1
|
Akulenko N, Mikhaleva E, Marfina S, Kutelev I, Kornyakov D, Bobrov V, Artamonov A, Arapidi G, Shender V, Ryazansky S. Insights into the target-directed miRNA degradation mechanism in Drosophila ovarian cell culture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195092. [PMID: 40328417 DOI: 10.1016/j.bbagrm.2025.195092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Target-directed miRNA degradation (TDMD) is a process of post-transcriptional regulation of miRNA stability in animals induced by an extended pairing of Ago-bound miRNAs with specialized complementary RNA targets. As suggested by studies on human cell culture, Ago engaged with the extended duplex is recognized by the ZSWIM8 receptor of the Cullin-RING-ligase complex (CRL3), which also contains Cul3, EloB, and EloC proteins. The CRL activity is accelerated by the neddylation of Cul3 with the involvement of the E2 conjugating protein UbcE2M. The CRL ubiquitinates Ago, resulting in proteolysis of Ago and degradation of the released miRNAs. To date, the molecular mechanism of TDMD has not been studied in other species. To further characterize TDMD in animals, we investigated the protein Dora, the Drosophila ortholog of ZSWIM8, in the culture of Drosophila ovarian somatic cells (OSC). We showed that Dora in OSCs localizes in protein granules unrelated to P- and GW-bodies. The dora knockout resulted in the accumulation of multiple miRNAs, including miR-7-5p, and transcriptome-wide affected the mRNA targets of differentially expressed miRNAs. We also showed that Dora associates with proteins of the CRL3 complex, and the depletion of CRL3 components or inhibition of Cul3 neddylation upregulates miR-7-5p. We concluded that the molecular mechanism of TDMD is conserved in humans and Drosophila. Finally, we found that cells without Dora have an impaired Notch signaling pathway, indicating that TDMD in OSCs may contribute to the modulation of the Notch pathway.
Collapse
Affiliation(s)
- Natalia Akulenko
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia
| | - Elena Mikhaleva
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofya Marfina
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Mendeleev University of Chemical Technology of Russia, Miusskaya st. 9b1, Moscow 125047, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Ivan Kutelev
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Dmitry Kornyakov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Mendeleev University of Chemical Technology of Russia, Miusskaya st. 9b1, Moscow 125047, Russia
| | - Vlad Bobrov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrei Artamonov
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia; Lomonosov Moscow State University, Biological Department, Lomonosov st. 1b12, Moscow 119234, Russia
| | - Georgij Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya st. 1a, Moscow 119435, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Victoria Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya st. 1a, Moscow 119435, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Sergei Ryazansky
- NRC "Kurchatov Institute", Kurchatov sq. 2, Moscow 123182, Russia.
| |
Collapse
|
2
|
Ellis TJ, Nizhynska V, Pisupati R, Mollá-Morales A, Nordborg M. Bisulphite sequencing in the presence of cytosine-conversion errors. PLoS One 2025; 20:e0322539. [PMID: 40397962 DOI: 10.1371/journal.pone.0322539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/24/2025] [Indexed: 05/23/2025] Open
Abstract
'Tagmentation' approaches to bisulphite sequencing use a transposase to simultaneously make double-stranded breaks and ligate adaptors to the resulting fragments, allowing for higher throughput with less starting material. However, it has also been noted that certain tagmentation protocols have an unusually high number unmethylated cytosines that are not converted to thymine. Here we describe this phenomenon in detail, and find that results are consistent with single strand nicks by the transposase, followed by strand displacement of part or all of the DNA fragment, leading to erroneous incorporation of methylated cytosines. Nevertheless we show that these errors can be accounted for in downstream analysis and need not impede biological conclusions. We provide a Python package to allow users to implement this framework. Ultimately the additional effort of accounting for errors must be traded off against the scalability of the protocol in planning experiments.
Collapse
Affiliation(s)
- Thomas James Ellis
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Almudena Mollá-Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
3
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Méhouas S, Hannon GJ, Czech Nicholson B, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. Cell Rep 2025; 44:115453. [PMID: 40209715 DOI: 10.1016/j.celrep.2025.115453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/26/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila ortholog of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco, which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flamenco expression, and derepression of gypsy-family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions, which both rely on a shared transcription factor.
Collapse
Affiliation(s)
- Azad Alizada
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Aline Martins
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Nolwenn Mouniée
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Julia V Rodriguez Suarez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Benjamin Bertin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Nathalie Gueguen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Anna-Maria Papameletiou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Austin J Rivera
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nelson C Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | | | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Lee SK, Shen W, Wen W, Joo Y, Xue Y, Park A, Qiang A, Su S, Zhang T, Zhang M, Fan J, Zhang Y, De S, Gainetdinov I, Sharov A, Maragkakis M, Wang W. Topoisomerase 3b facilitates piRNA biogenesis to promote transposon silencing and germ cell development. Cell Rep 2025; 44:115495. [PMID: 40184251 PMCID: PMC12070812 DOI: 10.1016/j.celrep.2025.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/06/2025] Open
Abstract
Topoisomerases typically function in the nucleus to relieve topological stress in DNA. Here, we show that a dual-activity topoisomerase, Top3b, and its partner, TDRD3, largely localize in the cytoplasm and interact biochemically and genetically with PIWI-interacting RNA (piRNA) processing enzymes to promote piRNA biogenesis, post-transcriptional gene silencing (PTGS) of transposons, and Drosophila germ cell development. Top3b requires its topoisomerase activity to promote PTGS of a transposon reporter and preferentially silences long and highly expressed transposons, suggesting that RNAs with these features may produce more topological stress for topoisomerases to solve. The double mutants between Top3b and piRNA processing enzymes exhibit stronger disruption of the signatures and levels of germline piRNAs, more de-silenced transposons, and larger defects in germ cells than either single mutant. Our data suggest that Top3b can act in an RNA-based process-piRNA biogenesis and PTGS of transposons-and this function is required for Top3b to promote normal germ cell function.
Collapse
Affiliation(s)
- Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - William Wen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amy Qiang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Megan Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Rivera AJ, Lee JHR, Gupta S, Yang L, Goel RK, Zaia J, Lau NC. Traffic Jam activates the Flamenco piRNA cluster locus and the Piwi pathway to ensure transposon silencing and Drosophila fertility. Cell Rep 2025; 44:115354. [PMID: 40209716 PMCID: PMC12094058 DOI: 10.1016/j.celrep.2025.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 04/12/2025] Open
Abstract
Flamenco (Flam) is a prominent Piwi-interacting RNA (piRNA) locus expressed in Drosophila ovarian follicle cells that silences gypsy/mdg4 transposons to ensure female fertility. Promoter-bashing reporter assays in ovarian somatic sheet (OSS) cells uncover compact enhancer sequences within Flam. We confirm the enhancer sequence relevance in vivo with Drosophila Flam deletion mutants that compromise Flam piRNA levels and female fertility. Proteomic analysis of proteins associated with Flam enhancer sequences discover the transcription factor Traffic Jam (TJ). Tj knockdown in OSS cells causes a decrease in Flam transcripts, Flam piRNAs, and multiple Piwi pathway genes. TJ chromatin immunoprecipitation sequencing (ChIP-seq) analysis confirms TJ binding at enhancer sequences deleted in our distinct Flam mutants. TJ also binds multiple Piwi pathway gene enhancers and long terminal repeats of transposons that decrease in expression after Tj knockdown. TJ plays an integral role in the ongoing arms race between selfish transposons and their suppression by the host Piwi pathway and Flam piRNA locus.
Collapse
Affiliation(s)
- Austin J Rivera
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jou-Hsuan Roxie Lee
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Shruti Gupta
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Linda Yang
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Raghuveera Kumar Goel
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Proteomics Service Center and Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Proteomics Service Center and Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Nelson C Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Genome Science Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Voichek M, Bernhard A, Novatchkova M, Handler D, Möseneder P, Rafanel B, Duchek P, Senti KA, Brennecke J. Direct cell-to-cell transmission of retrotransposons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.642691. [PMID: 40161635 PMCID: PMC11952523 DOI: 10.1101/2025.03.14.642691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Transposable elements are abundant in host genomes but are generally considered to be confined to the cell in which they are expressed, with the notable exception of endogenous retroviruses. Here, we identify a group of LTR retrotransposons that infect the germline from somatic cells within the Drosophila ovary, despite lacking the fusogenic Envelope protein typically required for retroviral entry. Instead, these elements encode a short transmembrane protein, sORF2, with structural features reminiscent of viral cell-cell fusogens. Through genetics, imaging, and electron microscopy, we show that sORF2 localizes to invasive somatic protrusions, enabling the direct transfer of retrotransposon capsids into the oocyte. Remarkably, sORF2-like proteins are widespread among insect retrotransposons and also occur in piscine nackednaviruses and avian picornaviruses. These findings reveal a noncanonical, Envelope-independent transmission mechanism shared by retrotransposons and non-enveloped viruses, offering important insights into host-pathogen evolution and soma-germline interactions.
Collapse
Affiliation(s)
- Maya Voichek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Andreas Bernhard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Baptiste Rafanel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC); Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
7
|
Liu W, Deng L, Wang M, Liu X, Ouyang X, Wang Y, Miao N, Luo X, Wu X, Lu X, Xv X, Zhang T, Li Y, Ji J, Qiao Z, Wang S, Guan L, Li D, Dang Y, Liu C, Li W, Zhang Y, Wang Z, Chen FX, Chen C, Lin C, Goh WSS, Zhou W, Luo Z, Gao P, Li P, Yu Y. Pcf11/Spt5 condensates stall RNA polymerase II to facilitate termination and piRNA-guided heterochromatin formation. Mol Cell 2025; 85:929-947.e10. [PMID: 40015272 DOI: 10.1016/j.molcel.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The PIWI-interacting RNA (piRNA) pathway plays a crucial role in protecting animal germ cells by repressing transposons. However, the mechanism of piRNA-guided heterochromatin formation and its relationship to transcriptional termination remains elusive. Through RNA interference screening, we discovered Pcf11 and PNUTS as essential for piRNA-guided silencing in Drosophila germ line. Enforced tethering of Pcf11 leads to co-transcriptional repression and RNA polymerase II (RNA Pol II) stalling, and both are dependent on an α-helical region of Pcf11 capable of forming condensates. An intrinsically disordered region can substitute for the α-helical region of Pcf11 in its silencing capacity and support animal development, arguing for a causal relationship between phase separation and Pcf11's function. Pcf11 stalls RNA Pol II by preferentially forming condensates with the unphosphorylated Spt5, promoted by the PP1/PNUTS phosphatase during termination. We propose that Pcf11/Spt5 condensates control termination by decelerating polymerase elongation, a property exploited by piRNAs to silence transposons and initiate RNA-mediated heterochromatin formation.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Lijun Deng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaojun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Ouyang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjin Xv
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Ji
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health, Eye Hospital, Wenzhou Medical University, Zhejiang 325035, Wenzhou, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Dong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Yadi Zhang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengqi Lin
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | | | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhuojuan Luo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Pu Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Alizada A, Hannon GJ, Nicholson BC. Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells. Genes Dev 2025; 39:221-241. [PMID: 39797761 PMCID: PMC11789646 DOI: 10.1101/gad.352120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using Drosophila as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells. Ectopic expression of Ovo in ovarian somatic cells activates germline piRNA pathway components, including the ping-pong factors Aubergine, Argonaute-3, and Vasa, leading to assembly of perinuclear cellular structures resembling nuage bodies of germ cells. We found that in ovarian somatic cells, transcription of ovo is repressed by l(3)mbt, thus preventing expression of germline piRNA pathway genes in the soma. Cross-species ChIP-seq and motif analyses demonstrate that Ovo is binding to genomic CCGTTA motifs within the promoters of germline piRNA pathway genes, suggesting a regulation by Ovo in ovaries analogous to that of A-MYB in testes. Our results also show consistent engagement of the Ovo transcription factor family at ovarian piRNA clusters across metazoan species, reflecting a deep evolutionary conservation of this regulatory paradigm from insects to humans.
Collapse
Affiliation(s)
- Azad Alizada
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
9
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Mehouas S, Hannon GJ, Nicholson BC, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612307. [PMID: 39314383 PMCID: PMC11419008 DOI: 10.1101/2024.09.10.612307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila orthologue of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco , which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flam expression and de-repression of gypsy -family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions that both rely on a shared transcription factor. Highlights - Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . - Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis and Ovo in fly ovaries. - Cis -regulatory elements with Tj motifs are present at the promoters of somatic piRNA pathway genes. - The expression of the flamenco piRNA cluster is directly controlled by Tj.
Collapse
|
10
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
11
|
Ariura M, Solberg T, Ishizu H, Takahashi H, Carninci P, Siomi H, Iwasaki YW. Drosophila Piwi distinguishes transposons from mRNAs by piRNA complementarity and abundance. Cell Rep 2024; 43:115020. [PMID: 39636727 DOI: 10.1016/j.celrep.2024.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are the main repressors of transposable elements (TEs) in animal germlines. In Drosophila, Piwi-piRNA complexes associate with nascent TE transcripts to drive heterochromatin formation and TE repression. However, previous studies have shown that Piwi also associates with large numbers of mRNAs, raising the question of how Piwi discriminates between mRNAs and TEs. To answer this question, we performed a comprehensive analysis of Piwi-associated RNAs, compositionally and functionally, to decipher the targeting rules of Piwi-piRNA complexes. While Piwi initially identifies its targets through the seed sequence, it requires pairing well beyond the seed, nearly a perfect match, to elicit a repressive response. In addition to the complementarity of piRNAs to their targets, their abundance must reach a certain threshold to be functional. Together, these findings explain large differences in the target repression of Piwi-associated RNAs and reveal how Piwi efficiently distinguishes TEs from mRNAs despite associating with both.
Collapse
Affiliation(s)
- Masaru Ariura
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| | - Yuka W Iwasaki
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida MV, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska EA, van Wolfswinkel JC, Haase AD. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Rep 2024; 43:114777. [PMID: 39302833 PMCID: PMC11615739 DOI: 10.1016/j.celrep.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
Collapse
Affiliation(s)
- Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Franziska Ahrend
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA
| | - Aleksandr Friman
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Yuejun Wang
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Hernan Lorenzi
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Rivera A, Lee JHR, Gupta S, Yang L, Goel RK, Zaia J, Lau NC. Traffic Jam activates the Flamenco piRNA cluster locus and the Piwi pathway to ensure transposon silencing and Drosophila fertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608167. [PMID: 39211177 PMCID: PMC11361183 DOI: 10.1101/2024.08.15.608167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flamenco (Flam) is the most prominent piRNA cluster locus expressed in Drosophila ovarian follicle cells, and it is required for female fertility to silence gypsy/mdg4 transposons. To determine how Flam is regulated, we used promoter-bashing reporter assays in OSS cells to uncover novel enhancer sequences within the first exons of Flam . We confirmed the enhancer sequence relevance in vivo with new Drosophila Flam deletion mutants of these regions that compromised Flam piRNA expression and lowered female fertility from activated transposons. Our proteomic analysis of proteins associated with these enhancer sequences discovered the transcription factor Traffic Jam (TJ). Tj knockdowns in OSS cells caused a decrease in Flam transcripts, Flam piRNAs, and multiple Piwi pathway genes. A TJ ChIP-seq analysis from whole flies and OSS cells confirmed TJ binding exactly at the enhancer that was deleted in the new Flam mutant as well as at multiple Piwi pathway gene enhancers. Interestingly, TJ also bound the Long Terminal Repeats of transposons that had decreased expression after Tj knockdowns in OSS cells. Our study reveals the integral role TJ plays in the on-going arms race between selfish transposons and their suppression by the host Piwi pathway and the Flam piRNA cluster locus.
Collapse
|
14
|
Bell-Sakyi L, Haines LR, Petrucci G, Beliavskaia A, Hartley C, Khoo JJ, Makepeace BL, Abd-Alla AMM, Darby AC. Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans. Parasit Vectors 2024; 17:231. [PMID: 38760668 PMCID: PMC11100113 DOI: 10.1186/s13071-024-06310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Insect cell lines play a vital role in many aspects of research on disease vectors and agricultural pests. The tsetse fly Glossina morsitans morsitans is an important vector of salivarian trypanosomes in sub-Saharan Africa and, as such, is a major constraint on human health and agricultural development in the region. METHODS Here, we report establishment and partial characterisation of a cell line, GMA/LULS61, derived from tissues of adult female G. m. morsitans. GMA/LULS61 cells, grown at 28 °C in L-15 (Leibovitz) medium supplemented with foetal bovine serum and tryptose phosphate broth, have been taken through 23 passages to date and can be split 1:1 at 2-week intervals. Karyotyping at passage 17 revealed a predominantly haploid chromosome complement. Species origin and absence of contaminating bacteria were confirmed by PCR amplification and sequencing of fragments of the COI gene and pan-bacterial 16S rRNA gene respectively. However, PCR screening of RNA extracted from GMA/LULS61 cells confirmed presence of the recently described Glossina morsitans morsitans iflavirus and Glossina morsitans morsitans negevirus, but absence of Glossina pallipides salivary gland hypertrophy virus. GMA/LULS61 cells supported infection and growth of 6/7 different insect-derived strains of the intracellular bacterial symbiont Wolbachia. CONCLUSIONS The GMA/LULS61 cell line has potential for application in a variety of studies investigating the biology of G. m. morsitans and its associated pathogenic and symbiotic microorganisms.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Lee R Haines
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Giovanni Petrucci
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Catherine Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jing Jing Khoo
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin L Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Alistair C Darby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Sheng Y, Chen J, Jiang H, Lu Y, Dong Z, Pang L, Zhang J, Wang Y, Chen X, Huang J. The vitellogenin receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. iScience 2023; 26:106298. [PMID: 36950109 PMCID: PMC10025991 DOI: 10.1016/j.isci.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Vitellogenin receptor (VgR) is essential to vitellogenin uptaking and dominates ovary maturation in insects. However, the function of VgR in parasitoid wasps is largely unknown. Here, we applied the Drosophila parasitoid Leptopilina boulardi as a study model to investigate the function of VgR in parasitoids. Despite the conserved sequence characteristics with other insect VgRs, we found L. boulardi VgR (LbVgR) gene was highly expressed in head but lower in ovary. In addition, we found that LbVgR had no effects on ovary development, but participated in host-searching behavior of female L. boulardi and mating behavior of male L. boulardi. Comparative transcriptome analysis further revealed LbVgR might play crucial roles in regulating the expression of some important chemoreception genes to adjust the parasitoid behaviors. These results will broaden our knowledge of the function of VgR in insects, and contribute to develop advanced pest management strategies using parasitoids as biocontrol agents.
Collapse
Affiliation(s)
- Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Jiang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang University, Hangzhou 310058, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Corresponding author
| |
Collapse
|
16
|
Kúthy-Sutus E, Kharrat B, Gábor E, Csordás G, Sinka R, Honti V. A Novel Method for Primary Blood Cell Culturing and Selection in Drosophila melanogaster. Cells 2022; 12:24. [PMID: 36611818 PMCID: PMC9818912 DOI: 10.3390/cells12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.
Collapse
Affiliation(s)
- Enikő Kúthy-Sutus
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Erika Gábor
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| |
Collapse
|
17
|
Stoyko D, Timothy O, Hernandez A, Konstantinidou P, Meng Q, Haase AD. CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools. Curr Protoc 2022; 2:e624. [PMID: 36546759 PMCID: PMC9793982 DOI: 10.1002/cpz1.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The harnessing of the CRISPR-Cas9 system allows for quick and inexpensive genome editing in tissue culture models. Traditional CRISPR-Cas9 genome editing techniques rely on the ability of single progenitor cells to expand into new pools in a process known as clonal expansion. This is a significant technical challenge that is difficult to overcome for nontransformed cell culture models such as Drosophila ovarian somatic sheath cells (OSCs). OSCs are a unique ex vivo model for epigenetic regulation by PIWI-interacting RNAs (piRNAs) that establish restriction of mobile genetic elements in germ cells to protect genome integrity. Here, we provide a protocol to generate endogenously tagged proteins and gene knockouts without the need for clonal selection. We combine CRISPR-Cas genome editing and knockin of antibiotic selection markers to generate edited cell pools. At the example of Drosophila piwi in OSCs, we demonstrate a strategy that relies on the insertion of an artificial intron to accommodate a selection marker with minimal disturbance of the resulting mRNA. In brief, our donor cassette contains a peptide tag and an optimized intron that accommodates a selection marker driven by an independent promoter on the other genomic strand. The selection marker is transcribed as an independent mRNA, and the intron is efficiently removed from the mRNA encoding the endogenously tagged (endo-tagged) piwi gene. The endo-tagged Piwi protein is expressed at wild-type levels and appropriately localizes to the nucleus of OSCs. We also describe strategies for C-terminal tagging and generation of knockout alleles in OSCs and in human embryonic kidney cells, discuss different design strategies, and provide a plasmid toolkit (available at Addgene). Our protocol enables robust genome editing in OSCs for the first time and provides a simple and time-saving alternative for other cell culture systems. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Design and cloning of single-guide RNA plasmids Basic Protocol 2: Design and cloning of donor template plasmids for epitope tagging Alternate Protocol: Design and cloning of donor template plasmids for gene knockout Basic Protocol 3: Transfection and selection of edited cell pools.
Collapse
Affiliation(s)
- Daniel Stoyko
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - O Timothy
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Adrianna Hernandez
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Qingcai Meng
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Astrid D. Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Takeuchi C, Yokoshi M, Kondo S, Shibuya A, Saito K, Fukaya T, Siomi H, Iwasaki Y. Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers. Nucleic Acids Res 2022; 50:11580-11599. [PMID: 36373634 PMCID: PMC9723646 DOI: 10.1093/nar/gkac1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shu Kondo
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Yuka W Iwasaki
- To whom correspondence should be addressed. Tel: +81 3 5363 3529; Fax: +81 3 5363 3266;
| |
Collapse
|
19
|
Baumgartner L, Handler D, Platzer SW, Yu C, Duchek P, Brennecke J. The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters. eLife 2022; 11:e80067. [PMID: 36193674 PMCID: PMC9531945 DOI: 10.7554/elife.80067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.
Collapse
Affiliation(s)
- Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | | | - Changwei Yu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
20
|
Meng Q, Stoyko D, Andrews CM, Konstantinidou P, Genzor P, O T, Elchert AR, Benner L, Sobti S, Katz EY, Haase AD. Functional editing of endogenous genes through rapid selection of cell pools (Rapid generation of endogenously tagged genes in Drosophila ovarian somatic sheath cells). Nucleic Acids Res 2022; 50:e90. [PMID: 35639929 DOI: 10.1093/nar/gkac448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of genome-editing and epitope tagging provides a powerful strategy to study proteins with high affinity and specificity while preserving their physiological expression patterns. However, stably modifying endogenous genes in cells that do not allow for clonal selection has been challenging. Here, we present a simple and fast strategy to generate stable, endogenously tagged alleles in a non-transformed cell culture model. At the example of piwi in Drosophila ovarian somatic sheath cells, we show that this strategy enables the generation of an N-terminally tagged protein that emulates the expression level and subcellular localization of the wild type protein and forms functional Piwi-piRNA complexes. We further present a concise workflow to establish endogenously N-terminally and C-terminally tagged proteins, and knockout alleles through rapid selection of cell pools in fly and human models.
Collapse
Affiliation(s)
- Qingcai Meng
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Stoyko
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celine Marlin Andrews
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Pavol Genzor
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy O
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra R Elchert
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leif Benner
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sushil Sobti
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Esther Y Katz
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Andreev VI, Yu C, Wang J, Schnabl J, Tirian L, Gehre M, Handler D, Duchek P, Novatchkova M, Baumgartner L, Meixner K, Sienski G, Patel DJ, Brennecke J. Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery. Nat Struct Mol Biol 2022; 29:130-142. [PMID: 35173350 PMCID: PMC11749891 DOI: 10.1038/s41594-022-00721-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila. We find that Panoramix, a corepressor required for piRNA-guided heterochromatin formation, is SUMOylated on chromatin in a Piwi-dependent manner. SUMOylation, together with an amphipathic LxxLL motif in Panoramix's intrinsically disordered repressor domain, are necessary and sufficient to recruit Small ovary (Sov), a multi-zinc-finger protein essential for general heterochromatin formation and viability. Structure-guided mutations that eliminate the Panoramix-Sov interaction or that prevent SUMOylation of Panoramix uncouple Sov from the piRNA pathway, resulting in viable but sterile flies in which Piwi-targeted transposons are derepressed. Thus, Piwi engages the heterochromatin machinery specifically at transposon loci by coupling recruitment of a corepressor to nascent transcripts with its SUMOylation.
Collapse
Affiliation(s)
- Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Changwei Yu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maja Gehre
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
22
|
Takeuchi C, Murano K, Ishikawa M, Okano H, Iwasaki YW. Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System. Methods Mol Biol 2022; 2509:143-153. [PMID: 35796962 DOI: 10.1007/978-1-0716-2380-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) constitute a large proportion of the genome in multiple organisms. Therefore, anti-transposable element machineries are essential to maintain genomic integrity. PIWI-interacting RNAs (piRNAs) are a major force to repress TEs in Drosophila ovaries. Ovarian somatic cells (OSC), in which nuclear piRNA regulation is functional, have been used for research on piRNA pathway as a cell culture system to elucidate the molecular mechanisms underlying the piRNA pathway. Analysis of piRNA pathway using a reporter system to monitor the gene regulation or overexpression of specific genes would be a powerful approach. Here, we present the technical protocol to establish stable cell lines using the piggyBac system, adopted for OSCs. This easy, consistent, and timesaving protocol may accelerate research on the piRNA pathway.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan.
| |
Collapse
|
23
|
Han S, Basting PJ, Dias GB, Luhur A, Zelhof AC, Bergman CM. Transposable element profiles reveal cell line identity and loss of heterozygosity in Drosophila cell culture. Genetics 2021; 219:6321957. [PMID: 34849875 PMCID: PMC8633141 DOI: 10.1093/genetics/iyab113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
Cell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabeling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here, we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of long-terminal repeat retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome sequencing data (called ngs_te_mapper2), which revealed loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.
Collapse
Affiliation(s)
- Shunhua Han
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Preston J Basting
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Guilherme B Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Arthur Luhur
- Drosophila Genomics Resource Center, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Casey M Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Iwasaki YW, Sriswasdi S, Kinugasa Y, Adachi J, Horikoshi Y, Shibuya A, Iwasaki W, Tashiro S, Tomonaga T, Siomi H. Piwi-piRNA complexes induce stepwise changes in nuclear architecture at target loci. EMBO J 2021; 40:e108345. [PMID: 34337769 PMCID: PMC8441340 DOI: 10.15252/embj.2021108345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are germline‐specific small RNAs that form effector complexes with PIWI proteins (Piwi–piRNA complexes) and play critical roles for preserving genomic integrity by repressing transposable elements (TEs). Drosophila Piwi transcriptionally silences specific targets through heterochromatin formation and increases histone H3K9 methylation (H3K9me3) and histone H1 deposition at these loci, with nuclear RNA export factor variant Nxf2 serving as a co‐factor. Using ChEP and DamID‐seq, we now uncover a Piwi/Nxf2‐dependent target association with nuclear lamins. Hi‐C analysis of Piwi or Nxf2‐depleted cells reveals decreased intra‐TAD and increased inter‐TAD interactions in regions harboring Piwi–piRNA target TEs. Using a forced tethering system, we analyze the functional effects of Piwi–piRNA/Nxf2‐mediated recruitment of piRNA target regions to the nuclear periphery. Removal of active histone marks is followed by transcriptional silencing, chromatin conformational changes, and H3K9me3 and H1 association. Our data show that the Piwi–piRNA pathway can induce stepwise changes in nuclear architecture and chromatin state at target loci for transcriptional silencing.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Munafò M, Lawless VR, Passera A, MacMillan S, Bornelöv S, Haussmann IU, Soller M, Hannon GJ, Czech B. Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. eLife 2021; 10:e66321. [PMID: 33856346 PMCID: PMC8133776 DOI: 10.7554/elife.66321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The nuclear pore complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some Nups can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Victoria R Lawless
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Alessandro Passera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Serena MacMillan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Irmgard U Haussmann
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City UniversityBirminghamUnited Kingdom
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
- Birmingham Center for Genome Biology, University of BirminghamBirminghamUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
27
|
Chen Z, Wang ZH, Zhang G, Bleck CKE, Chung DJ, Madison GP, Lindberg E, Combs C, Balaban RS, Xu H. Mitochondrial DNA segregation and replication restrict the transmission of detrimental mutation. J Cell Biol 2021; 219:151740. [PMID: 32375181 PMCID: PMC7337505 DOI: 10.1083/jcb.201905160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA (mtDNA) is prone to accumulate mutations and lacks conventional DNA repair mechanisms, deleterious mutations are exceedingly rare. How the transmission of detrimental mtDNA mutations is restricted through the maternal lineage is debated. Here, we demonstrate that mitochondrial fission, together with the lack of mtDNA replication, segregate mtDNA into individual organelles in the Drosophila early germarium. After mtDNA segregation, mtDNA transcription begins, which activates respiration. Mitochondria harboring wild-type genomes have functional electron transport chains and propagate more vigorously than mitochondria containing deleterious mutations in hetreoplasmic cells. Therefore, mtDNA expression acts as a stress test for the integrity of mitochondrial genomes and sets the stage for replication competition. Our observations support selective inheritance at the organelle level through a series of developmentally orchestrated mitochondrial processes. We also show that the Balbiani body has a minor role in mtDNA selective inheritance by supplying healthy mitochondria to the pole plasm. These two mechanisms may act synergistically to secure the transmission of functional mtDNA through Drosophila oogenesis.
Collapse
Affiliation(s)
- Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dillon J Chung
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Grey P Madison
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Schnabl J, Wang J, Hohmann U, Gehre M, Batki J, Andreev VI, Purkhauser K, Fasching N, Duchek P, Novatchkova M, Mechtler K, Plaschka C, Patel DJ, Brennecke J. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev 2021; 35:392-409. [PMID: 33574069 PMCID: PMC7919418 DOI: 10.1101/gad.347989.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in Drosophila, facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.
Collapse
Affiliation(s)
- Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ulrich Hohmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maja Gehre
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Kim Purkhauser
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
29
|
Eastwood EL, Jara KA, Bornelöv S, Munafò M, Frantzis V, Kneuss E, Barbar EJ, Czech B, Hannon GJ. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. eLife 2021; 10:e65557. [PMID: 33538693 PMCID: PMC7861614 DOI: 10.7554/elife.65557] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.
Collapse
Affiliation(s)
- Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Vasileios Frantzis
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
30
|
Adapting Drosophila melanogaster Cell Lines to Serum-Free Culture Conditions. G3-GENES GENOMES GENETICS 2020; 10:4541-4551. [PMID: 33028628 PMCID: PMC7718738 DOI: 10.1534/g3.120.401769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful Drosophila cell culture relies on media containing xenogenic components such as fetal bovine serum to support continuous cell proliferation. Here, we report a serum-free culture condition that supports the growth and proliferation of Drosophila S2R+ and Kc167 cell lines. Importantly, the gradual adaptation of S2R+ and Kc167 cells to a media lacking serum was supported by supplementing the media with adult Drosophila soluble extract, commonly known as fly extract. The utility of these adapted cells lines is largely unchanged. The adapted cells exhibited robust proliferative capacity and a transfection efficiency that was comparable to control cells cultured in serum-containing media. Transcriptomic data indicated that the S2R+ cells cultured with fly extract retain their hemocyte-specific transcriptome profile, and there were no global changes in the transcriptional output of cell signaling pathways. Our metabolome studies indicate that there were very limited metabolic changes. In fact, the cells were likely experiencing less oxidative stress when cultured in the serum-free media supplemented with fly extract. Overall, the Drosophila cell culture conditions reported here consequently provide researchers with an alternative and physiologically relevant resource to address cell biological research questions.
Collapse
|
31
|
Nishida KM, Sakakibara K, Sumiyoshi T, Yamazaki H, Mannen T, Kawamura T, Kodama T, Siomi MC. Siwi levels reversibly regulate secondary piRISC biogenesis by affecting Ago3 body morphology in Bombyx mori. EMBO J 2020; 39:e105130. [PMID: 32914505 PMCID: PMC7560202 DOI: 10.15252/embj.2020105130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 01/13/2023] Open
Abstract
Silkworm ovarian germ cells produce the Siwi‐piRNA‐induced silencing complex (piRISC) through two consecutive mechanisms, the primary pathway and the secondary ping‐pong cycle. Primary Siwi‐piRISC production occurs on the outer mitochondrial membrane in an Ago3‐independent manner, where Tudor domain‐containing Papi binds unloaded Siwi via its symmetrical dimethylarginines (sDMAs). Here, we now show that secondary Siwi‐piRISC production occurs at the Ago3‐positive nuage Ago3 bodies, in an Ago3‐dependent manner, where Vreteno (Vret), another Tudor protein, interconnects unloaded Siwi and Ago3‐piRISC through their sDMAs. Upon Siwi depletion, Ago3 is phosphorylated and insolubilized in its piRISC form with cleaved RNAs and Vret, suggesting that the complex is stalled in the intermediate state. The Ago3 bodies are also enlarged. The aberrant morphology is restored upon Siwi re‐expression without Ago3‐piRISC supply. Thus, Siwi depletion aggregates the Ago3 bodies to protect the piRNA intermediates from degradation until the normal cellular environment returns to re‐initiate the ping‐pong cycle. Overall, these findings reveal a unique regulatory mechanism controlling piRNA biogenesis.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sakakibara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Taro Mannen
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Ishizu H, Kinoshita T, Hirakata S, Komatsuzaki C, Siomi MC. Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis. Cell Rep 2020; 27:1822-1835.e8. [PMID: 31067466 DOI: 10.1016/j.celrep.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 11/27/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) repress transposons to maintain germline genome integrity. Previous studies showed that artificial tethering of Armitage (Armi) to reporter RNAs induced piRNA biogenesis. However, the lack of female sterile (1) Yb (Yb) in Drosophila ovarian somatic cells (OSCs) impaired the production of transposon-targeting piRNAs, even in the presence of Armi. Here, we show that the specific interaction of Armi with RNA transcripts of the flamenco piRNA cluster, the primary source of transposon-targeting piRNAs in OSCs, is strictly regulated by Yb. The lack of Yb allowed Armi to bind RNAs promiscuously, leading to the production of piRNAs unrelated to transposon silencing. The ATP hydrolysis-defective mutants of Armi failed to unwind RNAs and were retained on them, abolishing piRNA production. These findings shed light on distinct and collaborative requirements of Yb and Armi in transposon-targeting piRNA biogenesis. We also provide evidence supporting the direct involvement of Armi but not Yb in Zucchini-dependent piRNA phasing.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tatsuki Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeki Hirakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Chihiro Komatsuzaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
33
|
Mugat B, Nicot S, Varela-Chavez C, Jourdan C, Sato K, Basyuk E, Juge F, Siomi MC, Pélisson A, Chambeyron S. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun 2020; 11:2818. [PMID: 32499524 PMCID: PMC7272611 DOI: 10.1038/s41467-020-16635-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, trimethylation of lysine 9 on histone H3 (H3K9) is associated with transcriptional silencing of transposable elements (TEs). In drosophila ovaries, this heterochromatic repressive mark is thought to be deposited by SetDB1 on TE genomic loci after the initial recognition of nascent transcripts by PIWI-interacting RNAs (piRNAs) loaded on the Piwi protein. Here, we show that the nucleosome remodeler Mi-2, in complex with its partner MEP-1, forms a subunit that is transiently associated, in a MEP-1 C-terminus-dependent manner, with known Piwi interactors, including a recently reported SUMO ligase, Su(var)2-10. Together with the histone deacetylase Rpd3, this module is involved in the piRNA-dependent TE silencing, correlated with H3K9 deacetylation and trimethylation. Therefore, drosophila piRNA-mediated transcriptional silencing involves three epigenetic effectors, a remodeler, Mi-2, an eraser, Rpd3 and a writer, SetDB1, in addition to the Su(var)2-10 SUMO ligase.
Collapse
Affiliation(s)
- Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Simon Nicot
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | | | - Christophe Jourdan
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eugenia Basyuk
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France.
| |
Collapse
|
34
|
Yamashiro H, Negishi M, Kinoshita T, Ishizu H, Ohtani H, Siomi MC. Armitage determines Piwi-piRISC processing from precursor formation and quality control to inter-organelle translocation. EMBO Rep 2020; 21:e48769. [PMID: 31833223 PMCID: PMC7001504 DOI: 10.15252/embr.201948769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi and piRNA form the piRNA-induced silencing complex (piRISC) to repress transposons. In the current model, Armitage (Armi) brings the Piwi-piRISC precursor (pre-piRISC) to mitochondria, where Zucchini-dependent piRISC maturation occurs. Here, we show that Armi is necessary for Piwi-pre-piRISC formation at Yb bodies and that Armi triggers the exit of Piwi-pre-piRISC from Yb bodies and the translocation to mitochondria. Piwi-pre-piRISC resist leaving Yb bodies until Armi binds Piwi-pre-piRISC through the piRNA precursors. The lack of the Armi N-terminus also blocks the Piwi-pre-piRISC exit from Yb bodies. Thus, Armi determines Piwi-piRISC processing, in a multilayered manner, from precursor formation and quality control to inter-organelle translocation for maturation.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Mayu Negishi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Tatsuki Kinoshita
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Ohtani
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Present address:
Van Andel Research InstituteGrand RapidsMIUSA
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
35
|
Bednářová A, Kropf M, Krishnan N. The surfactant polyethoxylated tallowamine (POEA) reduces lifespan and inhibits fecundity in Drosophila melanogaster- In vivo and in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109883. [PMID: 31704328 DOI: 10.1016/j.ecoenv.2019.109883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
In order to develop an understanding of the role of adjuvants in a popular glyphosate-based herbicide - Roundup® Concentrate Plus (RCP), on non-target organisms, the effects of pure glyphosate [N-(phosphonomethyl)-glycine], RCP and a non-ionic surfactant - polyethoxylated tallowamine (POEA) were studied in the fruit fly Drosophila melanogaster. Acute exposure to sub-lethal concentrations of RCP (15 μg/mL) and POEA (45 μg/mL) reduced (p < 0.001) lifespan of female flies compared to untreated controls or glyphosate (100 μg/mL). Negative geotaxis responses in female flies were reduced (p < 0.05) following acute exposure to sub-lethal concentrations of RCP and POEA whereas glyphosate did not significantly affect this response compared to untreated flies. Acute exposure to sub-lethal concentrations of RCP and POEA elevated (p < 0.05) protein carbonyl levels while markedly (p < 0.01) inhibiting carbonyl reductase activity whereas glyphosate treatment did not significantly affect protein carbonyl levels or carbonyl reductase activity. Fecundity was reduced (p < 0.05) following exposure to sub-lethal concentrations of RCP and POEA whereas glyphosate did not affect fecundity. In vitro treatment of ovarian stem sheath (OSS) cells with sub-lethal concentrations of RCP and POEA revealed decreased cell viability and enhanced caspase activity indicative of pro-apoptotic processes after 48 h compared to untreated controls. Glyphosate however was non-toxic at the concentration used. The results suggest that RCP and the surfactant POEA are more toxic than pure glyphosate and inhibit fecundity in Drosophila by impairing cell viability through enhanced apoptosis.
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| | - Maximillian Kropf
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
36
|
Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis. Noncoding RNA 2019; 5:ncrna5040052. [PMID: 31698692 PMCID: PMC6958439 DOI: 10.3390/ncrna5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that repress transposons in animal germlines. This protects the genome from the invasive DNA elements. piRNA pathway failures lead to DNA damage, gonadal development defects, and infertility. Thus, the piRNA pathway is indispensable for the continuation of animal life. piRNA-mediated transposon silencing occurs in both the nucleus and cytoplasm while piRNA biogenesis is a solely cytoplasmic event. piRNA production requires a number of proteins, the majority of which localize to non-membranous organelles that specifically appear in the gonads. Other piRNA factors are localized on outer mitochondrial membranes. In situ RNA hybridization experiments show that piRNA precursors are compartmentalized into other non-membranous organelles. In this review, we summarize recent findings about the function of these organelles in the Drosophila piRNA pathway by focusing on their assembly and function.
Collapse
|
37
|
Story B, Ma X, Ishihara K, Li H, Hall K, Peak A, Anoja P, Park J, Haug J, Blanchette M, Xie T. Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells. Life Sci Alliance 2019; 2:2/5/e201800211. [PMID: 31619466 PMCID: PMC6796194 DOI: 10.26508/lsa.201800211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022] Open
Abstract
Comprehensive transcriptional characterization of mRNA and small RNA in early Drosophila germline stem cells reveals novel piRNA clusters, transposon dynamics, and alternative splicing events. Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Although they are also important for maintaining germline stem cells (GSCs) in the Drosophila ovary by repressing TEs and preventing DNA damage, piRNA expression has not been investigated in GSCs or their early progeny. Here, we show that the canonical piRNA clusters are more active in GSCs and their early progeny than late germ cells and also identify more than 3,000 new piRNA clusters from deep sequencing data. The increase in piRNAs in GSCs and early progeny can be attributed to both canonical and newly identified piRNA clusters. As expected, piRNA clusters in GSCs, but not those in somatic support cells (SCs), exhibit ping-pong signatures. Surprisingly, GSCs and early progeny express more TE transcripts than late germ cells, suggesting that the increase in piRNA levels may be related to the higher levels of TE transcripts in GSCs and early progeny. GSCs also have higher piRNA levels and lower TE levels than SCs. Furthermore, the 3′ UTRs of 171 mRNA transcripts may produce sense, antisense, or dual-stranded piRNAs. Finally, we show that alternative promoter usage and splicing are frequently used to modulate gene function in GSCs and SCs. Overall, this study has provided important insight into piRNA production and TE repression in GSCs and SCs. The rich information provided by this study will be a beneficial resource to the fields of piRNA biology and germ cell development.
Collapse
Affiliation(s)
- Benjamin Story
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Xing Ma
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kazue Ishihara
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kathryn Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Perera Anoja
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA
| |
Collapse
|
38
|
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 2019; 38:e102870. [PMID: 31368590 PMCID: PMC6717896 DOI: 10.15252/embj.2019102870] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Yuka W Iwasaki
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Akane Mashiko
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Graduate School of EngineeringYokohama National UniversityYokohamaJapan
| | - Aoi Shibuya
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Shu Kondo
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Saori Suzuki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Kuniaki Saito
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Haruhiko Siomi
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
39
|
Batki J, Schnabl J, Wang J, Handler D, Andreev VI, Stieger CE, Novatchkova M, Lampersberger L, Kauneckaite K, Xie W, Mechtler K, Patel DJ, Brennecke J. The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat Struct Mol Biol 2019; 26:720-731. [PMID: 31384064 PMCID: PMC6828549 DOI: 10.1038/s41594-019-0270-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2-Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1-Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly.
Collapse
Affiliation(s)
- Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Christian E Stieger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Lisa Lampersberger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Kotryna Kauneckaite
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
40
|
Dennis C, Brasset E, Vaury C. flam piRNA precursors channel from the nucleus to the cytoplasm in a temporally regulated manner along Drosophila oogenesis. Mob DNA 2019; 10:28. [PMID: 31312260 PMCID: PMC6612187 DOI: 10.1186/s13100-019-0170-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background PIWI-interacting RNAs (piRNAs) are the effectors of transposable element silencing in the reproductive apparatus. In Drosophila ovarian somatic cells, piRNAs arise from long RNA precursors presumably processed within cytoplasmic Yb-bodies. Results Here we show that the nucleo-cytoplasmic traffic of piRNA precursors encoded by the flamenco locus is subjected to a spatio-temporal regulation. Precursor RNAs first gather in a single nuclear focus, Dot COM, close to the nuclear periphery, and transit through the membrane before being delivered to the cytoplasmic Yb-bodies. Early in oogenesis, flamenco transcripts are rapidly transferred to the cytoplasm making their initial nuclear gathering in Dot COM too transient to be visualized. As oogenesis proceeds, the cytoplasmic delivery steadily decreases concomitantly with the decrease in the protein levels of Armi and Yb, two components of the Yb-bodies. Both events lead to a reduction of Yb-body assembly in late stages of oogenesis, which likely results in a drop in piRNA production. Conclusion Our findings show a spatio-temporal regulation of the piRNA biogenesis in the follicle cells of Drosophila ovaries, that involves coordinated control of both piRNA precursors and components of the piRNA processing machinery. This newly unveiled regulation establishes another level of complexity in the production of piRNAs and suggests a stage-dependent involvement of the piRNA biogenesis in the mechanism of transposable elements silencing along oogenesis. Electronic supplementary material The online version of this article (10.1186/s13100-019-0170-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia Dennis
- GReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Emilie Brasset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Chantal Vaury
- GReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| |
Collapse
|
41
|
Munafò M, Manelli V, Falconio FA, Sawle A, Kneuss E, Eastwood EL, Seah JWE, Czech B, Hannon GJ. Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes Dev 2019; 33:844-856. [PMID: 31123065 PMCID: PMC6601507 DOI: 10.1101/gad.325662.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of ∼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Vera Manelli
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jun Wen Eugene Seah
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
42
|
Fabry MH, Ciabrelli F, Munafò M, Eastwood EL, Kneuss E, Falciatori I, Falconio FA, Hannon GJ, Czech B. piRNA-guided co-transcriptional silencing coopts nuclear export factors. eLife 2019; 8:e47999. [PMID: 31219034 PMCID: PMC6677536 DOI: 10.7554/elife.47999] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.
Collapse
Affiliation(s)
- Martin H Fabry
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Ilaria Falciatori
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
43
|
Luhur A, Klueg KM, Roberts J, Zelhof AC. Thawing, Culturing, and Cryopreserving Drosophila Cell Lines. J Vis Exp 2019:10.3791/59459. [PMID: 31058891 PMCID: PMC7032961 DOI: 10.3791/59459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are currently over 160 distinct Drosophila cell lines distributed by the Drosophila Genomics Resource Center (DGRC). With genome engineering, the number of novel cell lines is expected to increase. The DGRC aims to familiarize researchers with using Drosophila cell lines as an experimental tool to complement and drive their research agenda. Procedures for working with a variety of Drosophila cell lines with distinct characteristics are provided, including protocols for thawing, culturing, and cryopreserving cell lines. Importantly, this publication demonstrates the best practices required to work with Drosophila cell lines to minimize the risk of contaminations from adventitious microorganisms or from other cell lines. Researchers who become familiar with these procedures will be able to delve into the many applications that use Drosophila cultured cells including biochemistry, cell biology and functional genomics.
Collapse
Affiliation(s)
- Arthur Luhur
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington;
| | - Kristin M Klueg
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| | - Johnny Roberts
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Department of Biology, Indiana University Bloomington
| |
Collapse
|
44
|
Sokolova OA, Ilyin AA, Poltavets AS, Nenasheva VV, Mikhaleva EA, Shevelyov YY, Klenov MS. Yb body assembly on the flamenco piRNA precursor transcripts reduces genic piRNA production. Mol Biol Cell 2019; 30:1544-1554. [PMID: 30943101 PMCID: PMC6724695 DOI: 10.1091/mbc.e17-10-0591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Drosophila ovarian somatic cells, PIWI-interacting small RNAs (piRNAs) against transposable elements are mainly produced from the ∼180-kb flamenco (flam) locus. flam transcripts are gathered into foci, located close to the nuclear envelope, and processed into piRNAs in the cytoplasmic Yb bodies. The mechanism of Yb body formation remains unknown. Using RNA fluorescence in situ hybridization, we found that in the follicle cells of ovaries the 5′-ends of flam transcripts are usually located in close proximity to the nuclear envelope and outside of Yb bodies, whereas their extended downstream regions mostly overlap with Yb bodies. In flamKG mutant ovaries, flam transcripts containing the first and, partially, second exons but lacking downstream regions are gathered into foci at the nuclear envelope, but Yb bodies are not assembled. Strikingly, piRNAs from the protein-coding gene transcripts accumulate at higher levels in flamKG ovaries indicating that piRNA biogenesis may occur without Yb bodies. We propose that normally in follicle cells, flam downstream transcript regions function not only as a substrate for generation of piRNAs but also as a scaffold for Yb body assembly, which competitively decreases piRNA production from the protein-coding gene transcripts. By contrast, in ovarian somatic cap and escort cells Yb body assembly does not require flam transcription.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Anastasiya S Poltavets
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia
| |
Collapse
|
45
|
Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat Commun 2019; 10:1176. [PMID: 30862957 PMCID: PMC6414625 DOI: 10.1038/s41467-019-09185-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/21/2019] [Indexed: 11/25/2022] Open
Abstract
How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin. Importantly, upon NL disruption the NL-associated TADs become more acetylated at histone H3 and less compact, while background transcription is derepressed. Two-colour FISH confirms that a TAD becomes less compact following its release from the NL. Finally, polymer simulations show that chromatin binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes them more condensed but decreases the overall chromatin density in the nucleus by stretching interphase chromosomes. The role of the nuclear lamina (NL) in chromatin architecture is still poorly understood. Here, the authors provide evidence that disruption of the NL in Drosophila cells leads to overall chromatin compaction and repositioning from the nuclear envelope, whereas lamina-associated regions become less compacted and transcription within them is increased.
Collapse
|
46
|
Stein CB, Genzor P, Mitra S, Elchert AR, Ipsaro JJ, Benner L, Sobti S, Su Y, Hammell M, Joshua-Tor L, Haase AD. Decoding the 5' nucleotide bias of PIWI-interacting RNAs. Nat Commun 2019; 10:828. [PMID: 30783109 PMCID: PMC6381166 DOI: 10.1038/s41467-019-08803-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are at the center of a small RNA-based immune system that defends genomes against the deleterious action of mobile genetic elements (transposons). PiRNAs are highly variable in sequence with extensive targeting potential. Their diversity is restricted by their preference to start with a Uridine (U) at the 5' most position (1U-bias), a bias that remains poorly understood. Here we uncover that the 1U-bias of Piwi-piRNAs is established by consecutive discrimination against all nucleotides but U, first during piRNA biogenesis and then upon interaction with Piwi's specificity loop. Sequence preferences during piRNA processing also restrict U across the piRNA body with the potential to directly impact target recognition. Overall, the uncovered signatures could modulate specificity and efficacy of piRNA-mediated transposon restriction, and provide a substrate for purifying selection in the ongoing arms race between genomes and their mobile parasites.
Collapse
Affiliation(s)
- Chad B Stein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sanga Mitra
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra R Elchert
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonathan J Ipsaro
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, 11724, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Leif Benner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sushil Sobti
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijun Su
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, 11724, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
48
|
Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife 2018; 7:31628. [PMID: 29376823 PMCID: PMC5844692 DOI: 10.7554/elife.31628] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. A common moth called the cabbage looper is becoming increasingly relevant to the scientific community. Its caterpillars are a serious threat to cabbage, broccoli and cauliflower crops, and they have started to resist the pesticides normally used to control them. Moreover, the insect’s germline cells – the ones that will produce sperm and eggs – are used in laboratories as ‘factories’ to artificially produce proteins of interest. The germline cells also host a group of genetic mechanisms called RNA silencing. One of these processes is known as piRNA, and it protects the genome against ‘jumping genes’. These genetic elements can cause mutations by moving from place to place in the DNA: in germline cells, piRNA suppresses them before the genetic information is transmitted to the next generation. Not all germline cells grow equally well under experimental conditions, or are easy to use to examine piRNA mechanisms in a laboratory. The germline cells from the cabbage looper, on the other hand, have certain characteristics that would make them ideal to study piRNA in insects. However, the genome of the moth had not yet been fully resolved. This hinders research on new ways of controlling the pest, on how to use the germline cells to produce more useful proteins, or on piRNA. Decoding a genome requires several steps. First, the entire genetic information is broken in short sections that can then be deciphered. Next, these segments need to be ‘assembled’ – put together, and in the right order, to reconstitute the entire genome. Certain portions of the genome, which are formed of repeats of the same sections, can be difficult to assemble. Finally, the genome must be annotated: the different regions – such as the genes – need to be identified and labeled. Here, Fu et al. assembled and annotated the genome of the cabbage looper, and in the process developed strategies that could be used for other species with a lot of repeated sequences in their genomes. Having access to the looper’s full genetic information makes it possible to use their germline cells to produce new types of proteins, for example for pharmaceutical purposes. Fu et al. went on to make working with these cells even easier by refining protocols so that modern research techniques, such as the gene-editing technology CRISPR-Cas9, can be used on the looper germline cells. The mapping of the genome also revealed that the genes involved in removing toxins from the insects’ bodies are rapidly evolving, which may explain why the moths readily become resistant to insecticides. This knowledge could help finding new ways of controlling the pest. Finally, the genes involved in RNA silencing were labeled: results show that an entire chromosome is the source of piRNAs. Combined with the new protocols developed by Fu et al., this could make cabbage looper germline cells the default option for any research into the piRNA mechanism. How piRNA works in the moth could inform work on human piRNA, as these processes are highly similar across the animal kingdom.
Collapse
Affiliation(s)
- Yu Fu
- Bioinformatics Program, Boston University, Boston, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Yujing Yang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Han Zhang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gwen Farley
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Junling Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kaycee A Quarles
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
49
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
50
|
Sakakibara K, Siomi MC. The PIWI-Interacting RNA Molecular Pathway: Insights From Cultured Silkworm Germline Cells. Bioessays 2017; 40. [DOI: 10.1002/bies.201700068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuhiro Sakakibara
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| |
Collapse
|