome causes a significant alteration in the gut microbiota of Alzheimer's disease (AD) patients, followed by neuroinflammatory processes. Thus, AD beginning in the gut is closely related to an imbalance in gut microbiota, and hence a multidomain approach to reduce this imbalance by exerting positive effects on the gut microbiota is needed. In one example, a tyrosine-based short peptide amphiphile (sPA) was used to synthesize antibacterial AgNPs-sPA nanostructures. Such nanostructures showed high biocompatibility and low cytotoxicity, and therefore work as model drug delivery agents for addressing local bacterial infections. These may have therapeutic value for the treatment of microbiota-triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
35
|
Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023; 29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 01/20/2023]
Abstract
The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
36
|
Fawzy A, Al Bahir A, Alqarni N, Toghan A, Khider M, Ibrahim IM, Abulreesh HH, Elbanna K. Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents. Sci Rep 2023; 13:2585. [PMID: 36788345 PMCID: PMC9929228 DOI: 10.1038/s41598-023-29715-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
This study investigated different amino acid-based surfactants (AASs), also known as biosurfactants, including sodium N-dodecyl asparagine (AS), sodium N-dodecyl tryptophan (TS), and sodium N-dodecyl histidine (HS) for their potential anticorrosion, antibacterial, and antidermatophyte properties. The chemical and electrochemical techniques were employed to examine the copper corrosion inhibition efficacy in H2SO4 (1.0 M) solution at 298 K. The results indicated their promising corrosion inhibition efficiencies (% IEs), which varied with the biosurfactant structures and concentrations, and the concentrations of corrosive medium. Higher % IEs values were attributed to the surfactant adsorption on the copper surface and the production of a protective film. The adsorption was in agreement with Langmuir adsorption isotherm. The kinetics and mechanisms of copper corrosion and its inhibition by the examined AASs were illuminated. The surfactants behaved as mixed-kind inhibitors with minor anodic priority. The values of % IEs gained from weight loss technique at a 500 ppm of the tested surfactants were set to be 81, 83 and 88 for AS, HS and TS, respectively. The values of % IEs acquired from all the applied techniques were almost consistent which were increased in the order: TS > HS ≥ AS, establishing the validity of this study. These surfactants also exhibited strong broad-spectrum activities against pathogenic Gram-negative and Gram-positive bacteria and dermatophytes. HS exhibited the highest antimicrobial activity followed by TS, and AS. The sensitivity of pathogenic bacteria varied against tested AASs. Shigella dysenteriae and Trichophyton mantigrophytes were found to be the most sensitive pathogens. HS exhibited the highest antibacterial activity against Shigella dysenteriae, Bacillus cereus, E. coli, K. pneumoniae, and S. aureus through the formation of clear zones of 70, 50, 40, 39, and 35 mm diameters, respectively. AASs also exhibited strong antifungal activity against all the tested dermatophyte molds and fungi. HS caused the inhibition zones of 62, 57, 56, 48, and 36 mm diameters against Trichophyton mantigrophytes, Trichophyton rubrum, Candida albicans, Trichosporon cataneum, and Cryptococcus neoformans, respectively. AASs minimal lethal concentrations ranged between 16 to 128 µg/ml. HS presented the lowest value (16 µg/ml) against tested pathogens followed by TS (64 µg/ml), and AS (128 µg/ml). Therefore, AASs, especially HS, could serve as an effective alternative antimicrobial agent against food-borne pathogenic bacteria and skin infections-associated dermatophyte fungi.
Collapse
Affiliation(s)
- Ahmed Fawzy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Areej Al Bahir
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 64734, Saudi Arabia
| | - Nada Alqarni
- Chemistry Department, College of Science and Arts in Balgarn, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Arafat Toghan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Manal Khider
- Department of Dairy Science, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Ibrahim M Ibrahim
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Hussein Hasan Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Khaled Elbanna
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
37
|
Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity. Sci Rep 2023; 13:2360. [PMID: 36759548 PMCID: PMC9911388 DOI: 10.1038/s41598-023-28502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr-Ser-Ser-Ile/Leu-Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val-glucose-butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L-Y) and three new glucosamine derivatives (L-N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25-79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
Collapse
|
38
|
Glossop HD, Sarojini V. Accessing the Thiol Toolbox: Synthesis and Structure-Activity Studies on Fluoro-Thiol Conjugated Antimicrobial Peptides. Bioconjug Chem 2023; 34:218-227. [PMID: 36524416 DOI: 10.1021/acs.bioconjchem.2c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The para-fluoro-thiol reaction (PFTR) is a modern name for the much older concept of a nucleophilic aromatic substitution reaction in which the para-position fluorine of a perfluorinated benzene moiety is substituted by a thiol. As a rapid and mild reaction, the PFTR is a useful technique for the post-synthetic modification of macromolecules like peptides on the solid phase. This reaction is of great potential since it allows for peptide chemists to access the vast catalogue of commercially available thiols with diverse structures to conjugate to peptides, which may impart favorable biological activity, particularly in antimicrobial sequences. This work covers the generation of a library of antimicrobial peptides by modifying a relatively inactive tetrapeptide with thiols of various structures using the PFTR to grant antimicrobial potency to the core sequence. In general, nucleophilic substitution of the peptide scaffold by hydrophobic thiols like cyclohexanethiol and octanethiol imparted the greatest antimicrobial activity over that of hydrophilic thiols bearing carboxylic acid or sugar moieties, which were ineffectual at improving the antimicrobial activity. The general trend here follows expected structure-activity relationship outcomes like that of changing the acyl group of lipopeptide antibiotics and is encouraging for the use of this reaction for structural modifications of antimicrobial sequences further.
Collapse
Affiliation(s)
- Hugh D Glossop
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
39
|
The potential of antifungal peptide Sesquin as natural food preservative. Biochimie 2022; 203:51-64. [PMID: 35395327 DOI: 10.1016/j.biochi.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.
Collapse
|
40
|
Activity of Novel Ultrashort Cyclic Lipopeptides against Biofilm of Candida albicans Isolated from VVC in the Ex Vivo Animal Vaginal Model and BioFlux Biofilm Model-A Pilot Study. Int J Mol Sci 2022; 23:ijms232214453. [PMID: 36430935 PMCID: PMC9694474 DOI: 10.3390/ijms232214453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.
Collapse
|
41
|
Synthesis and Antimicrobial Activity of Short Analogues of the Marine Antimicrobial Peptide Turgencin A: Effects of SAR Optimizations, Cys-Cys Cyclization and Lipopeptide Modifications. Int J Mol Sci 2022; 23:ijms232213844. [PMID: 36430320 PMCID: PMC9696794 DOI: 10.3390/ijms232213844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells.
Collapse
|
42
|
Fa K, Liu H, Li Z, Gong H, Petkov J, Ren Lu J. Acyl Chain Length Tuning Improves Antimicrobial Potency and Biocompatibility of Short Designed Lipopeptides. J Colloid Interface Sci 2022; 630:911-923. [DOI: 10.1016/j.jcis.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
43
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
44
|
Mohid SA, Biswas K, Won T, Mallela LS, Gucchait A, Butzke L, Sarkar R, Barkham T, Reif B, Leipold E, Roy S, Misra AK, Lakshminarayanan R, Lee D, Bhunia A. Structural insights into the interaction of antifungal peptides and ergosterol containing fungal membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183996. [PMID: 35753394 DOI: 10.1016/j.bbamem.2022.183996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The treatment of invasive drug-resistant and potentially life-threatening fungal infections is limited to few therapeutic options that are usually associated with severe side effects. The development of new effective antimycotics with a more tolerable side effect profile is therefore of utmost clinical importance. Here, we used a combination of complementary in vitro assays and structural analytical methods to analyze the interaction of the de novo antimicrobial peptide VG16KRKP with the sterol moieties of biological cell membranes. We demonstrate that VG16KRKP disturbs the structural integrity of fungal membranes both invitro and in model membrane system containing ergosterol along with phosphatidylethanolamine lipid and exhibits broad-spectrum antifungal activity. As revealed by systematic structure-function analysis of mutated VG16KRKP analogs, a specific pattern of basic and hydrophobic amino acid side chains in the primary peptide sequence determines the selectivity of VG16KRKP for fungal specific membranes.
Collapse
Affiliation(s)
- Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Sector V, Kolkata 700091, India
| | - Karishma Biswas
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Sector V, Kolkata 700091, India
| | - TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Lakshmi S Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Arin Gucchait
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Sector V, Kolkata 700091, India
| | - Lena Butzke
- Department of Anesthesiology and Intensive Care & Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore
| | - Bernd Reif
- Technical University of Munich, 85748 Garching, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care & Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Sector V, Kolkata 700091, India
| | | | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Sector V, Kolkata 700091, India.
| |
Collapse
|
45
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
46
|
Dinesh Kumar S, Park JH, Kim HS, Seo CD, Ajish C, Kim EY, Lim HS, Shin SY. Cationic, amphipathic small molecules based on a triazine-piperazine-triazine scaffold as a new class of antimicrobial agents. Eur J Med Chem 2022; 243:114747. [PMID: 36103802 DOI: 10.1016/j.ejmech.2022.114747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Poor proteolytic resistance, toxicity and salt/serum sensitivity of antimicrobial peptides (AMPs) limits their practical clinical application. Here, to overcome these drawbacks of AMPs and develop novel antimicrobial agents, a series of small molecules based on a triazine-piperazine-triazine scaffold that mimic the cationic amphipathic structure of AMPs were synthesized and evaluated their potential as a new class of antimicrobial agents. All designed compounds showed strong antimicrobial activity and negligible hemolytic activity. Particularly, five compounds (9, 11, 12, 15, and 16) presented excellent cell selectivity with proteolytic resistance, salt/serum stability and anti-inflammatory activity against lipopolysaccharide (LPS)-induced inflammation. These five compounds exhibited similar or 2-4 fold higher antimicrobial activity than melittin against six antibiotic-resistant bacteria tested. Similar to the intracellular-targeting AMP, buforin-2, these compounds displayed an intracellular mode of antimicrobial action. These compounds showed potent biofilm inhibitory and eradicating activities against multidrug-resistant Pseudomonas aeruginosa (MDRPA). Additionally, these compounds displayed synergistic or additive effects when combined with selected clinically used antibiotics. Furthermore, these compounds have been proven to inhibit pro-inflammatory cytokine release by directly binding to LPS and blocking the interaction between LPS and CD14/TLR4 receptor in LPS-stimulated RAW264.7 macrophage cells. Overall, our results demonstrate the potential of the designed compounds as a novel class of multifunctional antimicrobial agents to combat bacterial infection.
Collapse
Affiliation(s)
- S Dinesh Kumar
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Hyung Park
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyun Soo Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chang Deok Seo
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chelladurai Ajish
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Young Kim
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
47
|
Fioriti S, Cirioni O, Simonetti O, Franca L, Candelaresi B, Pallotta F, Neubauer D, Kamysz E, Kamysz W, Canovari B, Brescini L, Morroni G, Barchiesi F. In Vitro Activity of Novel Lipopeptides against Triazole-Resistant Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8080872. [PMID: 36012859 PMCID: PMC9409728 DOI: 10.3390/jof8080872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH2, C14-WRR-NH2) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time–kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time–kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances.
Collapse
Affiliation(s)
- Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Franca
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Bianca Candelaresi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Francesco Pallotta
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Elzbieta Kamysz
- Laboratory of Chemistry of Biological Macromolecules, Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Benedetta Canovari
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206298; Fax: +39-0712206297
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| |
Collapse
|
48
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
49
|
Li F, Lin L, Chi J, Wang H, Du M, Feng D, Wang L, Luo R, Chen H, Quan G, Cai J, Pan X, Wu C, Lu C. Guanidinium-rich lipopeptide functionalized bacteria-absorbing sponge as an effective trap-and-kill system for the elimination of focal bacterial infection. Acta Biomater 2022; 148:106-118. [PMID: 35671875 DOI: 10.1016/j.actbio.2022.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Focal bacterial infections are often difficult to treat due to the rapid emergence of antibiotic-resistant bacteria, high risk of relapse, and severe inflammation at local lesions. To address multidrug-resistant skin and soft tissue infections, a bacteria-absorbing sponge was prepared to involve a "trap-and-kill" mechanism. The system describes a guanidinium-rich lipopeptide functionalized lyotropic liquid-crystalline hydrogel with bicontinuous cubic networks. Amphiphilic lipopeptides can be spontaneously anchored to the lipid-water interface, exposing their bacterial targeting sequences to enhance antibacterial trapping/killing activity. Computational simulations supported our structural predictions, and the sponge was confirmed to successfully remove ∼98.8% of the bacteria in the medium. Release and degradation behavior studies indicated that the bacteria-absorbing sponge could degrade, mediate enzyme-responsive lipopeptide release, or generate ∼200 nm lipopeptide nanoparticles with environmental erosion. This implies that the sponge can effectively capture and isolate high concentrations of bacteria at the infected site and then sustainably release antimicrobial lipopeptides into deep tissues for the eradication of residual bacteria. In the animal experiment, we found that the antibacterial performance of the bacterial-absorbing sponge was significant, which demonstrated not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also a unique advantage to protect tissue from bacterial attack. STATEMENT OF SIGNIFICANCE: Host defense peptides/peptidomimetics (HDPs) have shown potential for the elimination of focal bacterial infections, but the application of their topical formulations suffers from time-consuming preparation processes, indistinctive toxicity reduction effects, and inefficient bacterial capture ability. To explore new avenues for the development of easily prepared, low-toxicity and high-efficiency topical antimicrobials, a guanidinium-rich lipopeptide was encapsulated in a lyotropic liquid-crystalline hydrogel (denoted as "bacteria-absorbing sponge") to achieve complementary superiorities. The superior characteristic of the bacteria-absorbing sponge involves a "trap-and-kill" mechanism, which undergoes not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also effective bacterial capture and isolating action to confine bacterial diffusion and protect tissues from bacterial attack.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minqun Du
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Liqing Wang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
50
|
Fa K, Liu H, Gong H, Zhang L, Liao M, Hu X, Ciumac D, Li P, Webster J, Petkov J, Thomas RK, Lu JR. In-Membrane Nanostructuring of Cationic Amphiphiles Affects Their Antimicrobial Efficacy and Cytotoxicity: A Comparison Study between a De Novo Antimicrobial Lipopeptide and Traditional Biocides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6623-6637. [PMID: 35587380 PMCID: PMC9161444 DOI: 10.1021/acs.langmuir.2c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.
Collapse
Affiliation(s)
- Ke Fa
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Huayang Liu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haoning Gong
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lin Zhang
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mingrui Liao
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xuzhi Hu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniela Ciumac
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Peixun Li
- ISIS
Neutron Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11 0QX, U.K.
| | - John Webster
- ISIS
Neutron Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11 0QX, U.K.
| | - Jordan Petkov
- Arc
UK Biocides Ltd, Arxada,
Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry, University of
Oxford, South Parks, Oxford OX1
3QZ, U.K.
| | - Jian Ren Lu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|